WO2005076509A1 - Verfahren zur optischen übertragung eines polarisations-multiplexsignals - Google Patents

Verfahren zur optischen übertragung eines polarisations-multiplexsignals Download PDF

Info

Publication number
WO2005076509A1
WO2005076509A1 PCT/EP2005/050353 EP2005050353W WO2005076509A1 WO 2005076509 A1 WO2005076509 A1 WO 2005076509A1 EP 2005050353 W EP2005050353 W EP 2005050353W WO 2005076509 A1 WO2005076509 A1 WO 2005076509A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
polarization
signals
phase
carrier signals
Prior art date
Application number
PCT/EP2005/050353
Other languages
English (en)
French (fr)
Inventor
Nancy Hecker
Dirk Van Den Borne
Original Assignee
Siemens Aktiengesellschaft
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens Aktiengesellschaft filed Critical Siemens Aktiengesellschaft
Priority to EP05707871A priority Critical patent/EP1712025A1/de
Priority to CN2005800041301A priority patent/CN1918837B/zh
Priority to US10/588,023 priority patent/US7715730B2/en
Publication of WO2005076509A1 publication Critical patent/WO2005076509A1/de

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/06Polarisation multiplex systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2706Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
    • G02B6/2713Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
    • G02B6/272Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations comprising polarisation means for beam splitting and combining
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/28Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
    • G02B6/293Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
    • G02B6/29379Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
    • G02B6/29392Controlling dispersion
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J14/00Optical multiplex systems
    • H04J14/08Time-division multiplex systems

Definitions

  • the invention relates to an improved method for the optical transmission of a polarization multiplex signal.
  • the transmission of data in polarization multiplex operation is a promising method to double the transmission capacity without having to make higher demands on the transmission path or the signal-to-noise ratio.
  • PMD polarization mode dispersion
  • the process is easy to implement.
  • the carrier signals of both optical data signals (Polmux channels) derived from the same laser are shifted in phase by a constant 90 ° relative to one another. Both carrier signals therefore of course have exactly the same frequency and their phase difference remains constant during transmission.
  • the transmitter-side phase setting can be carried out using different elements such as phase modulators and delay elements.
  • phase control which ensures a constant phase difference between the carrier signals, regardless of the environmental conditions and component tolerances.
  • FIG. 1 shows a basic circuit diagram of the transmission arrangement
  • FIG. 2 shows a basic circuit diagram with phase control
  • FIG. 3 shows an arrangement for measuring the phase difference
  • FIG. 4 shows another arrangement for measuring the phase difference
  • FIG. 5 shows an arrangement for measuring the phase difference by evaluating orthogonal signal components.
  • Figure 1 shows a basic circuit diagram of the transmission arrangement.
  • the method can be implemented by any modified arrangements.
  • a light signal CW (constant wave) usually generated by a laser is fed via an input 1 to a polarization splitter 2, which splits it into two orthogonal carrier signals CW X and CW Y of the same amplitude, but which have different polarization planes by 90 ° ⁇ the arrows indicate the respective polarization).
  • the first orthogonal carrier signal CW is fed via a first optical fiber 3 to a first modulator 5, where it is intensity-modulated with a first data signal DS1.
  • the second orthogonal carrier signal CW Y is transmitted via a second ser 4 and a phase shifter 6 are fed to a second modulator 7 and there intensity is modulated with a second data signal DS2.
  • the optical data signals OS1 and 0S2 emitted at the outputs of the modulators, which are polarized orthogonally to one another and have a phase shift of their carrier signals by 90 °, are combined in a polarization combiner 8 to form a polarization multiplex signal (Pol ux signal) PMS and on Output 9 delivered. Both the phase shift between the carrier signals and the adjustment of the polarization can also take place after the modulators.
  • FIG. 2 shows such a variant, in which the carrier signal CW is first divided into two equal parts CW1 and CW2 in a power splitter 13, which are each modulated as carrier signals with one of the data signals DS1 and DS2.
  • the conversion into orthogonal optical data signals OS1 and OS2 is achieved by two polarization controllers 14 and 15, which are arranged in front of the polarization combiner 8 and then of course also convert the carrier signals CW1 and CW2 into the orthogonal carrier signals CW X and CW Y.
  • the phase shift between the carrier signals CW1 and CW2 is produced by a regulated phase shifter 10 (phase modulator, delay element), which is controlled by a control device 11.
  • the control device 11 receives, via a measuring splitter 12, a measuring signal MS of lower power corresponding to the Polmux signal PMS and monitors the phase shift between the carriers of the orthogonal data signals OS1 and OS2.
  • the time constant of the control device is chosen to be very large, so that the controlled phase shifter 10 practically has a constant value.
  • the phase shifter 10 can also be connected downstream of the polarization adjuster 15.
  • the phase shift of the carrier signals can thus be carried out by setting the carrier signals CW X and CW Y or CWl and CWs or the orthogonal data signals OS1 and 0S2.
  • a control criterion for the carrier phases can be obtained with little effort whenever both Polmux channels transmit a signal at the same time, for example when both signals correspond to a logical one.
  • FIG. 3 shows a basic circuit diagram of the control device for obtaining a control criterion.
  • the measuring principle is based on the fact that the "state of polarization" depends on the phase between the two polarized signals OS1 and OS2, and thus the phase difference can in turn be determined by measuring the polarization state. Only the measurement of the circular polarization component is required. To measure them, the measurement signal MS, which like the Polmux signal has a certain polarization, is split into two sub-signals, one of which is passed through a ( ⁇ / 4 plate and a 45 ° polarizer (polarization filter).
  • FIG. 4 shows a further possibility for determining the phase difference by using a so-called DGD element (differential group delay element), for example a polarization-maintaining fiber or a birefringent crystal, which reverses the 90 "phase shift of the carrier signals, so that their superimposition when Output signal RTS results in a maximum (or with opposite phase shift a minimum) of power.
  • DGD element differential group delay element
  • the polarization planes of the orthogonal signals OS1 and OS2 should be 45 ° with respect to the main axes of the DGD element.
  • FIG. 5 shows a further arrangement with which it is possible to regulate the phase.
  • the prerequisite is again that the Polmux signal PMS or the corresponding measurement signal MS has a certain polarization, as is the case with the transmitter anyway.
  • the Polmux signal or measurement signal here has two (at least almost) orthogonal signals OS1 and OS2, which are polarized at + 45 ° and -45 ° with respect to a polarization plane of the polarization splitter 24.
  • the measurement signal MS which represents both orthogonal signals OS1 and 0S2, is broken down by the polarization splitter 24 into two polarized signal components OS x and 0S Y , which thus each contain signal components of both orthogonal signals OS1 and OS2.
  • the signal components MS X and MS Y are converted separately into electrical signal components E x and E ⁇ in photodiodes 18 and 19. Only when there is a certain phase between the orthogonal signals OS1 and OS2 will both signal components MS X and MS Y be the same size.
  • a corresponding criterion EA - EB can be used for regulation.
  • the sensitivity of the control can be increased by special signal processing in the control device 25, for example by multiplying the signal components.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Communication System (AREA)

Abstract

Das Polarisations-Multiplexsignals (PMS) enthält zwei zueinander orthogonal polarisierte Datensignale (OS1, OS2). Deren Trägersignale (CW1, CW2; CWX, CWY) sind von der selben Quelle abgeleiteten und weisen deshalb die selbe Wellenlänge auf. Die Phasendifferenz zwischen den Trägersignalen (CW1, CW2; CWX, CWY) wird so eingestellt oder geregelt, dass sie 90° entspricht. Durch diese Phasendifferenz der Trägersignale (CW1, CW2; CWX, CWY) wird die Störanfälligkeit gegenüber Polarisationsmodendispersion wesentlich verringert.

Description

Beschreibung
Verfahren zur optischen Übertragung eines Polarisations— Multiplexsignals
Die Erfindung betrifft ein verbessertes Verfahren zur optischen Übertragung eines Polarisations-Multiplexsignals .
Die Übertragung von Daten im Polarisationsmultiplexbetrieb, bei dem zwei optische Datensignale dieselbe Wellenlänge bei orthogonaler Polarisation aufweisen, ist eine viel versprechende Methode, um die Übertragungskapazität zu verdoppeln, ohne höhere Anforderungen an die Übertragungsstrecke oder den Signal-Rausch-Abstand zu stellen zu müssen.
Ein Nachteil des Polarisations-Multiplexverfahrens ist j edoch die Empfindlichkeit gegenüber Polarisationsmodendispersion (PMD) , die zu einer gegenseitigen Störung der Übertragungska- näle führt. Der PMD-Einfluss kann durch PMD-Kompensationsmaß- nahmen verringert werden. Die Kompensation ist aber für jeden Kanal eines Wellenlängenmultiplexsystems erforderlich; sie ist zudem aufwendig und liefert nicht immer die gewünschten Ergebnisse. Die Verwendung von PMD-optimierten Fasern, die jedoch nur bei neuen Netzen möglich ist, bewirkt ebenfalls eine Verbesserung.
Es wird daher nach neuen Möglichkeiten gesucht, bei der Übertragung eines Polmux-Signals die PMD-Störanfälligkeit und damit die gegenseitigen Störungen der optischen Datensignale zu verringern.
Diese Aufgabe wird durch ein Verfahren gemäß Anspruch 1 gelöst.
Vorteilhafte Weiterbildungen des Verfahrens sind in den Unteransprüchen angegeben. Das Verfahren ist einfach zu realisieren. Die vom selben Laser abgeleiteten Trägersignale beider optischen Datensignale (Polmux-Kanäle) werden in ihrer Phase um konstant 90° gegeneinander verschoben. Beide Tägersignale weisen daher natür- lieh auch exakt die gleiche Frequenz auf und ihre Phasendifferenz bleibt während der Übertragung konstant. Die sender- seitige Phaseneinstellung kann durch unterschiedliche Elemente wie Phasenmodulatoren und Laufzeitglieder erfolgen.
Vorteilhaft ist auch der Einsatz einer Phasenregelung, die unabhängig von den Umweltbedingungen und Bauelementetoleranzen für eine konstante Phasendifferenz zwischen den Trägersignale sorgt.
Die Erfindung wird anhand von Ausführungsbeispielen näher beschrieben.
Es zeigen
Figur 1 ein Prinzipschaltbild der Sendeanordnung, Figur 2 ein Prinzipschaltbild mit Phasenregelung,
Figur 3 ein Anordnung zur Messung der Phasendifferenz, Figur 4 eine weitere Anordnung zur Phasendifferenzmessung und Figur 5 eine Anordnung zur Phasendifferenzmessung durch Bewertung von orthogonalen Signalkomponenten.
Figur 1 zeigt ein Prinzipschaltbild der Sendeanordnung. Das Verfahren kann durch beliebig abgewandelte Anordnungen realisiert werden. Ein üblicherweise von einem Laser erzeugtes Lichtsignal CW (Constant Wave) wird über einen Eingang 1 ei- nem Polarisations-Splitter 2 zugeführt, der es in zwei orthogonale Trägersignale CWX und CWY gleicher Amplitude aufteilt, die aber um 90° unterschiedliche Polarisationsebenen aufweisen {die Pfeile deuten die jeweilige Polarisation an) . Das erste orthogonale Trägersignal CW wird über eine erste opti- sehe Faser 3 einem ersten Modulator 5 zugeführt, wo es mit einem ersten Datensignal DSl intensitätsmoduliert wird. Das zweite orthogonale Trägersignal CWY wird über eine zweite Fa- ser 4 und einen Phasenschieber 6 einem zweiten Modulator 7 zugeführt und dort mit einem zweiten Datensignal DS2 intensi- täts oduliert wird. Die an den Ausgängen der Modulatoren abgegebenen optischen Datensignale OSl und 0S2, die zueinander orthogonal polarisiert sind und eine Phasenverschiebung ihrer Trägersignale um 90° aufweisen, werden in einem Polarisati- ons-Combiner 8 zu einem Polarisationsmultiplexsignal (Pol ux- Signal) PMS zusammengefasst und am Ausgang 9 abgegeben. Sowohl die Phasenverschiebung zwischen den Trägersignalen als auch die Einstellung der Polarisation kann ebenso nach den Modulatoren erfolgen.
Figur 2 zeigt eine solche Variante, bei der das Trägersignal CW zunächst in einem Leistungs-Splitter 13 in zwei gleiche Anteile CWl und CW2 aufgeteilt wird, die als Trägersignale jeweils mit einem der Datensignale DSl bzw. DS2 moduliert werden. Die Umsetzung in orthogonale optische Datensignale OSl und OS2 wird durch zwei Polarisationssteller 14 und 15 erzielt, die vor dem Polarisations-Combiner 8 angeordnet sind und dann natürlich auch die Trägersignale CWl und CW2 in die orthogonalen Trägersignale CWX und CWY umsetzen.
Die Phasenverschiebung zwischen den Trägersignalen CWl und CW2 wird durch einen geregelten Phasenschieber 10 (Phasenmo- dulator, Laufzeitglied) hergestellt, der von einer Regeleinrichtung 11 gesteuert wird. Die Regeleinrichtung 11 erhält über einen Mess-Splitter 12 ein dem Polmux-Signal PMS entsprechendes Mess-Signal MS geringerer Leistung und überwacht die Phasenverschiebung zwischen den Trägern der orthogonalen Datensignale OSl und OS2. Die Zeitkonstante der Regeleinrichtung wird sehr groß gewählt, so dass der geregelte Phasenschieber 10 praktisch einen konstanten Wert aufweist. Der Phasenschieber 10 kann ebenso dem Polarisationssteller 15 nachgeschaltet sein. Die Phasenverschiebung der Trägersignale kann also durch Einstellen der Trägersignale CWX und CWY oder CWl und CWs oder der orthogonalen Datensignale OSl und 0S2 erfolgen. Ein Regelkriterium für die Trägerphasen erhält man ohne großen Aufwand immer dann, wenn beide Polmux-Kanäle gleichzeitig ein Signal übertragen, beispielsweise wenn beide Signale ei- ner logischen Eins entsprechen.
Figur 3 zeigt ein Prinzipschaltbild der Regeleinrichtung zur Gewinnung eines Regelkriteriums. Das Messprinzip beruht darauf, dass der "State of Polarisation" (Polarisationszustand) von der Phase zwischen beiden polarisierten Signalen OSl und OS2 abhängt und somit durch Messung des Polarisationszustandes wiederum die Phasendifferenz ermittelt werden kann. Es ist nur die Messung der zirkulären Polarisationskomponente erforderlich. Zu deren Messung wird das Meßsignal MS, das wie das Polmux-Signal eine bestimmte Polarisation aufweist, in zwei Teilsignale aufgespaltet, von denen eines über eine (λ/4 Platte und einen 45°-Polarisierer (Polarisationsfilter) geleitet wird. Bei exakt 90o Phasenverschiebung der Trägersignale zueinander sind die Amplituden beider Teilsignale OA und OB gleich groß. Die optischen Teilsignale OA und OB werden durch Fotodioden 18 und 19 in elektrische Teilsignale EA und EB umgesetzt und einer Steuerung 20 zugeführt, die den Amplitudenunterschied misst und die Phasendifferenz der Trägersignale entsprechend einstellt.
Figur 4 zeigt eine weitere Möglichkeit zur Bestimmung der Phasendifferenz durch den Einsatz eines sogenannten DGD- Elementes (Differentielles Gruppenlaufzeit-Element) , beispielsweise einer polarisationserhaltenden Faser oder eines doppelbrechenden Kristalls, das die 90 "-Phasenverschiebung der Trägersignale rückgängig macht, so dass deren Überlagerung beim AusgangsSignals RTS ein Maximum (oder bei entgegengesetzter Phasenverschiebung ein Minimum) an Leistung ergibt. Die Polarisationsebenen der orthogonalen Signale OSl und OS2 sollten um 45° gegenüber den Hauptachsen des DGD-Elementes liegen. Nach Umwandlung des optischen ÜberlagerungsSignals OTS in ein elektrisches Überlagerungssignal ETS in einer Pho- todiode 22, wird die effektive Leistung in einer Regeleinrichtung 23 ermittelt und auf ein Maximum (oder Minimum) geregelt.
Figur 5 zeigt eine weitere Anordnung, mit der es möglich ist, die Phase zu regeln. Voraussetzung ist wieder, dass das Pol- mux-Signal PMS bzw. das entsprechende Mess-Signal MS eine bestimmte Polarisationen aufweist, wie dies aber ohnehin beim Sender der Fall ist. Das Polmux-Signal bzw. Meßsignal weist hier zwei (zumindest nahezu) orthogonale Signale OSl und OS2 auf, die mit +45° und -45° gegenüber einer Polarisationsebene des Polarisations-Splitter 24 polarisiert ist. Das Meßsignal MS, das beide orthogonalen Signale OSl und 0S2 repräsentiert, wird durch den Polarisations-Splitter 24 in zwei polarisierte Signalanteile OSx und 0SY zerlegt, die somit jeweils Signalanteile beider orthogonalen Signale OSl und OS2 enthalten. Die Signalanteile MSX und MSY werden separat in Photodioden 18 und 19 in elektrische Signalanteile Ex und Eγ umgesetzt. Nur bei einer bestimmten Phase zwischen den orthogonalen Sig- nalen OSl und OS2 werden beide Signalanteile MSX und MSY gleich groß sein. Ein entsprechendes Kriterium EA - EB kann zur Regelung verwendet werden. Die Empfindlichkeit der Regelung kann durch spezielle Signalverarbeitung in der Regeleinrichtung 25, beispielsweise durch Multiplikation der Signal- anteile, erhöht werden.

Claims

Patentansprüche
1. Verfahren zur optischen Übertragung eines Polarisations- Multiplexsignals (PMS) , das zwei orthogonale Datensignale (OSl, OS2) aufweist, deren Trägersignale (CWl, CW2; CWX, CWY) die selbe Wellenlänge aufweisen und durch Datensignale (DS1, DS2) moduliert werden, dadurch gekennzeichnet, dass die Trägersignale (CWl, CW2; CW, CWY) um 90° gegenein- ander phasenverschoben werden.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Phasendifferenz zwischen den Trägersignalen (CWl, CW2; CWX, CWY) geregelt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur Gewinnung eines Kriteriums zur Phasenregelung die zirkuläre Polarisationskomponente des Polarisations-
Multiplexsignals (PMS) gemessen und hieraus ein Regelsignal (RS) wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, dass ein vom Polarisations-Multiplexsignals (PMS) abgezweigtes Mess-Signal (MS) in zwei gleiche Signalanteile aufgeteilt wird, von denen der eine direkt in ein erstes elektrisches Teilsignal (EA) umgesetzt wird und der andere zunächst über eine auf die Wellenlänge der Trägersignale (CWl, CW2; CWX,
CWY) abgestimmte λ/4-Platte (16) und ein Polarisationsfilter (17) geführt wird und dann in ein zweites elektrisches Teilsignal (EB) umgesetzt wird, dass beide Signalanteile miteinander verglichen werden und hieraus das Regelsignal (RS) gewonnen wird und dass die Phase zwischen den Trägersignalen (CWl, CW2; CWX, CWY) derart verändert wird, dass die elektrischen Teilsignale (EA, EB) gleiche Werte aufweisen.
5. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur Gewinnung eines Kriteriums zur Phasenregelung ein vom Polarisations-Multiplexsignals (PMS) abgezweigtes Mess- Signal (MS) einem auf die Wellenlänge der Trägersignale (CWl, CW2; CWX, CWY) abgestimmten DGD-Element (21) zugeführt wird, dass das Ausgangssignal des DGD-Elements (21) in ein elektri- sches Signal (ETS) umgesetzt und gemessen wird und hieraus ein Regelsignal (RS) gewonnen wird und dass die Phase zwischen den Trägersignalen (CWl, CW2; CWX, CWY) derart verändert wird, dass das Ausgangssignal des DGD- Elements (21) einen Extremwert erreicht.
6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die Polarisationsebenen der orthogonalen Datensignale (OSl, OS2) ein Winkel von ±45° gegenüber den Hauptachsen des DGD-Elementes aufweisen.
7. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass zur Gewinnung eines Kriteriums zur Phasenregelung ein vom Polarisations-Multiplexsignal (PMS) abgezweigtes Mess- Signal (MS) in zwei zueinander orthogonale Signalanteile (CWX, CWY) aufgeteilt wird, dass die orthogonalen Signalanteile (CWX, CWY) in elektrische Signalanteile (Ex, Eγ) umgesetzt werden und dass aus den Amplituden der elektrischen Signalanteile (Ex, Ey) das Regelsignal (RS) gewonnen wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, dass die Polarisationsebenen der orthogonalen Signale (OSl,
OS2) Signalanteile um ±45° gegenüber einer Polarisationsebene eines Polarisations-Splitters (24) eingestellt werden und dass die Phase zwischen den Trägersignalen (CWl, CW2; CWX, CWY) derart verändert wird, dass die Amplituden der elektrischen Signalanteile (Ex, Eγ) gleiche Werte aufweisen.
PCT/EP2005/050353 2004-02-05 2005-01-27 Verfahren zur optischen übertragung eines polarisations-multiplexsignals WO2005076509A1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP05707871A EP1712025A1 (de) 2004-02-05 2005-01-27 Verfahren zur optischen bertragung eines polarisations-mult iplexsignals
CN2005800041301A CN1918837B (zh) 2004-02-05 2005-01-27 偏振复用信号的光传输方法
US10/588,023 US7715730B2 (en) 2004-02-05 2005-01-27 Method for optical transmission of a polarization division multiplexed signal

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004005718A DE102004005718A1 (de) 2004-02-05 2004-02-05 Verfahren zur optischen Übertragung eines Polarisations-Multiplexsignals
DE102004005718.4 2004-02-05

Publications (1)

Publication Number Publication Date
WO2005076509A1 true WO2005076509A1 (de) 2005-08-18

Family

ID=34801624

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2005/050353 WO2005076509A1 (de) 2004-02-05 2005-01-27 Verfahren zur optischen übertragung eines polarisations-multiplexsignals

Country Status (5)

Country Link
US (1) US7715730B2 (de)
EP (1) EP1712025A1 (de)
CN (1) CN1918837B (de)
DE (1) DE102004005718A1 (de)
WO (1) WO2005076509A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009097751A1 (zh) 2008-02-04 2009-08-13 Huawei Technologies Co., Ltd. 一种产生差分正交相移键控码光信号的方法及装置
US9419720B2 (en) 2008-09-26 2016-08-16 Fujitsu Limited Optical signal transmitter
EP3678303A1 (de) * 2018-12-20 2020-07-08 Dawis IT Sp. z o. o. Übertragungsverfahren und -system für eine verbesserte unidirektionale oder bidirektionale datenübertragung über ein telekommunikationsnetz, eine polarisationsattraktionsschaltung, ein computerprogramm und ein computerprogrammprodukt

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7873286B2 (en) * 2007-10-19 2011-01-18 Ciena Corporation Optical receiver systems and methods for polarization demultiplexing, PMD compensation, and DXPSK demodulation
JP5083134B2 (ja) * 2008-09-10 2012-11-28 富士通株式会社 偏波多重光送信器およびその制御方法
US20100150555A1 (en) * 2008-12-12 2010-06-17 Zinan Wang Automatic polarization demultiplexing for polarization division multiplexed signals
US9374188B2 (en) * 2008-12-12 2016-06-21 Alcatel Lucent Optical communication using polarized transmit signal
US8270847B2 (en) * 2009-02-02 2012-09-18 Tyco Electronics Subsea Communications Llc Polarization multiplexing with different DPSK modulation schemes and system incorporating the same
CN101860500B (zh) 2009-04-13 2013-10-09 华为技术有限公司 一种产生、接收相位偏振调制信号的方法、装置和系统
CN102742187B (zh) * 2009-12-15 2018-03-16 骁阳网络有限公司 减少的偏振相关损耗情况下传输光传输信号的方法和设备
CN102137057B (zh) * 2010-06-18 2013-09-25 华为技术有限公司 一种信号生成方法及装置
US9768875B2 (en) * 2012-11-12 2017-09-19 Ciena Corporation Optical modulation schemes having reduced nonlinear optical transmission impairments
CN111181654B (zh) * 2014-03-20 2023-02-28 艾里尔大学研究与开发有限公司 用于控制信号相位的方法、系统及其应用设备
US9634786B2 (en) 2015-02-13 2017-04-25 Georgia Tech Research Corporation Communication systems with phase-correlated orthogonally-polarized light-stream generator
WO2017060908A1 (en) 2015-10-08 2017-04-13 Ariel-University Research And Development Company Ltd. Method and system for controlling phase of a signal
WO2018035954A1 (en) * 2016-08-25 2018-03-01 Huawei Technologies Co., Ltd. System and method for photonic digital to analog conversion
JP6911483B2 (ja) 2017-04-19 2021-07-28 富士通株式会社 波長変換装置、制御光生成装置、波長変換方法、および制御光生成方法
US11621795B2 (en) * 2020-06-01 2023-04-04 Nubis Communications, Inc. Polarization-diversity optical power supply
US12101129B2 (en) 2021-02-03 2024-09-24 Nubis Communications, Inc. Communication systems having optical power supplies
US12066653B2 (en) 2021-04-22 2024-08-20 Nubis Communications, Inc. Communication systems having optical power supplies

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507508A2 (de) * 1991-04-04 1992-10-07 AT&T Corp. Polarisationsmultiplexierung mit solitons
US6104515A (en) * 1999-02-01 2000-08-15 Otera Corporation Method and apparatus for providing high-order polarization mode dispersion compensation using temporal imaging
US6130766A (en) * 1999-01-07 2000-10-10 Qtera Corporation Polarization mode dispersion compensation via an automatic tracking of a principal state of polarization
US20020093993A1 (en) * 2000-06-15 2002-07-18 Lagasse Michael J. Apparatus and method for demultiplexing a polarization-multiplexed signal
US20030184735A1 (en) * 2001-12-28 2003-10-02 Klaus Kotten System and method for measuring and compensating for the polarization mode dispersion of an optical signal
WO2003096584A1 (de) * 2002-05-10 2003-11-20 Siemens Aktiengesellschaft Verfahren und anordnung zur verringerung der signaldegradation eines optischen polarisation-multiplexsignals

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6607313B1 (en) * 1999-06-23 2003-08-19 Jds Fitel Inc. Micro-optic delay element for use in a polarization multiplexed system
US20020003641A1 (en) 2000-05-08 2002-01-10 Hall Katherine L. Polarization division multiplexer
US7076169B2 (en) 2000-09-26 2006-07-11 Celight, Inc. System and method for orthogonal frequency division multiplexed optical communication
US7272271B2 (en) * 2001-09-26 2007-09-18 Celight, Inc. Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals
US20040208646A1 (en) * 2002-01-18 2004-10-21 Seemant Choudhary System and method for multi-level phase modulated communication
JP2003338805A (ja) * 2002-03-15 2003-11-28 Kddi Submarine Cable Systems Inc 光伝送システム、光送信装置及びこれらの方法
JP3689681B2 (ja) * 2002-05-10 2005-08-31 キヤノン株式会社 測定装置及びそれを有する装置群
EP1376908A1 (de) * 2002-06-28 2004-01-02 Adaptif Photonics GmbH Verfahren zur Steuerung eines Verzerrungskompensator für optischen Signalen

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0507508A2 (de) * 1991-04-04 1992-10-07 AT&T Corp. Polarisationsmultiplexierung mit solitons
US6130766A (en) * 1999-01-07 2000-10-10 Qtera Corporation Polarization mode dispersion compensation via an automatic tracking of a principal state of polarization
US6104515A (en) * 1999-02-01 2000-08-15 Otera Corporation Method and apparatus for providing high-order polarization mode dispersion compensation using temporal imaging
US20020093993A1 (en) * 2000-06-15 2002-07-18 Lagasse Michael J. Apparatus and method for demultiplexing a polarization-multiplexed signal
US20030184735A1 (en) * 2001-12-28 2003-10-02 Klaus Kotten System and method for measuring and compensating for the polarization mode dispersion of an optical signal
WO2003096584A1 (de) * 2002-05-10 2003-11-20 Siemens Aktiengesellschaft Verfahren und anordnung zur verringerung der signaldegradation eines optischen polarisation-multiplexsignals

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP1712025A1 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009097751A1 (zh) 2008-02-04 2009-08-13 Huawei Technologies Co., Ltd. 一种产生差分正交相移键控码光信号的方法及装置
EP2154799A1 (de) * 2008-02-04 2010-02-17 Huawei Technologies Co., Ltd. Verfahren und vorrichtung zur erzeugung eines dqpsk-codierten optischen signals
EP2154799A4 (de) * 2008-02-04 2011-03-30 Huawei Tech Co Ltd Verfahren und vorrichtung zur erzeugung eines dqpsk-codierten optischen signals
US8238747B2 (en) 2008-02-04 2012-08-07 Huawei Technologies Co., Ltd. Method and apparatus for generating DQPSK encoding optical signal
US9419720B2 (en) 2008-09-26 2016-08-16 Fujitsu Limited Optical signal transmitter
EP3678303A1 (de) * 2018-12-20 2020-07-08 Dawis IT Sp. z o. o. Übertragungsverfahren und -system für eine verbesserte unidirektionale oder bidirektionale datenübertragung über ein telekommunikationsnetz, eine polarisationsattraktionsschaltung, ein computerprogramm und ein computerprogrammprodukt

Also Published As

Publication number Publication date
CN1918837B (zh) 2012-04-04
DE102004005718A1 (de) 2005-08-25
EP1712025A1 (de) 2006-10-18
US20070166046A1 (en) 2007-07-19
US7715730B2 (en) 2010-05-11
CN1918837A (zh) 2007-02-21

Similar Documents

Publication Publication Date Title
WO2005076509A1 (de) Verfahren zur optischen übertragung eines polarisations-multiplexsignals
DE69915553T2 (de) Verfahren zur Kompensation der Polarisationsmodendispersion
DE69839099T2 (de) Verfahren zur Bestimmung der Dispersion einer faseroptischen Übertragungsleitung und zugehörige Vorrichtung
DE69431693T2 (de) Gerät und Verfahren unter Verwendung einer schnellen Polarisationsmodulation zur Reduktion von Effekten betreffend polarisationsabhängigem Locheinbrennen und/oder polarisationsabhängiger Dämpfung
DE68926195T2 (de) Stabilisierungsverfahren für eine Frequenztrennung in einer optischen heterodynen oder homodynen Übertragung
DE3785662T2 (de) Methoden und vorrichtungen zur aenderung der optischen polarisation.
DE60026626T2 (de) Verbesserter Verzerrungsanalysator für eine Vorrichtung zur Kompensation der Polarisationsmodendispersion erster Ordnung (PMD)
DE69704048T2 (de) Vorrichtung zur Polarisationsdispersionskompensation in einem optischen Übertragungssystem
DE3788537T2 (de) Symmetrischer doppelt-optischer Signalempfänger.
DE69834787T2 (de) Verfahren und Vorrichtung zur automatischen Kompensation der Polarisationsmodendispersion erster Ordnung
EP1371154B1 (de) Anordnung und verfahren für eine optische informationsübertragung
DE69328645T2 (de) Vielfachpolarisationsempfindliche Detektionsanordnung für faseroptische Nachrichtenübertragung
DE69632733T2 (de) Dispersionskompensation
DE60131112T2 (de) Polarisationsmodendispersionsmessung mit phasenempfindlicher Seitenbanddetection
EP1298826B1 (de) Verfahren zur Übertragung von mindestens einem ersten und zweiten Datensignal im Polarisationsmultiplex in einem optischen Übertragungssystem
DE60212267T2 (de) Mehrfachempfänger für verschiedene Polarisationen mit planaren Wellenleitern und plolarisierendem Strahlteiler
DE69914030T2 (de) Verfahren zur Messung der Polarisationsmodendispersion
DE69031110T2 (de) Anordnung und Verfahren zur Abstimmung eines verzerrungsauslöschenden faseroptischen Übertragungssystems
DE69533536T2 (de) Polarisationsmodulation in Wellenlängen-Multiplex Übertragungssystemen
EP1514373A1 (de) Verfahren und anordnung zur verringerung der signaldegradation eines optischen polarisation-multiplexsignals
DE60125951T2 (de) Mehrkanaliger optischer empfänger zur verarbeitung von drei-zell-detektorausgängne mit polarisationsdiversität
DE69017359T2 (de) Verfahren und Vorrichtung zur Übertragung eines elektromagnetischen Signals in einer optischen Faser.
EP1210785B1 (de) Anordnung und verfahren für eine optische informationsübertragung
EP1262033A1 (de) Vorrichtung zur erfassung der pmd von optoelektronischen übertragungsstrecken
DE69533772T2 (de) Dynamisch kontrollierte Polarisationsmodulation in Wellenlängenmultiplex-Übertragungssystemen

Legal Events

Date Code Title Description
AK Designated states

Kind code of ref document: A1

Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW

AL Designated countries for regional patents

Kind code of ref document: A1

Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG

121 Ep: the epo has been informed by wipo that ep was designated in this application
DPEN Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101)
WWE Wipo information: entry into national phase

Ref document number: 2005707871

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2007166046

Country of ref document: US

Ref document number: 10588023

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 200580004130.1

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE

WWW Wipo information: withdrawn in national office

Country of ref document: DE

WWP Wipo information: published in national office

Ref document number: 2005707871

Country of ref document: EP

WWP Wipo information: published in national office

Ref document number: 10588023

Country of ref document: US