EP1712025A1 - Procede pour la transmission optique d'un signal multiplex de polarisation - Google Patents
Procede pour la transmission optique d'un signal multiplex de polarisationInfo
- Publication number
- EP1712025A1 EP1712025A1 EP05707871A EP05707871A EP1712025A1 EP 1712025 A1 EP1712025 A1 EP 1712025A1 EP 05707871 A EP05707871 A EP 05707871A EP 05707871 A EP05707871 A EP 05707871A EP 1712025 A1 EP1712025 A1 EP 1712025A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- signal
- polarization
- signals
- phase
- carrier signals
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/06—Polarisation multiplex systems
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/27—Optical coupling means with polarisation selective and adjusting means
- G02B6/2706—Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters
- G02B6/2713—Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations
- G02B6/272—Optical coupling means with polarisation selective and adjusting means as bulk elements, i.e. free space arrangements external to a light guide, e.g. polarising beam splitters cascade of polarisation selective or adjusting operations comprising polarisation means for beam splitting and combining
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/24—Coupling light guides
- G02B6/26—Optical coupling means
- G02B6/28—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals
- G02B6/293—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means
- G02B6/29379—Optical coupling means having data bus means, i.e. plural waveguides interconnected and providing an inherently bidirectional system by mixing and splitting signals with wavelength selective means characterised by the function or use of the complete device
- G02B6/29392—Controlling dispersion
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04J—MULTIPLEX COMMUNICATION
- H04J14/00—Optical multiplex systems
- H04J14/08—Time-division multiplex systems
Definitions
- the invention relates to an improved method for the optical transmission of a polarization multiplex signal.
- the transmission of data in polarization multiplex operation is a promising method to double the transmission capacity without having to make higher demands on the transmission path or the signal-to-noise ratio.
- PMD polarization mode dispersion
- the process is easy to implement.
- the carrier signals of both optical data signals (Polmux channels) derived from the same laser are shifted in phase by a constant 90 ° relative to one another. Both carrier signals therefore of course have exactly the same frequency and their phase difference remains constant during transmission.
- the transmitter-side phase setting can be carried out using different elements such as phase modulators and delay elements.
- phase control which ensures a constant phase difference between the carrier signals, regardless of the environmental conditions and component tolerances.
- FIG. 1 shows a basic circuit diagram of the transmission arrangement
- FIG. 2 shows a basic circuit diagram with phase control
- FIG. 3 shows an arrangement for measuring the phase difference
- FIG. 4 shows another arrangement for measuring the phase difference
- FIG. 5 shows an arrangement for measuring the phase difference by evaluating orthogonal signal components.
- Figure 1 shows a basic circuit diagram of the transmission arrangement.
- the method can be implemented by any modified arrangements.
- a light signal CW (constant wave) usually generated by a laser is fed via an input 1 to a polarization splitter 2, which splits it into two orthogonal carrier signals CW X and CW Y of the same amplitude, but which have different polarization planes by 90 ° ⁇ the arrows indicate the respective polarization).
- the first orthogonal carrier signal CW is fed via a first optical fiber 3 to a first modulator 5, where it is intensity-modulated with a first data signal DS1.
- the second orthogonal carrier signal CW Y is transmitted via a second ser 4 and a phase shifter 6 are fed to a second modulator 7 and there intensity is modulated with a second data signal DS2.
- the optical data signals OS1 and 0S2 emitted at the outputs of the modulators, which are polarized orthogonally to one another and have a phase shift of their carrier signals by 90 °, are combined in a polarization combiner 8 to form a polarization multiplex signal (Pol ux signal) PMS and on Output 9 delivered. Both the phase shift between the carrier signals and the adjustment of the polarization can also take place after the modulators.
- FIG. 2 shows such a variant, in which the carrier signal CW is first divided into two equal parts CW1 and CW2 in a power splitter 13, which are each modulated as carrier signals with one of the data signals DS1 and DS2.
- the conversion into orthogonal optical data signals OS1 and OS2 is achieved by two polarization controllers 14 and 15, which are arranged in front of the polarization combiner 8 and then of course also convert the carrier signals CW1 and CW2 into the orthogonal carrier signals CW X and CW Y.
- the phase shift between the carrier signals CW1 and CW2 is produced by a regulated phase shifter 10 (phase modulator, delay element), which is controlled by a control device 11.
- the control device 11 receives, via a measuring splitter 12, a measuring signal MS of lower power corresponding to the Polmux signal PMS and monitors the phase shift between the carriers of the orthogonal data signals OS1 and OS2.
- the time constant of the control device is chosen to be very large, so that the controlled phase shifter 10 practically has a constant value.
- the phase shifter 10 can also be connected downstream of the polarization adjuster 15.
- the phase shift of the carrier signals can thus be carried out by setting the carrier signals CW X and CW Y or CWl and CWs or the orthogonal data signals OS1 and 0S2.
- a control criterion for the carrier phases can be obtained with little effort whenever both Polmux channels transmit a signal at the same time, for example when both signals correspond to a logical one.
- FIG. 3 shows a basic circuit diagram of the control device for obtaining a control criterion.
- the measuring principle is based on the fact that the "state of polarization" depends on the phase between the two polarized signals OS1 and OS2, and thus the phase difference can in turn be determined by measuring the polarization state. Only the measurement of the circular polarization component is required. To measure them, the measurement signal MS, which like the Polmux signal has a certain polarization, is split into two sub-signals, one of which is passed through a ( ⁇ / 4 plate and a 45 ° polarizer (polarization filter).
- FIG. 4 shows a further possibility for determining the phase difference by using a so-called DGD element (differential group delay element), for example a polarization-maintaining fiber or a birefringent crystal, which reverses the 90 "phase shift of the carrier signals, so that their superimposition when Output signal RTS results in a maximum (or with opposite phase shift a minimum) of power.
- DGD element differential group delay element
- the polarization planes of the orthogonal signals OS1 and OS2 should be 45 ° with respect to the main axes of the DGD element.
- FIG. 5 shows a further arrangement with which it is possible to regulate the phase.
- the prerequisite is again that the Polmux signal PMS or the corresponding measurement signal MS has a certain polarization, as is the case with the transmitter anyway.
- the Polmux signal or measurement signal here has two (at least almost) orthogonal signals OS1 and OS2, which are polarized at + 45 ° and -45 ° with respect to a polarization plane of the polarization splitter 24.
- the measurement signal MS which represents both orthogonal signals OS1 and 0S2, is broken down by the polarization splitter 24 into two polarized signal components OS x and 0S Y , which thus each contain signal components of both orthogonal signals OS1 and OS2.
- the signal components MS X and MS Y are converted separately into electrical signal components E x and E ⁇ in photodiodes 18 and 19. Only when there is a certain phase between the orthogonal signals OS1 and OS2 will both signal components MS X and MS Y be the same size.
- a corresponding criterion EA - EB can be used for regulation.
- the sensitivity of the control can be increased by special signal processing in the control device 25, for example by multiplying the signal components.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Chemical & Material Sciences (AREA)
- Dispersion Chemistry (AREA)
- Optical Communication System (AREA)
Abstract
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE102004005718A DE102004005718A1 (de) | 2004-02-05 | 2004-02-05 | Verfahren zur optischen Übertragung eines Polarisations-Multiplexsignals |
PCT/EP2005/050353 WO2005076509A1 (fr) | 2004-02-05 | 2005-01-27 | Procede pour la transmission optique d'un signal multiplex de polarisation |
Publications (1)
Publication Number | Publication Date |
---|---|
EP1712025A1 true EP1712025A1 (fr) | 2006-10-18 |
Family
ID=34801624
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP05707871A Withdrawn EP1712025A1 (fr) | 2004-02-05 | 2005-01-27 | Procede pour la transmission optique d'un signal multiplex de polarisation |
Country Status (5)
Country | Link |
---|---|
US (1) | US7715730B2 (fr) |
EP (1) | EP1712025A1 (fr) |
CN (1) | CN1918837B (fr) |
DE (1) | DE102004005718A1 (fr) |
WO (1) | WO2005076509A1 (fr) |
Families Citing this family (20)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US7873286B2 (en) * | 2007-10-19 | 2011-01-18 | Ciena Corporation | Optical receiver systems and methods for polarization demultiplexing, PMD compensation, and DXPSK demodulation |
CN101505192B (zh) * | 2008-02-04 | 2011-09-21 | 华为技术有限公司 | 一种产生差分正交相移键控码光信号的方法及装置 |
JP5083134B2 (ja) * | 2008-09-10 | 2012-11-28 | 富士通株式会社 | 偏波多重光送信器およびその制御方法 |
JP5476697B2 (ja) * | 2008-09-26 | 2014-04-23 | 富士通株式会社 | 光信号送信装置 |
US20100150555A1 (en) * | 2008-12-12 | 2010-06-17 | Zinan Wang | Automatic polarization demultiplexing for polarization division multiplexed signals |
US9374188B2 (en) * | 2008-12-12 | 2016-06-21 | Alcatel Lucent | Optical communication using polarized transmit signal |
US8270847B2 (en) * | 2009-02-02 | 2012-09-18 | Tyco Electronics Subsea Communications Llc | Polarization multiplexing with different DPSK modulation schemes and system incorporating the same |
CN101860500B (zh) | 2009-04-13 | 2013-10-09 | 华为技术有限公司 | 一种产生、接收相位偏振调制信号的方法、装置和系统 |
CN102742187B (zh) * | 2009-12-15 | 2018-03-16 | 骁阳网络有限公司 | 减少的偏振相关损耗情况下传输光传输信号的方法和设备 |
CN102137057B (zh) * | 2010-06-18 | 2013-09-25 | 华为技术有限公司 | 一种信号生成方法及装置 |
US9768875B2 (en) * | 2012-11-12 | 2017-09-19 | Ciena Corporation | Optical modulation schemes having reduced nonlinear optical transmission impairments |
CN111181654B (zh) * | 2014-03-20 | 2023-02-28 | 艾里尔大学研究与开发有限公司 | 用于控制信号相位的方法、系统及其应用设备 |
US9634786B2 (en) | 2015-02-13 | 2017-04-25 | Georgia Tech Research Corporation | Communication systems with phase-correlated orthogonally-polarized light-stream generator |
WO2017060908A1 (fr) | 2015-10-08 | 2017-04-13 | Ariel-University Research And Development Company Ltd. | Procédé et système permettant de commander la phase d'un signal |
WO2018035954A1 (fr) * | 2016-08-25 | 2018-03-01 | Huawei Technologies Co., Ltd. | Système et procédé de conversion numérique-analogique photonique |
JP6911483B2 (ja) | 2017-04-19 | 2021-07-28 | 富士通株式会社 | 波長変換装置、制御光生成装置、波長変換方法、および制御光生成方法 |
PL428292A1 (pl) * | 2018-12-20 | 2020-06-29 | Dawis It Spółka Z Ograniczoną Odpowiedzialnością | Sposób oraz system transmisyjny do ulepszonej jednokierunkowej lub dwukierunkowej transmisji danych w sieci telekomunikacyjnej, układ atraktora polaryzacji, program komputerowy oraz produkt w postaci programu komputerowego |
US11621795B2 (en) * | 2020-06-01 | 2023-04-04 | Nubis Communications, Inc. | Polarization-diversity optical power supply |
US12101129B2 (en) | 2021-02-03 | 2024-09-24 | Nubis Communications, Inc. | Communication systems having optical power supplies |
US12066653B2 (en) | 2021-04-22 | 2024-08-20 | Nubis Communications, Inc. | Communication systems having optical power supplies |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020186435A1 (en) * | 2000-09-26 | 2002-12-12 | Isaac Shpantzer | System and method for orthogonal frequency division multiplexed optical communication |
EP1330054A2 (fr) * | 2002-01-18 | 2003-07-23 | Fujitsu Limited | Système et méthode de communication de modulation de phase multiniveaux |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5111322A (en) * | 1991-04-04 | 1992-05-05 | At&T Bell Laboratories | Polarization multiplexing device with solitons and method using same |
US6130766A (en) | 1999-01-07 | 2000-10-10 | Qtera Corporation | Polarization mode dispersion compensation via an automatic tracking of a principal state of polarization |
US6104515A (en) * | 1999-02-01 | 2000-08-15 | Otera Corporation | Method and apparatus for providing high-order polarization mode dispersion compensation using temporal imaging |
US6607313B1 (en) * | 1999-06-23 | 2003-08-19 | Jds Fitel Inc. | Micro-optic delay element for use in a polarization multiplexed system |
US20020003641A1 (en) | 2000-05-08 | 2002-01-10 | Hall Katherine L. | Polarization division multiplexer |
US20020093993A1 (en) | 2000-06-15 | 2002-07-18 | Lagasse Michael J. | Apparatus and method for demultiplexing a polarization-multiplexed signal |
US7272271B2 (en) * | 2001-09-26 | 2007-09-18 | Celight, Inc. | Electro-optical integrated transmitter chip for arbitrary quadrature modulation of optical signals |
DE10164497B4 (de) * | 2001-12-28 | 2005-03-10 | Siemens Ag | Anordnung und Verfahren zur Messung und zur Kompensation der Polarisationsmodendispersion eines optischen Signals |
JP2003338805A (ja) * | 2002-03-15 | 2003-11-28 | Kddi Submarine Cable Systems Inc | 光伝送システム、光送信装置及びこれらの方法 |
RU2287905C2 (ru) * | 2002-05-10 | 2006-11-20 | Сименс Акциенгезелльшафт | Способ и устройство для уменьшения ухудшения оптического сигнала с поляризационным уплотнением |
JP3689681B2 (ja) * | 2002-05-10 | 2005-08-31 | キヤノン株式会社 | 測定装置及びそれを有する装置群 |
EP1376908A1 (fr) * | 2002-06-28 | 2004-01-02 | Adaptif Photonics GmbH | Méthode de contrôle d'un compensateur de distortion de signaux optiques |
-
2004
- 2004-02-05 DE DE102004005718A patent/DE102004005718A1/de not_active Ceased
-
2005
- 2005-01-27 CN CN2005800041301A patent/CN1918837B/zh not_active Expired - Fee Related
- 2005-01-27 WO PCT/EP2005/050353 patent/WO2005076509A1/fr not_active Application Discontinuation
- 2005-01-27 US US10/588,023 patent/US7715730B2/en not_active Expired - Fee Related
- 2005-01-27 EP EP05707871A patent/EP1712025A1/fr not_active Withdrawn
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20020186435A1 (en) * | 2000-09-26 | 2002-12-12 | Isaac Shpantzer | System and method for orthogonal frequency division multiplexed optical communication |
EP1330054A2 (fr) * | 2002-01-18 | 2003-07-23 | Fujitsu Limited | Système et méthode de communication de modulation de phase multiniveaux |
Non-Patent Citations (2)
Title |
---|
See also references of WO2005076509A1 * |
SETO I ET AL: "Polarization state and phase noise insensitive POLSK phase-diversity homodyne system in coherent optical communications", DISCOVERING A NEW WORLD OF COMMUNICATIONS. CHICAGO, JUNE 14 - 18, 1992; [PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON COMMUNICATIONS], NEW YORK, IEEE, US, vol. -, 14 June 1992 (1992-06-14), pages 743 - 747, XP010062014, ISBN: 978-0-7803-0599-1, DOI: 10.1109/ICC.1992.268185 * |
Also Published As
Publication number | Publication date |
---|---|
CN1918837B (zh) | 2012-04-04 |
DE102004005718A1 (de) | 2005-08-25 |
US20070166046A1 (en) | 2007-07-19 |
US7715730B2 (en) | 2010-05-11 |
WO2005076509A1 (fr) | 2005-08-18 |
CN1918837A (zh) | 2007-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1712025A1 (fr) | Procede pour la transmission optique d'un signal multiplex de polarisation | |
DE69915553T2 (de) | Verfahren zur Kompensation der Polarisationsmodendispersion | |
DE69839099T2 (de) | Verfahren zur Bestimmung der Dispersion einer faseroptischen Übertragungsleitung und zugehörige Vorrichtung | |
DE69431693T2 (de) | Gerät und Verfahren unter Verwendung einer schnellen Polarisationsmodulation zur Reduktion von Effekten betreffend polarisationsabhängigem Locheinbrennen und/oder polarisationsabhängiger Dämpfung | |
DE69704048T2 (de) | Vorrichtung zur Polarisationsdispersionskompensation in einem optischen Übertragungssystem | |
DE60026626T2 (de) | Verbesserter Verzerrungsanalysator für eine Vorrichtung zur Kompensation der Polarisationsmodendispersion erster Ordnung (PMD) | |
DE3785662T2 (de) | Methoden und vorrichtungen zur aenderung der optischen polarisation. | |
DE3788537T2 (de) | Symmetrischer doppelt-optischer Signalempfänger. | |
DE68926195T2 (de) | Stabilisierungsverfahren für eine Frequenztrennung in einer optischen heterodynen oder homodynen Übertragung | |
DE69326105T2 (de) | Kompensation polarisationsabhängiger Verzerrung für faseroptische Übertragungen | |
DE69834787T2 (de) | Verfahren und Vorrichtung zur automatischen Kompensation der Polarisationsmodendispersion erster Ordnung | |
EP1371154B1 (fr) | Dispositif et procede de transmission optique d'informations | |
DE69328645T2 (de) | Vielfachpolarisationsempfindliche Detektionsanordnung für faseroptische Nachrichtenübertragung | |
DE69632733T2 (de) | Dispersionskompensation | |
DE60131112T2 (de) | Polarisationsmodendispersionsmessung mit phasenempfindlicher Seitenbanddetection | |
EP1298826B1 (fr) | Procédé de transmission d'au moins un premier et un second signaux de données multiplexés en polarisation dans un réseau de communication optique | |
DE60212267T2 (de) | Mehrfachempfänger für verschiedene Polarisationen mit planaren Wellenleitern und plolarisierendem Strahlteiler | |
DE69914030T2 (de) | Verfahren zur Messung der Polarisationsmodendispersion | |
DE69031110T2 (de) | Anordnung und Verfahren zur Abstimmung eines verzerrungsauslöschenden faseroptischen Übertragungssystems | |
DE69533536T2 (de) | Polarisationsmodulation in Wellenlängen-Multiplex Übertragungssystemen | |
EP1514373A1 (fr) | Procede et dispositif pour limiter la degradation de signal d'un signal multiplexe en polarisation optique | |
DE60125951T2 (de) | Mehrkanaliger optischer empfänger zur verarbeitung von drei-zell-detektorausgängne mit polarisationsdiversität | |
EP1210785B1 (fr) | Dispositif et procede de transmission optique d'informations | |
DE69533772T2 (de) | Dynamisch kontrollierte Polarisationsmodulation in Wellenlängenmultiplex-Übertragungssystemen | |
DE69117152T2 (de) | Übertragungssystem für polarisationsunempfindliche Übertragung von Signalen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060614 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
DAX | Request for extension of the european patent (deleted) | ||
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NOKIA SIEMENS NETWORKS GMBH & CO. KG |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NOKIA SIEMENS NETWORKS S.P.A. |
|
RAP3 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NOKIA SIEMENS NETWORKS GMBH & CO. KG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: NOKIA SOLUTIONS AND NETWORKS GMBH & CO. KG |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: XIEON NETWORKS S.A.R.L. |
|
17Q | First examination report despatched |
Effective date: 20150310 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN |
|
18D | Application deemed to be withdrawn |
Effective date: 20150721 |