WO2005076509A1 - Verfahren zur optischen übertragung eines polarisations-multiplexsignals - Google Patents
Verfahren zur optischen übertragung eines polarisations-multiplexsignals Download PDFInfo
- Publication number
- WO2005076509A1 WO2005076509A1 PCT/EP2005/050353 EP2005050353W WO2005076509A1 WO 2005076509 A1 WO2005076509 A1 WO 2005076509A1 EP 2005050353 W EP2005050353 W EP 2005050353W WO 2005076509 A1 WO2005076509 A1 WO 2005076509A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- signal
- polarization
- signals
- phase
- carrier signals
- Prior art date
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/06—Polarisation multiplex systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/27—Optical coupling means with polarisation selective and adjusting means
- G02B6/2706—Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
- G02B6/2713—Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
- G02B6/272—Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations comprising polarisation means for beam splitting and combining
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
- G02B6/29392—Controlling dispersion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/08—Time-division multiplex systems
Definitions
- the invention relates to an improved method for the optical transmission of a polarization multiplex signal.
- the transmission of data in polarization multiplex operation is a promising method to double the transmission capacity without having to make higher demands on the transmission path or the signal-to-noise ratio.
- PMD polarization mode dispersion
- the process is easy to implement.
- the carrier signals of both optical data signals (Polmux channels) derived from the same laser are shifted in phase by a constant 90 ° relative to one another. Both carrier signals therefore of course have exactly the same frequency and their phase difference remains constant during transmission.
- the transmitter-side phase setting can be carried out using different elements such as phase modulators and delay elements.
- phase control which ensures a constant phase difference between the carrier signals, regardless of the environmental conditions and component tolerances.
- FIG. 1 shows a basic circuit diagram of the transmission arrangement
- FIG. 2 shows a basic circuit diagram with phase control
- FIG. 3 shows an arrangement for measuring the phase difference
- FIG. 4 shows another arrangement for measuring the phase difference
- FIG. 5 shows an arrangement for measuring the phase difference by evaluating orthogonal signal components.
- Figure 1 shows a basic circuit diagram of the transmission arrangement.
- the method can be implemented by any modified arrangements.
- a light signal CW (constant wave) usually generated by a laser is fed via an input 1 to a polarization splitter 2, which splits it into two orthogonal carrier signals CW X and CW Y of the same amplitude, but which have different polarization planes by 90 ° ⁇ the arrows indicate the respective polarization).
- the first orthogonal carrier signal CW is fed via a first optical fiber 3 to a first modulator 5, where it is intensity-modulated with a first data signal DS1.
- the second orthogonal carrier signal CW Y is transmitted via a second ser 4 and a phase shifter 6 are fed to a second modulator 7 and there intensity is modulated with a second data signal DS2.
- the optical data signals OS1 and 0S2 emitted at the outputs of the modulators, which are polarized orthogonally to one another and have a phase shift of their carrier signals by 90 °, are combined in a polarization combiner 8 to form a polarization multiplex signal (Pol ux signal) PMS and on Output 9 delivered. Both the phase shift between the carrier signals and the adjustment of the polarization can also take place after the modulators.
- FIG. 2 shows such a variant, in which the carrier signal CW is first divided into two equal parts CW1 and CW2 in a power splitter 13, which are each modulated as carrier signals with one of the data signals DS1 and DS2.
- the conversion into orthogonal optical data signals OS1 and OS2 is achieved by two polarization controllers 14 and 15, which are arranged in front of the polarization combiner 8 and then of course also convert the carrier signals CW1 and CW2 into the orthogonal carrier signals CW X and CW Y.
- the phase shift between the carrier signals CW1 and CW2 is produced by a regulated phase shifter 10 (phase modulator, delay element), which is controlled by a control device 11.
- the control device 11 receives, via a measuring splitter 12, a measuring signal MS of lower power corresponding to the Polmux signal PMS and monitors the phase shift between the carriers of the orthogonal data signals OS1 and OS2.
- the time constant of the control device is chosen to be very large, so that the controlled phase shifter 10 practically has a constant value.
- the phase shifter 10 can also be connected downstream of the polarization adjuster 15.
- the phase shift of the carrier signals can thus be carried out by setting the carrier signals CW X and CW Y or CWl and CWs or the orthogonal data signals OS1 and 0S2.
- a control criterion for the carrier phases can be obtained with little effort whenever both Polmux channels transmit a signal at the same time, for example when both signals correspond to a logical one.
- FIG. 3 shows a basic circuit diagram of the control device for obtaining a control criterion.
- the measuring principle is based on the fact that the "state of polarization" depends on the phase between the two polarized signals OS1 and OS2, and thus the phase difference can in turn be determined by measuring the polarization state. Only the measurement of the circular polarization component is required. To measure them, the measurement signal MS, which like the Polmux signal has a certain polarization, is split into two sub-signals, one of which is passed through a ( ⁇ / 4 plate and a 45 ° polarizer (polarization filter).
- FIG. 4 shows a further possibility for determining the phase difference by using a so-called DGD element (differential group delay element), for example a polarization-maintaining fiber or a birefringent crystal, which reverses the 90 "phase shift of the carrier signals, so that their superimposition when Output signal RTS results in a maximum (or with opposite phase shift a minimum) of power.
- DGD element differential group delay element
- the polarization planes of the orthogonal signals OS1 and OS2 should be 45 ° with respect to the main axes of the DGD element.
- FIG. 5 shows a further arrangement with which it is possible to regulate the phase.
- the prerequisite is again that the Polmux signal PMS or the corresponding measurement signal MS has a certain polarization, as is the case with the transmitter anyway.
- the Polmux signal or measurement signal here has two (at least almost) orthogonal signals OS1 and OS2, which are polarized at + 45 ° and -45 ° with respect to a polarization plane of the polarization splitter 24.
- the measurement signal MS which represents both orthogonal signals OS1 and 0S2, is broken down by the polarization splitter 24 into two polarized signal components OS x and 0S Y , which thus each contain signal components of both orthogonal signals OS1 and OS2.
- the signal components MS X and MS Y are converted separately into electrical signal components E x and E ⁇ in photodiodes 18 and 19. Only when there is a certain phase between the orthogonal signals OS1 and OS2 will both signal components MS X and MS Y be the same size.
- a corresponding criterion EA - EB can be used for regulation.
- the sensitivity of the control can be increased by special signal processing in the control device 25, for example by multiplying the signal components.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Optical Communication System (AREA)
Abstract
Description
Claims
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP05707871A EP1712025A1 (de) | 2004-02-05 | 2005-01-27 | Verfahren zur optischen bertragung eines polarisations-mult iplexsignals |
CN2005800041301A CN1918837B (zh) | 2004-02-05 | 2005-01-27 | 偏振复用信号的光传输方法 |
US10/588,023 US7715730B2 (en) | 2004-02-05 | 2005-01-27 | Method for optical transmission of a polarization division multiplexed signal |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004005718A DE102004005718A1 (de) | 2004-02-05 | 2004-02-05 | Verfahren zur optischen Übertragung eines Polarisations-Multiplexsignals |
DE102004005718.4 | 2004-02-05 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2005076509A1 true WO2005076509A1 (de) | 2005-08-18 |
Family
ID=34801624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/EP2005/050353 WO2005076509A1 (de) | 2004-02-05 | 2005-01-27 | Verfahren zur optischen übertragung eines polarisations-multiplexsignals |
Country Status (5)
Country | Link |
---|---|
US (1) | US7715730B2 (de) |
EP (1) | EP1712025A1 (de) |
CN (1) | CN1918837B (de) |
DE (1) | DE102004005718A1 (de) |
WO (1) | WO2005076509A1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009097751A1 (zh) | 2008-02-04 | 2009-08-13 | Huawei Technologies Co., Ltd. | 一种产生差分正交相移键控码光信号的方法及装置 |
US9419720B2 (en) | 2008-09-26 | 2016-08-16 | Fujitsu Limited | Optical signal transmitter |
EP3678303A1 (de) * | 2018-12-20 | 2020-07-08 | Dawis IT Sp. z o. o. | Übertragungsverfahren und -system für eine verbesserte unidirektionale oder bidirektionale datenübertragung über ein telekommunikationsnetz, eine polarisationsattraktionsschaltung, ein computerprogramm und ein computerprogrammprodukt |
Families Citing this family (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7873286B2 (en) * | 2007-10-19 | 2011-01-18 | Ciena Corporation | Optical receiver systems and methods for polarization demultiplexing, PMD compensation, and DXPSK demodulation |
JP5083134B2 (ja) * | 2008-09-10 | 2012-11-28 | 富士通株式会社 | 偏波多重光送信器およびその制御方法 |
US20100150555A1 (en) * | 2008-12-12 | 2010-06-17 | Zinan Wang | Automatic polarization demultiplexing for polarization division multiplexed signals |
US9374188B2 (en) * | 2008-12-12 | 2016-06-21 | Alcatel Lucent | Optical communication using polarized transmit signal |
US8270847B2 (en) * | 2009-02-02 | 2012-09-18 | Tyco Electronics Subsea Communications Llc | Polarization multiplexing with different DPSK modulation schemes and system incorporating the same |
CN101860500B (zh) | 2009-04-13 | 2013-10-09 | 华为技术有限公司 | 一种产生、接收相位偏振调制信号的方法、装置和系统 |
WO2011072720A1 (en) * | 2009-12-15 | 2011-06-23 | Nokia Siemens Networks Oy | Method and arrangement for transmitting an optical transmission signal with reduced polarisation-dependent loss |
CN102137057B (zh) * | 2010-06-18 | 2013-09-25 | 华为技术有限公司 | 一种信号生成方法及装置 |
US9768875B2 (en) * | 2012-11-12 | 2017-09-19 | Ciena Corporation | Optical modulation schemes having reduced nonlinear optical transmission impairments |
US10009114B2 (en) * | 2013-03-20 | 2018-06-26 | Ariel-University Research And Development Company Ltd. | Method and system for controlling phase of a signal |
US9634786B2 (en) | 2015-02-13 | 2017-04-25 | Georgia Tech Research Corporation | Communication systems with phase-correlated orthogonally-polarized light-stream generator |
WO2017060908A1 (en) | 2015-10-08 | 2017-04-13 | Ariel-University Research And Development Company Ltd. | Method and system for controlling phase of a signal |
WO2018035954A1 (en) * | 2016-08-25 | 2018-03-01 | Huawei Technologies Co., Ltd. | System and method for photonic digital to analog conversion |
JP6911483B2 (ja) * | 2017-04-19 | 2021-07-28 | 富士通株式会社 | 波長変換装置、制御光生成装置、波長変換方法、および制御光生成方法 |
US11621795B2 (en) * | 2020-06-01 | 2023-04-04 | Nubis Communications, Inc. | Polarization-diversity optical power supply |
US12101129B2 (en) | 2021-02-03 | 2024-09-24 | Nubis Communications, Inc. | Communication systems having optical power supplies |
US12066653B2 (en) | 2021-04-22 | 2024-08-20 | Nubis Communications, Inc. | Communication systems having optical power supplies |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0507508A2 (de) * | 1991-04-04 | 1992-10-07 | AT&T Corp. | Polarisationsmultiplexierung mit solitons |
US6104515A (en) * | 1999-02-01 | 2000-08-15 | Otera Corporation | Method and apparatus for providing high-order polarization mode dispersion compensation using temporal imaging |
US6130766A (en) * | 1999-01-07 | 2000-10-10 | Qtera Corporation | Polarization mode dispersion compensation via an automatic tracking of a principal state of polarization |
US20020093993A1 (en) * | 2000-06-15 | 2002-07-18 | Lagasse Michael J. | Apparatus and method for demultiplexing a polarization-multiplexed signal |
US20030184735A1 (en) * | 2001-12-28 | 2003-10-02 | Klaus Kotten | System and method for measuring and compensating for the polarization mode dispersion of an optical signal |
WO2003096584A1 (de) * | 2002-05-10 | 2003-11-20 | Siemens Aktiengesellschaft | Verfahren und anordnung zur verringerung der signaldegradation eines optischen polarisation-multiplexsignals |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6607313B1 (en) * | 1999-06-23 | 2003-08-19 | Jds Fitel Inc. | Micro-optic delay element for use in a polarization multiplexed system |
US20020003641A1 (en) | 2000-05-08 | 2002-01-10 | Hall Katherine L. | Polarization division multiplexer |
US7076169B2 (en) * | 2000-09-26 | 2006-07-11 | Celight, Inc. | System and method for orthogonal frequency division multiplexed optical communication |
US7272271B2 (en) * | 2001-09-26 | 2007-09-18 | Celight, Inc. | Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals |
US20040208646A1 (en) * | 2002-01-18 | 2004-10-21 | Seemant Choudhary | System and method for multi-level phase modulated communication |
JP2003338805A (ja) * | 2002-03-15 | 2003-11-28 | Kddi Submarine Cable Systems Inc | 光伝送システム、光送信装置及びこれらの方法 |
JP3689681B2 (ja) * | 2002-05-10 | 2005-08-31 | キヤノン株式会社 | 測定装置及びそれを有する装置群 |
EP1376908A1 (de) * | 2002-06-28 | 2004-01-02 | Adaptif Photonics GmbH | Verfahren zur Steuerung eines Verzerrungskompensator für optischen Signalen |
-
2004
- 2004-02-05 DE DE102004005718A patent/DE102004005718A1/de not_active Ceased
-
2005
- 2005-01-27 EP EP05707871A patent/EP1712025A1/de not_active Withdrawn
- 2005-01-27 US US10/588,023 patent/US7715730B2/en not_active Expired - Fee Related
- 2005-01-27 CN CN2005800041301A patent/CN1918837B/zh not_active Expired - Fee Related
- 2005-01-27 WO PCT/EP2005/050353 patent/WO2005076509A1/de not_active Application Discontinuation
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0507508A2 (de) * | 1991-04-04 | 1992-10-07 | AT&T Corp. | Polarisationsmultiplexierung mit solitons |
US6130766A (en) * | 1999-01-07 | 2000-10-10 | Qtera Corporation | Polarization mode dispersion compensation via an automatic tracking of a principal state of polarization |
US6104515A (en) * | 1999-02-01 | 2000-08-15 | Otera Corporation | Method and apparatus for providing high-order polarization mode dispersion compensation using temporal imaging |
US20020093993A1 (en) * | 2000-06-15 | 2002-07-18 | Lagasse Michael J. | Apparatus and method for demultiplexing a polarization-multiplexed signal |
US20030184735A1 (en) * | 2001-12-28 | 2003-10-02 | Klaus Kotten | System and method for measuring and compensating for the polarization mode dispersion of an optical signal |
WO2003096584A1 (de) * | 2002-05-10 | 2003-11-20 | Siemens Aktiengesellschaft | Verfahren und anordnung zur verringerung der signaldegradation eines optischen polarisation-multiplexsignals |
Non-Patent Citations (1)
Title |
---|
See also references of EP1712025A1 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2009097751A1 (zh) | 2008-02-04 | 2009-08-13 | Huawei Technologies Co., Ltd. | 一种产生差分正交相移键控码光信号的方法及装置 |
EP2154799A1 (de) * | 2008-02-04 | 2010-02-17 | Huawei Technologies Co., Ltd. | Verfahren und vorrichtung zur erzeugung eines dqpsk-codierten optischen signals |
EP2154799A4 (de) * | 2008-02-04 | 2011-03-30 | Huawei Tech Co Ltd | Verfahren und vorrichtung zur erzeugung eines dqpsk-codierten optischen signals |
US8238747B2 (en) | 2008-02-04 | 2012-08-07 | Huawei Technologies Co., Ltd. | Method and apparatus for generating DQPSK encoding optical signal |
US9419720B2 (en) | 2008-09-26 | 2016-08-16 | Fujitsu Limited | Optical signal transmitter |
EP3678303A1 (de) * | 2018-12-20 | 2020-07-08 | Dawis IT Sp. z o. o. | Übertragungsverfahren und -system für eine verbesserte unidirektionale oder bidirektionale datenübertragung über ein telekommunikationsnetz, eine polarisationsattraktionsschaltung, ein computerprogramm und ein computerprogrammprodukt |
Also Published As
Publication number | Publication date |
---|---|
CN1918837A (zh) | 2007-02-21 |
DE102004005718A1 (de) | 2005-08-25 |
EP1712025A1 (de) | 2006-10-18 |
CN1918837B (zh) | 2012-04-04 |
US7715730B2 (en) | 2010-05-11 |
US20070166046A1 (en) | 2007-07-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2005076509A1 (de) | Verfahren zur optischen übertragung eines polarisations-multiplexsignals | |
DE69915553T2 (de) | Verfahren zur Kompensation der Polarisationsmodendispersion | |
DE69839099T2 (de) | Verfahren zur Bestimmung der Dispersion einer faseroptischen Übertragungsleitung und zugehörige Vorrichtung | |
DE69431693T2 (de) | Gerät und Verfahren unter Verwendung einer schnellen Polarisationsmodulation zur Reduktion von Effekten betreffend polarisationsabhängigem Locheinbrennen und/oder polarisationsabhängiger Dämpfung | |
DE68926195T2 (de) | Stabilisierungsverfahren für eine Frequenztrennung in einer optischen heterodynen oder homodynen Übertragung | |
DE3785662T2 (de) | Methoden und vorrichtungen zur aenderung der optischen polarisation. | |
DE60026626T2 (de) | Verbesserter Verzerrungsanalysator für eine Vorrichtung zur Kompensation der Polarisationsmodendispersion erster Ordnung (PMD) | |
DE69704048T2 (de) | Vorrichtung zur Polarisationsdispersionskompensation in einem optischen Übertragungssystem | |
DE3788537T2 (de) | Symmetrischer doppelt-optischer Signalempfänger. | |
EP1371154B1 (de) | Anordnung und verfahren für eine optische informationsübertragung | |
DE69328645T2 (de) | Vielfachpolarisationsempfindliche Detektionsanordnung für faseroptische Nachrichtenübertragung | |
DE69632733T2 (de) | Dispersionskompensation | |
DE60131112T2 (de) | Polarisationsmodendispersionsmessung mit phasenempfindlicher Seitenbanddetection | |
EP1298826B1 (de) | Verfahren zur Übertragung von mindestens einem ersten und zweiten Datensignal im Polarisationsmultiplex in einem optischen Übertragungssystem | |
DE60212267T2 (de) | Mehrfachempfänger für verschiedene Polarisationen mit planaren Wellenleitern und plolarisierendem Strahlteiler | |
DE69914030T2 (de) | Verfahren zur Messung der Polarisationsmodendispersion | |
DE69031110T2 (de) | Anordnung und Verfahren zur Abstimmung eines verzerrungsauslöschenden faseroptischen Übertragungssystems | |
DE69533536T2 (de) | Polarisationsmodulation in Wellenlängen-Multiplex Übertragungssystemen | |
EP1514373A1 (de) | Verfahren und anordnung zur verringerung der signaldegradation eines optischen polarisation-multiplexsignals | |
DE60125951T2 (de) | Mehrkanaliger optischer empfänger zur verarbeitung von drei-zell-detektorausgängne mit polarisationsdiversität | |
DE69017359T2 (de) | Verfahren und Vorrichtung zur Übertragung eines elektromagnetischen Signals in einer optischen Faser. | |
EP1210785B1 (de) | Anordnung und verfahren für eine optische informationsübertragung | |
WO2001067649A1 (de) | Vorrichtung zur erfassung der pmd von optoelektronischen übertragungsstrecken | |
DE69533772T2 (de) | Dynamisch kontrollierte Polarisationsmodulation in Wellenlängenmultiplex-Übertragungssystemen | |
DE69117152T2 (de) | Übertragungssystem für polarisationsunempfindliche Übertragung von Signalen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
AK | Designated states |
Kind code of ref document: A1 Designated state(s): AE AG AL AM AT AU AZ BA BB BG BR BW BY BZ CA CH CN CO CR CU CZ DE DK DM DZ EC EE EG ES FI GB GD GE GH GM HR HU ID IL IN IS JP KE KG KP KR KZ LC LK LR LS LT LU LV MA MD MG MK MN MW MX MZ NA NI NO NZ OM PG PH PL PT RO RU SC SD SE SG SK SL SY TJ TM TN TR TT TZ UA UG US UZ VC VN YU ZA ZM ZW |
|
AL | Designated countries for regional patents |
Kind code of ref document: A1 Designated state(s): BW GH GM KE LS MW MZ NA SD SL SZ TZ UG ZM ZW AM AZ BY KG KZ MD RU TJ TM AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LT LU MC NL PL PT RO SE SI SK TR BF BJ CF CG CI CM GA GN GQ GW ML MR NE SN TD TG |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application | ||
DPEN | Request for preliminary examination filed prior to expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2005707871 Country of ref document: EP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2007166046 Country of ref document: US Ref document number: 10588023 Country of ref document: US |
|
WWE | Wipo information: entry into national phase |
Ref document number: 200580004130.1 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
WWW | Wipo information: withdrawn in national office |
Country of ref document: DE |
|
WWP | Wipo information: published in national office |
Ref document number: 2005707871 Country of ref document: EP |
|
WWP | Wipo information: published in national office |
Ref document number: 10588023 Country of ref document: US |