EP1708968A1 - System zur wasserenthärtung für waschmittel, bleichmittel und maschinen- und handgeschirrspülmittel durch fällenthärtung - Google Patents

System zur wasserenthärtung für waschmittel, bleichmittel und maschinen- und handgeschirrspülmittel durch fällenthärtung

Info

Publication number
EP1708968A1
EP1708968A1 EP05700759A EP05700759A EP1708968A1 EP 1708968 A1 EP1708968 A1 EP 1708968A1 EP 05700759 A EP05700759 A EP 05700759A EP 05700759 A EP05700759 A EP 05700759A EP 1708968 A1 EP1708968 A1 EP 1708968A1
Authority
EP
European Patent Office
Prior art keywords
acid
alkali
water
dispersant
mixtures
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05700759A
Other languages
English (en)
French (fr)
Inventor
Rudolf Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Henkel AG and Co KGaA
Original Assignee
Henkel AG and Co KGaA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Henkel AG and Co KGaA filed Critical Henkel AG and Co KGaA
Publication of EP1708968A1 publication Critical patent/EP1708968A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/68Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water
    • C02F1/683Treatment of water, waste water, or sewage by addition of specified substances, e.g. trace elements, for ameliorating potable water by addition of complex-forming compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/02Softening water by precipitation of the hardness
    • C02F5/06Softening water by precipitation of the hardness using calcium compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/12Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen
    • C02F5/125Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing nitrogen combined with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F5/00Softening water; Preventing scale; Adding scale preventatives or scale removers to water, e.g. adding sequestering agents
    • C02F5/08Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents
    • C02F5/10Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances
    • C02F5/14Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus
    • C02F5/145Treatment of water with complexing chemicals or other solubilising agents for softening, scale prevention or scale removal, e.g. adding sequestering agents using organic substances containing phosphorus combined with inorganic substances
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3707Polyethers, e.g. polyalkyleneoxides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3719Polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3757(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions
    • C11D3/3761(Co)polymerised carboxylic acids, -anhydrides, -esters in solid and liquid compositions in solid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts
    • C11D7/12Carbonates bicarbonates
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D7/00Compositions of detergents based essentially on non-surface-active compounds
    • C11D7/02Inorganic compounds
    • C11D7/04Water-soluble compounds
    • C11D7/10Salts
    • C11D7/14Silicates
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2103/00Nature of the water, waste water, sewage or sludge to be treated
    • C02F2103/02Non-contaminated water, e.g. for industrial water supply
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/04Carboxylic acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D1/00Detergent compositions based essentially on surface-active compounds; Use of these compounds as a detergent
    • C11D1/02Anionic compounds
    • C11D1/12Sulfonic acids or sulfuric acid esters; Salts thereof
    • C11D1/14Sulfonic acids or sulfuric acid esters; Salts thereof derived from aliphatic hydrocarbons or mono-alcohols
    • C11D1/146Sulfuric acid esters

Definitions

  • This invention relates to a method for softening water by the combined use of dispersant (s), fatty acid (s) and / or their alkali salt (s) and case softener, and a corresponding water softening agent and its use, and detergents and cleaning agents containing such water softening agents include.
  • the new water softening process described below makes it possible to work with formulations containing high levels of soda without the occurrence of annoying calcium carbonate deposits on the laundry and washing machines.
  • the basic idea of the invention is a gradual softening of the water with simultaneous dispersion of the disruptive precipitation products.
  • softener such as soda, sodium bicarbonate, potassium carbonate, potassium bicarbonate or water-soluble silicates used very quickly reacting with the water hardness soap.
  • the soap immediately forms insoluble calcium soap in the first reaction, the slower reacting soda (or sodium bicarbonate etc.) therefore no longer finds calcium in the water and there are no further precipitation reactions.
  • a dispersant in particular the sodium salt of polyaspartic acid.
  • Polyaspartate e.g. disperses the calcium soap very finely and keeps it in suspension, so that opalescent solutions result and the well-known flaky lime soap deposits do not occur.
  • the present invention therefore relates to a process for softening water by combined use of dispersant (s), fatty acid (s) and / or their alkali salt (s) and a precipitant softener, advantageously alkali carbonate and / or alkali bicarbonate and / or water-soluble silicate.
  • the dispersant is selected from polyaspartic acid, the water-soluble polyaspartic acid salts, polyacrylic acid, the water-soluble polyacrylic acid salts, sulfonated or sulfated oils (eg Turkish red oil), block copolymers of the PEP-PEO type (copolymers of polyethylene propylene and polyethylene oxide), sodium dodecyl sulfate, polymeric polycarboxylates, sodium phosphates and mixtures thereof.
  • the polymeric polycarboxylates are preferably homopolymers or copolymers which contain acrylic acid and / or maleic acid units.
  • particularly preferred homopolymers are used, if appropriate in combination with copolymers, polyacrylates being preferred.
  • the polyacrylates are usually used in the form of sodium salts.
  • polyacrylates which preferably have a molecular weight of 3000 to 8000 and particularly preferably 4000 to 5000 g / mol, have proven to be particularly suitable according to the invention.
  • the molar masses given in this document for polymeric polycarboxylates are weight-average molar masses Mw, which were basically determined by means of gel permeation chromatography (GPC), a UV detector being used.
  • the measurement was carried out against an external polyacrylic acid standard, which provides realistic molecular weight values due to its structural relationship to the polymers investigated. This information differs significantly from the molecular weight data for which polystyrene sulphide fonic acids are used as standard. The molecular weights measured against polystyrene sulfonic acids are generally higher than the molecular weights given in this document.
  • the copolymeric polycarboxylates are, in particular, those of acrylic acid with methacrylic acid and of acrylic acid or methacrylic acid with maleic acid, which have a molar mass between 20,000 and 70,000 g / mol.
  • Copolymers of acrylic acid with maleic acid which contain 50 to 90% by weight of acrylic acid and 50 to 10% by weight of maleic acid have proven to be particularly suitable.
  • the polymers can also contain allylsulfonic acids, allyloxybenzenesulfonic acid and methallylsulfonic acid as monomers.
  • biodegradable polymers composed of more than two different monomer units, which contain salts of acrylic acid and maleic acid as well as vinyl alcohol or vinyl alcohol derivatives as monomers or salts of acrylic acid and 2-alkylallylsulfonic acid and sugar derivatives as monomeric salts.
  • Further preferred copolymers preferably have acrolein and acrylic acid / acrylic acid salts or acrolein and vinyl acetate as monomers.
  • both these copolymers and the polyacrylates are used in the process, the ratio of the polyacrylate to the acrylic acid-maleic acid copolymer advantageously in the range from 2: 1 to 1:20, preferably 1: 1 to 1:15 , lies.
  • the fatty acid is selected from caproic acid, caprylic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, lauroleic acid.
  • the weight ratio of fatty acid and / or its alkali salt to the dispersant is 20: 1 to 1: 3, preferably 10: 1 to 2: 1.
  • the weight ratio of precipitate softener, preferably alkali carbonate, alkali bicarbonate, water-soluble silicates and mixtures thereof, to the dispersant is 20: 1 to 2: 1, preferably 10: 1 to 2: 1.
  • dispersants fatty acids and / or their alkali metal salts and precipitant softener is used in concentrations in the range from 10 to 60% by weight, in particular 16 to 50% by weight, based on the total agent, in particular detergent, then there is one another preferred embodiment of the invention.
  • highly complexing compounds such as, in particular, the Ca complexing agents mentioned above or having a comparable action, are additionally used.
  • the weight ratio of dispersant to the highly complexing compounds is 5: 1 to 1: 5, preferably 1: 1 to 3: 1.
  • the phosphonates are, in particular, hydroxyalkane or aminoalkanephosphonates.
  • hydroxyalkane phosphonates 1-hydroxyethane-1,1-diphosphonate (HEDP) is of particular importance.
  • HEDP 1-hydroxyethane-1,1-diphosphonate
  • Preferred aminoalkane phosphonates are ethylenediaminetetramethylenephosphonate (EDTMP), diethylenetriaminepentamethylenephosphonate (DTPMP) and their higher homologs. They are preferably in the form of the neutral sodium salts, e.g. B.
  • the agents also contain bleach, to use aminoalkanephosphonates, in particular DTPMP, or to use mixtures of the phosphonates mentioned.
  • Such phosphonates are advantageously contained in the agents in amounts of 0.05 to 2.0% by weight, preferably in amounts of 0.1 to 1% by weight.
  • Suitable complexing agents are, for example, the following complexing agents designated according to INCI in English, which are described in more detail in the International Cosmetic Ingredient Dictionary and Handbook: Aminotrimethylene Phosphonic Acid, Beta-Alanine Diacetic Acid, Calcium Disodium EDTA, Cyclodextrin, Cyclohexanediamine Tetraacetic Acid, Diammonium EDTA, Diethylenetriamine Pentamethylene Phosphonic Acid, Dipotassium EDTA, Disodium Azacycloheptane Diphosphonate, Disodium EDTA, Disodium Pyrophosphate, EDTA, Etidronic Acid, Galactaric Acid, Gluconic Acid, Glucuronic Acid, HEDTA, Hydroxypropyl Cyclodextrin, Methyl Cyclododium Triphosphate, Pentate Pentapotasodium, Pentate Pentasodium Pentate Triphosphate, Pentetic Acid, Phytic Acid, Potassium Citrate, Potassium Gluconate,
  • Tertiary amines in particular tertiary alkanolamines (amino alcohols), can also be used as complexing agents.
  • the alkanolamines have both amino and hydroxyl and / or ether groups as functional groups.
  • Particularly preferred tertiary alkanolamines are triethanolamine and tetra-2-hydroxypropylethylenediamine (N, N, N ', N'-tetrakis (2-hydroxypropyl) ethylenediamine).
  • Another object of the invention is a water softener containing dispersant, fatty acid and / or its alkali salt and precipitate softener, which is preferably selected from alkali carbonate and / or alkali bicarbonate and / or water-soluble silicate.
  • the statements made above preferably also apply to the water softener. According to a preferred embodiment, it contains 10 to 70% by weight of precipitation softener, preferably alkali carbonate and / or alkali bicarbonate, 5 to 20% by weight of fatty acid and or its alkali salt, 0-25% by weight, preferably 8 to 20% by weight.
  • % Peroxygen compound 0 to 10% by weight, preferably 2 to 8% by weight of nonionic surfactant, 0 to 15% by weight, preferably 3 to 10% by weight of anionic surfactant and dispersant, preferably in amounts of 4 to 25% by weight .-%, advantageously from 5 to 25% by weight, in a further advantageous manner from 6 to 20% by weight, in a still further advantageous manner from 7 to 16% by weight, in particular from 8 to 12% by weight ,
  • the water softener can be applied to, or integrated into, conventional detergent formulations, for example those based on layered silicate (e.g. SKS-6) or zeolite-based.
  • conventional detergent formulations for example those based on layered silicate (e.g. SKS-6) or zeolite-based.
  • the formulations preferably contain water-soluble builders, which corresponds to a preferred embodiment, in which case it is advantageous if the proportion of water-insoluble builders is below 3% by weight, based on the overall formulation.
  • the formulations are predominantly zeolite-containing or layered silicate-containing or mixtures of the same, accelerated softening can be achieved using the softening system described here.
  • the builder base in such a case consists of water-insoluble ion exchangers such as preferably layered silicate (e.g. SKS 6) or zeolite, e.g. of type A, X, Y or P.
  • layered silicate e.g. SKS 6
  • zeolite e.g. of type A, X, Y or P.
  • the amounts of ion exchanger advantageously lie between 8 and 70% by weight, preferably between 25 and 50% by weight.
  • the agent according to the invention further contains foam inhibitors, preferably those based on silicone or paraffin oils.
  • foam inhibitors preferably those based on silicone or paraffin oils.
  • bleaching agents alone and in a mixture, Na percarbonate and / or Na perborate, can advantageously be combined with a bleach activator such as TAED ( ⁇ /, N, / ', ⁇ /' - tetraacetylethylene diamine) or Use sodium p-nonanoyloxybenzenesulfonate.
  • TAED ⁇ /, N, / ', ⁇ /' - tetraacetylethylene diamine
  • PAP bleach phthalimidoperoxohexanoic acid
  • a mixture of PAP with percarbonate and TAD results in a bleaching agent for the application range from 20 to 60 ° C, whereby the PAP also uses its antibacterial properties.
  • a water softener according to the invention contains alkali percarbonate, alkali perborate, alkali peracetic acid (TAED), or phthalimidoperoxohexane acid and / or mixtures thereof as peroxygen compound.
  • Another object of the invention is the use of a water softening agent, as described above, as a detergent, washing aid, bleach, cleaning agent, machine and dishwasher detergent or as a component of such agents.
  • Another object of the invention is a washing and cleaning agent which contains a water softening agent as described above.
  • a detergent and cleaning agent can have all the usual features and ingredients which can be found in the prior art and which characterize a detergent and cleaning agent.
  • anionic surfactants in particular anionic surfactants. These include in particular sulfonates and sulfates.
  • Cationic surfactants can also be contained in the detergent and cleaning agent.
  • cationic surfactant is present in amounts of up to 5% by weight, preferably in amounts of up to 4% by weight, in particular in amounts of 1 to 3% by weight, based on the total washing and Detergent containing detergents and cleaning agents. In addition to the softness aspect, this also improves the graying and secondary washing effect.
  • the cationic surfactant contained in the washing and cleaning agent is a quaternary ammonium compound, preferably an alkylated quaternary ammonium compound.
  • this is a quaternary ammonium compound of the formula (I)
  • R 1 , R 2 and R 3 are independently selected from C ⁇ C 4 alkyl, CC 4 hydroxyalkyl, benzyl and - (C 2 H 4 O) x H, with x equal to 2 to 5, and where R4 is a C 8 - C 22 is alkyl, and where X "is an anion, preferably a halide, methosulfate, methophosphate or phosphate ion and mixtures thereof.
  • R 5 is a C 6 -C 24 alkyl or alkenyl, where each R 6 is independently a - (C n H 2n O) x R 8 group, with n equal to 1 to 4 and with x equal to 1 to 14 , and wherein R 8 is methyl ethyl or preferably a hydrogen, and wherein each R 7 is independently a CC 12 alkyl or alkenyl group, where m is 1 to 3, and where X- is an anion, preferably a halide, Methosulfate, methophosphate or phosphate ion and mixtures of these.
  • R 6 is a —CH 2 CH 2 OH group
  • R 7 is in each case independently of one another a CC alkyl, where m is 1 or 2
  • R 5 is a linear C 6 -C 1 alkyl group.
  • the detergents and cleaning agents according to the invention which contain quaternary ammonium compound according to formula (I) and / or (II), are advantageous because they have the appropriate Application lead to the fact that textiles not only become very soft and supple, have a reduced drying time, are easier to iron and may even have an antistatic finish, but that improvements in incrustation, whiteness, graying or secondary washing effects also occur in some cases. There are advantages to the formation of incrustations on substrate surfaces.
  • the cationic surfactant is a C 8 -C 6 -alkyl-di (hydroxyethyl) methyl ammonium compound, preferably a C 2 -C 1 -alkyl-di (hydroxyethyl) methyl ammonium compound.
  • cationic surfactants can also be used, but advantageously alkylated quaternary ammonium compounds, preferably with two hydrophobic groups, in particular via ester or amido bonds with a quaternized di- or triethanolamine or an analog connection.
  • R9 represents an aliphatic alkyl radical having 12 to 22 carbon atoms with 0, 1, 2 or 3 double bonds
  • R 10 stands for H, OH or in particular O (CO) R 12
  • R 11 stands independently of R 10 for H, OH or O (CO) R 13
  • R 12 and R 13 each independently represent an aliphatic alkyl radical having 12 is up to 22 carbon atoms with 0, 1, 2 or 3 double bonds
  • a, b and c can each independently have the value 1, 2 or 3
  • X " is a suitable anion, preferably a halide, methosulfate, methophosphate or Phosphate ion and mixtures of these, and / or the formula (IV):
  • R 14 , R 15 and R 16 independently of one another represent a C 1 _ 4 alkyl, alkenyl or hydroxyalkyl group
  • R 17 and R 18 are each independently selected a C 8 _ 28 alkyl group with 0, 1, 2 or 3 represents double bonds and u is a number between 0 and 5
  • X ⁇ is a suitable anion, preferably a halide, methosulfate, methophosphate or phosphate ion and mixtures thereof.
  • Preferred representatives of this genus are N-methyl-N (2-hydroxyethyl) -N, N- (ditalgacyloxyethyl) ammonium methosulfate or N-methyl-N (2-hydroxyethyl) -N, N- (dipalmitoylethyl) ammonium methosulfate.
  • Preferred surfactants of the sulfonate type are C 9 -C 13 alkylbenzenesulfonates, olefin sulfonates, that is to say mixtures of alkene and hydroxyalkanesulfonates and disulfonates of the kind obtained, for example, from C 12 -C 18 monoolefins having a terminal or internal double bond by sulfonating with gaseous Sulfur trioxide and subsequent alkaline or acidic hydrolysis of the sulfonation products.
  • alkanesulfonates which are obtained from C 12 -C 18 alkanes, for example by sulfochlorination or sulfoxidation with subsequent hydrolysis or neutralization.
  • esters of alpha sulfo fatty acids e.g. B. the alpha-sulfonated methyl esters of hydrogenated coconut, palm kernel or tallow fatty acids, which are produced by alpha-sulfonation of the methyl esters of fatty acids of vegetable and / or animal origin with 8 to 20 carbon atoms in the fatty acid molecule and subsequent neutralization to form water-soluble mono-salts be considered.
  • alpha -sulfofatty acid alkyl esters are preferred which have an alkyl chain with no more than 4 carbon atoms in the ester group, for example methyl ester, ethyl ester, propyl ester and butyl ester.
  • the methyl esters of alpha-sulfofatty acids (MES), but also their saponified disalts, are used with particular advantage.
  • Suitable anionic surfactants are sulfonated fatty acid glycerol esters, which are mono-, di- and triesters as well as their mixtures, such as those produced by esterification by a monoglycerol with 1 to 3 moles of fatty acid or in the transesterification of triglycerides with 0.3 to 2 moles of glycerol be preserved.
  • the alk (en) yl sulfates are the alkali and in particular the sodium salts of the sulfuric acid half esters of C 12 -C 18 fatty alcohols, for example from coconut fatty alcohol, tallow fatty alcohol, lauryl, myristyl, cetyl or stearyl alcohol or the C 0 -C 20 oxo alcohols and those half-esters of secondary alcohols of this chain length are preferred.
  • alk (en) yl sulfates of the chain length mentioned which contain a synthetic, straight-chain alkyl radical prepared on a petrochemical basis and which have a degradation behavior analogous to that of the adequate compounds based on oleochemical raw materials. From the washing are C 12 -C 16 alkyl sulfates and C 12 -C 15 alkyl sulfates and C 14 - C 15 alkyl sulfates are particularly preferred.
  • the sulfuric acid monoesters of the straight-chain or branched C 7 -C 21 alcohols ethoxylated with 1 to 6 mol of ethylene oxide such as 2-methyl-branched Cg-Cn alcohols with an average of 3.5 mol of ethylene oxide (EO) or C 12 -C 18 fatty alcohols with 1 to 4 EO are suitable. Because of their high foaming behavior, they are used in detergents only in relatively small amounts, for example in amounts of 1 to 5% by weight.
  • Preferred anionic surfactants are also the salts of alkylsulfosuccinic acid, which are also referred to as sulfosuccinates or as sulfosuccinic acid esters and which are monoesters and / or diesters of sulfosuccinic acid with alcohols, preferably fatty alcohols and especially ethoxylated fatty alcohols.
  • Preferred sulfosuccinates contain C 8 to C 18 fatty alcohol residues or mixtures thereof.
  • Particularly preferred sulfosuccinates contain a fatty alcohol residue, which is derived from ethoxylated fatty alcohols, which in themselves are nonionic surfactants (description see below).
  • sulfosuccinates the fatty alcohol residues of which are derived from ethoxylated fatty alcohols with a narrow homolog distribution, are particularly preferred. It is the same possible to use alk (en) ylsuccinic acid with preferably 8 to 18 carbon atoms in the alkyl (en) yl chain or salts thereof.
  • Fatty acid derivatives of amino acids for example of N-methyl taurine (taurides) and / or of N-methyl glycine (sarcosides) are suitable as further anionic surfactants.
  • the anionic surfactants can be in the form of their sodium, potassium or ammonium salts and also as soluble salts of organic bases, such as mono-, di- or thanolamine.
  • the anionic surfactants are preferably in the form of their sodium or potassium salts, in particular in the form of the sodium salts.
  • nonionic surfactants are particularly preferred.
  • the nonionic surfactants used are preferably alkoxylated, advantageously ethoxylated, in particular primary alcohols having preferably 8 to 18 carbon atoms and an average of 1 to 12 moles of ethylene oxide (EO) per mole of alcohol, in which the alcohol residue can be linear or preferably methyl-branched in the 2-position or may contain linear and methyl-branched radicals in the mixture, as are usually present in oxo alcohol radicals.
  • EO ethylene oxide
  • alcohol ethoxylates with linear residues from alcohols of native origin with 12 to 18 carbon atoms for. B. from coconut, palm, tall fat or oleyl alcohol, and an average of 2 to 8 EO per mole of alcohol preferred.
  • the preferred ethoxylated alcohols include, for example, C 12 -C 14 alcohols with 3 EO or 4 EO, Cg-C ⁇ alcohols with 7 EO, C 13 -C 15 alcohols with 3 EO, 5 EO, 7 EO or 8 EO, C 12 -C 18 alcohols with 3 EO, 5 EO or 7 EO and mixtures of these, such as mixtures of C 12 -C 4 alcohol with 3 EO and C 2 -C 18 alcohol with 7 EO.
  • the degrees of ethoxylation given represent statistical averages, which can be an integer or a fraction for a specific product.
  • Preferred alcohol ethoxylates have a narrow homolog distribution (narrow range ethoxylates, NRE).
  • fatty alcohols with more than 12 EO can also be used, as described above. Examples of these are (tallow) fatty alcohols with 14 EO, 16 EO, 20 EO, 25 EO, 30 EO or 40 EO.
  • the nonionic surfactants also include alkyl glycosides of the general formula RO (G) x, in which R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G for one Glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • R denotes a primary straight-chain or methyl-branched, in particular methyl-branched aliphatic radical having 8 to 22, preferably 12 to 18, C atoms and G for one Glycose unit with 5 or 6 carbon atoms, preferably for glucose.
  • the degree of oligomerization x which indicates the distribution of monoglycosides and oligoglycosides, is an arbitrary number - which, as an analytically determinable variable, can also take fractional values - between 1 and 10; x is preferably 1.2 to 1.4.
  • polyhydroxy fatty acid amides of the formula (V) in which R 19 is CO for an aliphatic acyl radical with 6 to 22 carbon atoms, R 20 for hydrogen, an alkyl or hydroxyalkyl radical with 1 to 4 carbon atoms and Z for a linear or branched polyhydroxyalkyl radical with 3 up to 10 carbon atoms and 3 to 10 hydroxyl groups:
  • the polyhydroxy fatty acid amides are preferably derived from reducing sugars with 5 or 6 carbon atoms, in particular from glucose.
  • the group of polyhydroxy fatty acid amides also includes compounds of the formula (VI)
  • R 21 for a linear or branched alkyl or alkenyl radical with 7 to 12 carbon atoms
  • R 22 for a linear, branched or cyclic alkylene radical or an arylene radical with 2 to 8 carbon atoms
  • R 23 for a linear, branched or cyclic alkyl radical or an aryl radical or an oxy-alkyl radical with 1 to 8 carbon atoms, CC 4 -alkyl or phenyl radicals being preferred
  • Z for a linear polyhydroxyalkyl radical whose alkyl chain is substituted by at least two hydroxyl groups, or alkoxylated, preferably ethoxylated or propoxylated derivatives of this residue.
  • Z is also preferably obtained here by reductive amination of a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • a sugar such as glucose, fructose, maltose, lactose, galactose, mannose or xylose.
  • the N-alkoxy- or N-aryloxy-substituted compounds can then, for example, by reaction with fatty Acid methyl esters are converted into the desired polyhydroxy fatty acid amides in the presence of an alkoxide as a catalyst.
  • nonionic surfactants which are used either as the sole nonionic surfactant or in combination with other nonionic surfactants, in particular together with alkoxylated fatty alcohols and / or alkyl glycosides, are alkoxylated, preferably ethoxylated or ethoxylated and propoxylated, fatty acid alkyl esters, preferably with 1 to 4 carbon atoms in the alkyl chain, in particular fatty acid methyl esters, as described, for example, in Japanese patent application JP 58/217598.
  • nonionic surfactants are C 2 -C 18 fatty acid methyl esters with an average of 3 to 15 EO, in particular with an average of 5 to 12 EO, while as a binder - as described above - above all higher ethoxylated fatty acid methyl esters are advantageous.
  • C 12 -C 8 - fatty acid methyl esters with 10 to 12 EO can be used both as surfactants and as binders.
  • Nonionic surfactants of the amine oxide type for example N-coconut alkyl-N, N-dimethylamine oxide and N-tallow alkyl-N, N-dihydroxyethylamine oxide, and the fatty acid alkanol amides can also be suitable.
  • the amount of these nonionic surfactants is preferably not more than that of the ethoxylated fatty alcohols, in particular not more than half of them.
  • gemini surfactants can be considered as further surfactants. These are generally understood to mean those compounds which have two hydrophilic groups and two hydrophobic groups per molecule. These groups are usually separated from one another by a so-called "spacer". This spacer is usually a carbon chain, which should be long enough that the hydrophilic groups have a sufficient distance so that they can act independently of one another.
  • Such surfactants are generally characterized by an unusually low critical micelle concentration and the ability to greatly reduce the surface tension of the water.
  • gemini surfactants means not only dimeric but also trimeric surfactants. Suitable gemini surfactants are, for example, sulfated hydroxy mixed ethers or dimer alcohol bis and trimer alcohol trisulfates and ether sulfates. End group-blocked dimeric and trimeric mixed ethers are particularly characterized by their bi- and multifunctionality. So the called endgroup-sealed surfactants good wetting properties and are low-foaming, so that they are particularly suitable for use in machine washing or cleaning processes. Gemini polyhydroxy fatty acid amides or poly polyhydroxy fatty acid amides can also be used.
  • Bleaching agents have already been mentioned above.
  • sodium perborate tetrahydrate, sodium perborate monohydrate and sodium percarbonate are of particular importance.
  • Other useful bleaching agents are, for example, peroxypyrophosphates, citrate perhydrates and H 2 O 2 -producing peracid salts or peracids, such as perbenzoates, peroxophthalates, diperazelaic acid, phthaloiminoperacid or diperdodecanedioic acid.
  • sodium percarbonate is used as bleaching agent in a preferred embodiment.
  • the other detergent ingredients include graying inhibitors (dirt carriers), foam inhibitors, bleach activators, optical brighteners, enzymes, fabric softening substances, colorants and fragrances as well as neutral salts such as sulfates and chlorides in the form of their sodium or potassium salts.
  • Bleach activators have already been mentioned above.
  • Bleach activators which can be used are compounds which, under perhydrolysis conditions, give aliphatic peroxocarboxylic acids having preferably 1 to 10 C atoms, in particular 2 to 4 C atoms, and / or optionally substituted perbenzoic acid.
  • Suitable are substances which carry O- and / or N-acyl groups of the number of carbon atoms mentioned and / or optionally substituted benzoyl groups.
  • Hydrophilically substituted acylacetals and acyllactams are also preferably used.
  • Bleach activators of this type are advantageously present in the customary quantitative range, preferably in amounts of 1% by weight to 10% by weight, in particular 2% by weight to 8% by weight, based on the total detergent and / or cleaning agent.
  • Suitable foam inhibitors are, for example, organopolysiloxanes and their mixtures with microfine, possibly signed silica, and paraffins, waxes, microcrystalline waxes and their mixtures with signed silica or bistearylethylenediamide. Mixtures of different foam inhibitors are also used with advantages, e.g. B. from silicone, paraffins or waxes.
  • the foam inhibitors, in particular silicone and / or paraffin-containing foam inhibitors are preferably bound to a granular, water-soluble or dispersible carrier substance.
  • Particularly suitable enzymes are those from the class of hydrolases, such as proteases, lipases or lipolytically active enzymes, amylases, cellulases or mixtures thereof. Oxireductases are also suitable.
  • Enzymes obtained from bacterial strains or fungi such as Bacillus subtilis, Bacillus licheniformis, Streptomyces griseus and Humicola insolens, are particularly suitable.
  • Proteases of the subtilisin type and in particular proteases which are obtained from Bacillus lentus are preferably used.
  • Enzyme mixtures for example, from protease and amylase or protease and lipase or lipolytically active enzymes or protease and cellulase or from cellulase and lipase or lipolytically active enzymes or from protease, amylase and lipase or lipolytically active enzymes or protease, lipase or lipolytic enzymes and cellulase, but especially protease- and / or lipase-containing mixtures or mixtures with lipolytic enzymes of particular interest.
  • Known cutinases are examples of such lipolytically active enzymes.
  • Peroxidases or oxidases have also proven to be suitable in some cases.
  • Suitable amylases include in particular alpha - amylases, isoamylases, pullulanases and pectinases.
  • As cellulases are preferably se cellobiohydrolases, endoglucanases and beta-glucosidases, which are also called cellobiases, or mixtures of these are used. Since the various cellulose types differ in their CMCase and avicelase activities, the desired activities can be set by targeted mixtures of the cellulases.
  • the enzymes can be adsorbed on carriers and / or embedded in coating substances in order to protect them against premature decomposition.
  • the proportion of the enzymes, enzyme mixtures or enzyme granules can be, for example, about 0.1 to 5% by weight, preferably 0.1 to about 2% by weight.
  • the washing and / or cleaning agents can also contain further enzyme stabilizers.
  • enzyme stabilizers For example, 0.5 to 1% by weight sodium formate can be used. It is also possible to use proteases which are stabilized with soluble calcium salts and a calcium content of preferably about 1.2% by weight, based on the enzyme.
  • calcium salts magnesium salts also serve as stabilizers.
  • boron compounds for example boric acid, boron oxide, borax and other alkali metal borates such as the salts of orthoboric acid (H 3 BO 3 ), metaboric acid (HBO2) and pyrobic acid (tetraboric acid H 2 B 4 O 7 ), is particularly advantageous.
  • Graying inhibitors which can preferably be cellulose ethers, such as carboxymethyl cellulose (sodium salt), methyl cellulose, hydroxyalkyl cellulose and mixed ethers, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof, and also polyvinylpyrrolidone, for example in amounts of 0.1 to 5% by weight, based on the detergents and / or cleaning agents are used.
  • cellulose ethers such as carboxymethyl cellulose (sodium salt)
  • methyl cellulose hydroxyalkyl cellulose and mixed ethers, such as methyl hydroxyethyl cellulose, methyl hydroxypropyl cellulose, methyl carboxymethyl cellulose and mixtures thereof
  • polyvinylpyrrolidone for example in amounts of 0.1 to 5% by weight, based on the detergents and / or cleaning agents are used.
  • the detergents and / or cleaning agents can contain, as optical brighteners, derivatives of diaminostilbenedisulfonic acid or its alkali metal salts.
  • optical brighteners derivatives of diaminostilbenedisulfonic acid or its alkali metal salts.
  • B Salts of 4,4'-bis (2-anilino-4-morpholino-1, 3,5-triazinyl-6-amino) stilbene-2,2'-disulfonic acid or similar compounds, instead of the morpholino group carry a diethanol amino group, a methylamino group, an anilino group or a 2-methoxyethylamino group.
  • brighteners of the substituted diphenylstyryl type may be present, e.g. B.
  • the range of possible bulk weights ranges from low bulk weights below 600 g / l, for example 300 g / l, to the range of medium bulk weights from 600 to 750 g / l to the range of high bulk weights of at least 750 g / l.
  • the bulk density is even above 800 g / l, with bulk weights above 850 g / l being particularly advantageous.
  • washing and / or cleaning agents with high bulk density are to be obtained
  • the washing and / or cleaning agent mixtures are finally subjected to a compacting step, e.g. further ingredients are also only added to the washing and / or cleaning agents after the compacting step.
  • the ingredients are compacted in a press agglomeration process.
  • the press agglomeration process to which the solid premix (dried basic detergent) is subjected can be carried out in various apparatuses. Different press agglomeration processes are distinguished depending on the type of agglomerator used.
  • the four most common press agglomeration processes preferred in the context of the present invention are extrusion, roller pressing or compacting, hole pressing (pelletizing) and tableting, so that preferred press agglomeration processes in the context of the present invention are extrusion, roll compacting, pelletizing - or tableting processes.
  • Sokalan CP 5 maleic acid-acrylic acid copolymer Na salt (30:70)
  • FAS fatty alcohol sulfate
  • Lutensol C12-14 fatty alcohols ethoxylated (8 EO)
  • ABS alkylbenzenesulfonate
  • formulations A1 to E1 and G1 which contained soda / soap mixtures and Sokalan CP 5 as a dispersant, gave almost no ash deposits in the form of calcium carbonate.
  • formula F1 which contained no dispersant, showed clear ash deposits.
  • This recipe with polyaspartate as a dispersant also showed an excellent ash value.

Abstract

Es wird ein System zur Wasserenthärtung beschrieben, welches als Bestandteile Disperga­tor(en), Fettsäure(n) und/oder deren Alkalisalz(en) und Fällenthärter aufweist. Ein Verfahren zum Enthärten von Wasser und Wasserenthärtungsmittel werden entsprechend beschrie­ben. Die Verwendung solcher Mittel, sowie Wasch- und Reinigungsmittel, welche diese Mittel enthalten, werden ebenfalls beschrieben.

Description

System zur Wasserenthärtung für Waschmittel, Waschhilfsmittel, Bleichmittel und Maschinen- und Handgeschirrspülmittel durch Fällenthärtung
Diese Erfindung betrifft ein Verfahren zum Enthärten von Wasser durch kombinierten Einsatz von Dispergator(en), Fettsäure(n) und/oder deren Alkalisalz(en) und Fällenthärter, sowie ein entsprechendes Wasserenthärtungsmittel und dessen Verwendung, sowie Wasch- und Reinigungsmittel, welche solche Wasserenthärtungsmittel beinhalten.
Eine der Voraussetzungen für ein einwandfreies Funktionieren von Wasch- und Geschirrspülmittel ist das Vorhandensein von weichem Wasser. Es gibt verschiedene Möglichkeiten, die störende Wasserhärte auszuschalten. Das älteste Verfahren ist die Fällenthärtung z.B. mit Soda oder SodaΛ/Vasserglasgemischen. Nachteil bei diesem Verfahren ist die Mehrstufigkeit, d.h. das harte Wasser muß erst mit dem Fällenthärter von der Wasserhärte befreit werden und es darf bei diesem Fällprozeß keine Wäsche zugegen sein. Sonst kommt es zu störenden Ablagerungen von Calciumcarbonat auf der Wäsche. Erst nach einer sachgerechten Wasserenthärtung konnte dann das eigentliche Waschmittel eingesetzt werden.
Waschmittel mit hohem Sodagehalt konnten auf Grund dieser Problematik nur in Gegenden mit weichem Wasser Verwendung finden oder in gewerblichen Wäscherein, die mit enthärtetem Wasser arbeiten, eingesetzt werden.
Das nachstehend beschriebene neue Wasserenthärtungsverfahren gestattet es mit hoch- sodahaltigen Rezepturen zu arbeiten, ohne daß störende Caiciumcarbonatablagerungen auf der Wäsche und den Waschgeräten auftreten.
Der Grundgedanke der Erfindung ist eine stufenweise Enthärtung des Wassers bei gleichzeitiger Dispergierung der störenden Fällungsprodukte. Zu diesem Zweck wird neben einem Fällenthärter wie z. B. Soda, Natriumbicarbonat, Kaliumcarbonat, Kaliumbicarbonat oder wasserlöslichen Silikaten die sehr schnell mit der Wasserhärte reagierende Seife eingesetzt. In diesem Falle bildet sich durch die Seife in erster Reaktion sofort unlösliche Calciumseife, das langsamer reagierende Soda (bzw. Natriumbicarbonat usw.) findet somit kein Calcium mehr im Wasser und es erfolgen keine weiteren Fällreaktionen.
Damit keine störende, flockige Caiciumseife ausfällt, muß diese sofort dispergiert werden. Vorteilhafterweise geschieht dies durch einen Dispergator, insbesondere durch das Natriumsalz der Polyasparginsäure. Polyaspartat z.B. dispergiert die Caiciumseife sehr fein und hält sie in der Schwebe, so daß opaleszierende Lösungen resultieren und die bekannten flockigen Kalkseifenfällungen ausbleiben.
Gegenstand der vorliegenden Erfindung ist daher ein Verfahren zum Enthärten von Wasser durch kombinierten Einsatz von Dispergator(en), Fettsäure(n) und/oder deren Alkalisalz(en) und einem Fällenthärter, vorteilhafterweise Alkalicarbonat und/oder Alkalibicarbonat und/oder wasserlösliches Silikat.
Gemäß einer bevorzugten Ausführungsform der Erfindung ist dabei der Dispergator ausgewählt aus Polyasparginsäure, den wasserlöslichen Polyasparaginsäuresalzen, Polyacrylsäu- re, den wasserlöslichen Polyacrylsäuresalzen, sulfonierten bzw. sulfatierten Ölen (z. B. Tür- kischrotöl), Blockcopolymere des PEP-PEO-Typs (Copolymere von Polyethylenpropylen und Polyethylenoxid), Natriumdodecylsulfat, polymeren Polycarboxylaten, Natriumphosphaten sowie deren Mischungen.
Bei den polymeren Polycarboxylaten handelt es sich vorzugsweise um Homo- oder Copolymere, die Acrylsäure- und/oder Maleinsäureeinheiten enthalten. Im Rahmen dieser Erfindung werden besonders bevorzugt Homopolymere gegebenenfalls in Kombination mit Copolymeren eingesetzt, wobei hier wiederum Polyacrylate bevorzugt sind. Üblicherweise werden die Polyacrylate in Form von Natriumsalzen eingesetzt. Insbesondere Polyacrylate, die bevorzugt eine Molekülmasse von 3000 bis 8000 und besonders bevorzugt von 4000 bis 5000 g/mol aufweisen, haben sich als erfindungsgemäß besonders gut geeignet erwiesen. Bei den in dieser Schrift für polymere Polycarboxylate angegebenen Molmassen handelt es sich um gewichtsmittlere Molmassen Mw, die grundsätzlich mittels Gelpermeationschroma- tographie (GPC) bestimmt wurden, wobei ein UV-Detektor eingesetzt wurde. Die Messung erfolgte dabei gegen einen externen Polyacrylsäure-Standard, der aufgrund seiner strukturellen Verwandtschaft mit den untersuchten Polymeren realistische Molgewichtswerte, liefert. Diese Angaben weichen deutlich von den Molgewichtsangaben ab, bei denen Polystyrolsul- fonsäuren als Standard eingesetzt werden. Die gegen Polystyrolsulfonsäuren gemessenen Molmassen sind in der Regel höher als die in dieser Schrift angegebenen Molmassen.
Bei den copolymeren Polycarboxylaten handelt es sich insbesondere um solche der Acryl- säure mit Methacrylsäure und der Acrylsäure oder Methacrylsäure mit Maleinsäure, die eine Molmasse zwischen 20 000 und 70 000 g/mol aufweisen. Als besonders geeignet haben sich dabei Copolymere der Acrylsäure mit Maleinsäure erwiesen, die 50 bis 90 Gew.-% Acrylsäure und 50 bis 10 Gew.-% Maleinsäure enthalten. Zur Verbesserung der Wasserlöslichkeit können die Polymere auch Allylsulfonsäuren, Allyloxybenzolsulfonsäure und Methallylsulfon- säure, als Monomer enthalten. Insbesondere bevorzugt sind auch biologisch abbaubare Polymere aus mehr als zwei verschiedenen Monomereinheiten, die als Monomere Salze der Acrylsäure und der Maleinsäure sowie Vinylalkohol bzw. Vinylalkohol-Derivate oder als Monomere Salze der Acrylsäure und der 2-Alkylallylsulfonsäure sowie Zucker- Derivate enthalten. Weitere bevorzugte Copolymere weisen als Monomere vorzugsweise Acrolein und Ac- rylsäure/Acrylsäuresalze bzw. Acrolein und Vinylacetat auf. In einem bevorzugten Variante werden dabei sowohl diese Copolymere als auch die Polyacrylate in dem Verfahren eingesetzt, wobei das Verhältnis des Polyacrylats zu dem Acrylsäure-Maleinsäure-Copolymer vorteilhafterweise in dem Bereich 2 : 1 bis 1 : 20, vorzugsweise 1 : 1 bis 1 : 15, liegt.
Gemäß einer weiteren bevorzugten Ausführungsform, ist die Fettsäure ausgewählt aus Capronsäure, Caprylsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearin- säurre, Lauroleinsäure. Myristoleinsäure, Palmitoleinsäure, Ölsäure, Ricinolsäure, Linolsäu- re, Linolensäure, Behensäure, Gadoleinsäure, Erucasäure, und weitere ungesättigte Fettsäuren von vorzugsweise C20 bis C22, sowie Mischungen aus diesen , bzw. deren Alkalisalzen.
In Waschversuchen ergeben Rezepturen, welche z.B. Soda/Seifengemische und beispielsweise als Dispergator Maleinsäure-Acrylsäure-Copolymer in Form des Natriumsalzes enthalten, nahezu keine Ascheablagerungen mehr in Form von Calciumcarbonat. Durch die dispergierte Ca-Seife entsteht vorteilhafterweise eine leicht angehobene, akzeptierbare Inkrustation. Vorteilhafterweise wirken diese Inkrustationen sogar positiv, denn sie avivieren und machen den Griff der Wäsche weich, so daß insbeondere zusätzliche Weichspülmittel entfallen können. Gemäß einer bevorzugten Ausführungsform der Erfindung beträgt das Gewichtsverhältnis von Fettsäure und/oder deren Alkalisalz zum Dispergator 20:1 bis 1 :3, vorzugsweise 10:1 bis 2:1.
Gemäß einer weiterem bevorzugten Ausführungsform beträgt das Gewichtsverhältnis von Fällenthärter, vorzugsweise Alkalicarbonat, Alkalibicarbonat, wasserlöslichen Silikaten sowie deren Mischungen, zum Dispergator 20:1 bis 2:1, vorzugsweise 10:1 bis 2:1.
Wenn die Kombination aus Dispergatoren, Fettsäuren und/oder deren Alkalisalzen und Fällenthärter in Konzentrationen im Bereich von 10 bis 60 Gew.-%, insbesondere 16 bis 50 Gew.-% eingesetzt wird, bezogen auf das gesamte Mittel, insbeondere Waschmittel, dann liegt eine weitere bevorzugte Ausführungsform der Erfindung vor.
Durch den zusätzlichen Einsatz von stark komplexierend wirkenden Verbindungen wie z.B. Imidobernsteinsäure, Nitrilotriessigsäure, Zitronensäure, Carboxymethyl-Tartronsäure oder - Apfelsäure und/oder deren Alkalisalze, Natriumphosphate, Ethylendiamintetraacetat, Phosphonate wie Aminotrismethylenphosphonsäure (ATMP) kann man außerdem die Calci- umseifenmenge nach Wunsch steuern und die Ca-Seife in waschende Seife reaktivieren. So ist auch die Intensität der avivierenden Eigenschaften der Ca-Seife justierbar.
Dementsprechend werden gemäß einer bevorzugten Ausführungsform zusätzlich stark kom- plexierende Verbindungen, wie insbesondere die zuvor genannten oder vergleichbar wirkende Ca-komplexierende, eingesetzt.
Dabei beträgt das Gewichtsverhältnis von Dispergator zu dem stark komplexierenden Verbindungen gemäß einer weiteren bevorzugten Ausführungsform 5:1 bis 1 :5, vorzugsweise 1 :1 bis 3:1.
Bei den Phosphonaten handelt es sich insbesondere um Hydroxyalkan- bzw. Aminoal- kanphosphonate. Unter den Hydroxyalkanphosphonaten ist das 1-Hydroxyethan-1 ,1- diphosphonat (HEDP) von besonderer Bedeutung. Es wird vorzugsweise als Natriumsalz eingesetzt, wobei das Dinatriumsalz neutral und das Tetranatriumsalz alkalisch (pH 9) reagiert. Als Aminoalkanphosphonate kommen vorzugsweise Ethylendiamintetramethy- lenphosphonat (EDTMP), Diethylentriaminpentamethylenphosphonat (DTPMP) sowie deren höhere Homologe in Frage. Sie werden vorzugsweise in Form der neutral reagierenden Natriumsalze, z. B. als Hexanatriumsalz der EDTMP bzw. als Hepta- und Octa-Natriumsalz der DTPMP, eingesetzt. Auch das HEDP, ( l-(Hydroxyethyliden)bisphosphonat), wird bevorzugt verwendet. Die Aminoalkanphosphonate besitzen zudem ein ausgeprägtes Schwermetallbindevermögen. Dementsprechend kann es, insbesondere wenn die Mittel auch Bleiche enthalten, bevorzugt sein, Aminoalkanphosphonate, insbesondere DTPMP, einzusetzen, oder Mischungen aus den genannten Phosphonaten zu verwenden. Derartige Phosphonate sind in den Mitteln vorteilhafterweise in Mengen von 0,05 bis 2,0 Gew.-% enthalten, vorzugsweise in Mengen von 0,1 bis 1 Gew.-%.
Geeignet Komplexbildner sind beispielsweise die folgenden gemäß INCI in englischer Sprache bezeichneten Komplexbildner, die im International Cosmetic Ingredient Dictionary and Handbook näher beschrieben sind: Aminotrimethylene Phosphonic Acid, Beta-Alanine Diacetic Acid, Calcium Disodium EDTA, Cyclodextrin, Cyclohexanediamine Tetraacetic Acid, Diammonium EDTA, Diethylenetriamine Pentamethylene Phosphonic Acid, Dipotassium EDTA, Disodium Azacycloheptane Diphosphonate, Disodium EDTA, Disodium Pyrophospha- te, EDTA, Etidronic Acid, Galactaric Acid, Gluconic Acid, Glucuronic Acid, HEDTA, Hydro- xypropyl Cyclodextrin, Methyl Cyclodextrin, Pentapotassium Triphosphate, Pentasodium Pentetate, Pentasodium Triphosphate, Pentetic Acid, Phytic Acid, Potassium Citrate, Potas- sium Gluconate, Potassium Polyphosphate, Ribonic Acid, Sodium Dihydroxyethylglycinate, Sodium Gluceptate, Sodium Gluconate, Sodium Glycereth-1 Polyphosphate, Sodium Hexa- metaphosphate, Sodium Metaphosphate, Sodium Metasilicate, Sodium Phytate, Sodium Polydimethylglycinophenolsulfonate, Sodium Trimetaphosphate, TEA-EDTA, TEA- Polyphosphate, Tetrahydroxyethyl Ethylenediamine, Tetrahydroxypropyl Ethylenediamine, Tetrapotassium Etidronate, Tetrapotassium Pyrophosphate, Tetrasodium EDTA, Tetrasodium Etidronate, Tetrasodium Pyrophosphate, Tripotassium EDTA, Trisodium Dicarboxymethyl Alaninate, Trisodium EDTA, Trisodium HEDTA, Trisodium NTA und Trisodium Phosphate.
Als Komplexbildner einsetzbar sind auch tertiäre Amine, insbesondere tertiäre Alkanolamine (Aminoalkohole). Die Alkanolamine besitzen sowohl Amino- als auch Hydroxy- und/oder E- thergruppen als funktionelle Gruppen. Besonders bevorzugte tertiäre Alkanolamine sind Triethanolamin und Tetra-2-hydroxypropylethylendiamin (N,N,N',N'-Tetrakis-(2-hydroxy- propyl)ethylendiamin).
Ein weiterer Gegenstand der Erfindung ist ein Wasserenthärtungsmittel enthaltend Dispergator, Fettsäure und/oder deren Alkalisalz und Fällenthärter, welcher vorzugsweise ausgewählt ist aus Alkalicarbonat und/oder Alkalibicarbonat und/oder wasserlösliches Silikat. Für das Wasserenthärtungsmittel gelten vorzugsweise auch die zuvor gemachten Ausführungen. Nach einer bevorzugten Ausführungsform enthält es 10 bis 70 Gew.-% Fällenthärter, vorzugsweise Alkalicarbonat und/oder Alkalibicarbonat, 5 bis 20 Gew.-% Fettsäure und oder deren Alkalisalz, 0-25 Gew.-%, vorzugsweise 8 bis 20 Gew.-% Persauerstoffverbindung, 0 bis 10 Gew.-%, vorzugsweise 2 bis 8 Gew.-% nichtionische Tensid, 0 bis 15 Gew.-% , vorzugsweise 3 bis 10 Gew.-% Aniontensid sowie Dispergator, vorzugsweise in Mengen von 4 bis 25 Gew.-%, vorteilhafterweise von 5 bis 25 Gew.-%, in weiter vorteilhafter Weise von 6 bis 20 Gew.-%, in noch weiter vorteilhafter Weise von 7 bis 16 Gew.-%, insbeondere von 8 bis 12 Gew.-%.
Vorzugsweise kann auch, wie obenbeschrieben, weiterer Komplexbildner enthalten sein.
Das Wasserenthärtungsmittel kann auf übliche Waschmittelrezepturen angewandt werden bzw. in diesen integriert sein, beispielsweise auf solche, welche auf Schichtsilikat (z.B. SKS- 6) bzw. Zeolith-Basis aufgebaut sind.
Bevorzugt enthalten die Rezepturen wasserlösliche Builder, was einer bevorzugten Ausführungsform entspricht, wobei es in diesem Fall vorteilhaft ist, wenn dann der Anteil der wasserunlöslichen Builder unter 3 Gew.-% liegt, bezogen auf die gesamte Rezeptur.
Handelt es sich dagegen um überwiegend zeolithhaltige bzw. schichtsilikathaltige Rezepturen oder solche von Mischungen derselben, kann eine beschleunigte Enthärtung durch das hier beschriebene Enthärtungssystem erreicht werden.
Gemäß einer bevorzugten Ausführungsform besteht die Builderbasis in solchem Fall aus wasserunlöslichen Ionenaustauschern wie vorzugsweise Schichtsilikat (z.B. SKS 6) oder Zeolith, z.B. vom Typ A, X, Y oder P.
Vorteilhafterweise liegen die lonenaustauschermengen dabei zwischen 8 bis 70 Gew.-%, bevorzugt zwischen 25 bis 50 Gew.-%.
Gemäß einer weiteren bevorzugten Ausführungsform enthält das erfindungsgemäße Mittel ferner Schauminhibitoren, vorzugsweise solche auf Basis von Silicon- oder Paraffin-Ölen. Es ist somit vorteilhafterweise möglich, mit preiswerten, fällenthärtend wirkenden, wasserlöslichen Substanzen wie beispielsweise Soda, Bicarbonat und Silikaten, Produkte zu formulieren, welche einwandfreie Sekundärwascheigenschaften ergeben. Bei Mischungen von Soda mit Bicarbonat kann z.B. der pH-Wert so eingestellt werden, wie er für Feinwaschmittel notwendig ist. Bei Waschmitteln für sehr stark verschmutzte Wäsche (beispielsweise Berufswäsche) können beispielsweise mit Hilfe von wasserlöslichen Silikaten und Soda Mischungen mit hohen pH-Werten für eine kräftige Waschwirkung hergestellt werden.
Als Bleichmittel lassen sich beispielsweise je nach Anwendungszweck und Anwendungstemperatur, allein und in Mischung, Na-Percarbonat, und/oder Na-Perborat, vorteilhafterweise kombiniert mit einem Bleichaktivator wie TAED (Λ/,N,/ ',Λ/'-Tetraacetylethylendiamin) oder Natrium-p-nonanoyloxybenzolsulfonat einsetzen. Für Waschtemperaturen um 30 °C kann zusätzlich oder allein das Bleichmittel Phthalimidoperoxohexansäue (PAP) eingesetzt werden. Beispielsweise ergibt eine Mischung von PAP mit Percarbonat und TAD ein Bleichmittel für den Anwendungsbereich von 20 bis 60°C, wobei durch das PAP zusätzlich dessen antibakteriellen Eigenschaften genutzt werden.
Gemäß einer bevorzugten Ausführungsform enthält ein erfindungsgemäßes Wasserenthärtungsmittel als Persauerstoffverbindung Alkalipercarbonat, Alkaliperborat, Alkaliperessigäure (TAED), oder Phthalimidoperoxohexansäue und/oder Mischungen davon.
Ein weiterer Gegenstand der Erfindung liegt in der Verwendung eines Wasserenthärtungsmittels, wie zuvor beschrieben, als Waschmittel, Waschhilfsmittel, Bleichmittel, Reinigungsmittel, Maschinen- und Geschirrspülmittel oder als Bestandteil solcher Mittel.
Ein weiterer Gegenstand der Erfindung stellt ein Wasch- und Reinigungsmittel dar, welches ein Wasserenthärtungsmittel wie zuvor beschrieben enthält.
Dabei kann ein solches Wasch- und Reinigungsmittel neben dem enthaltenen Wasserenthärtungsmittel alle üblichen, dem Stand der Technik entnehmbaren Merkmale und Inhaltsstoffe aufweisen, die ein Wasch- und Reinigungsmittel auszeichnen.
Wichtige Inhaltsstoffe der erfindungsgemäßen Wasch- und/oder Reinigungsmittel sind anionische, zwitterionischen, amphoteren und/oder nichtionische Tenside, insbesondere Anion- tenside. Hierzu zählen insbesondere Sulfonate und Sulfate. Kationische Tenside können ebenfalls im Wasch- und Reinigungsmittel enthalten sein. Kationisches Tensid ist in einer weiteren bevorzugten Ausführungsform der Erfindung in Mengen bis zu 5 Gew.-%, vorzugsweise in Mengen bis zu 4 Gew.-%, insbesondere in Mengen von 1 bis 3 Gew.-%, bezogen auf das gesamte Wasch- und Reinigungsmittel, in dem Wasch- und Reinigungsmittel enthalten. Neben dem Weichheitsaspekt werden dadurch auch Verbesserungen bei der Vergrauung und Sekundärwaschwirkung erzielt.
In einer bevorzugten Ausführungsform der Erfindung handelt es sich bei dem im Wasch- und Reinigungsmittel enthaltenen kationischen Tensid um eine quartäre Ammoniumverbindung, vorzugsweise um eine alkylierte quartäre Ammoniumverbindung.
Dabei handelt es sich gemäß einer bevorzugten Ausführungsform um eine quartäre Ammoniumverbindung gemäß Formel (I),
(I) R1(R2)(R3)(R4)N+ X", wobei
R1, R2 und R3 unabhängig voneinander ausgewählt sind aus CτC4-Alkyl, C C4-Hydroxyalkyl, Benzyl und -(C2H4O)xH, mit x gleich 2 bis 5, und wobei R4 ein C8-C22-Alkyl ist, und wobei X" ein Anion ist, vorzugsweise ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen.
Gemäß einer weiteren bevorzugten Ausführungsform der Erfindung handelt es sich um eine quartäre Ammoniumverbindung gemäß Formel (II),
(II) R5R6 nR7 3-nN+ X"
wobei R5 ein C6-C24 Alkyl- oder Alkenyl ist, wobei jedes R6 unabhängig voneinander eine - (CnH2nO)xR8-Gruppe ist, mit n gleich 1 bis 4 und mit x gleich 1 bis 14, und wobei R8 ein Methyl Ethyl oder bevorzugt ein Wasserstoff ist, und wobei jedes R7 unabhängig voneinander eine C C12 Alkyl- oder Alkenylgruppe ist, mit m gleich 1 bis 3, und wobei X- ein Anion ist, vorzugsweise ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen. Insbesondere ist R6 eine -CH2CH2OH Gruppe, insbesondere ist R7 jeweils unabhängig voneinander ein C C -Alkyl, mit m gleich 1 oder 2, und insbesondere ist R5 eine lineare C6-C1 -Alkylgruppe ist.
Die erfindungsgemäßen Wasch- und Reinigungsmittel, welche quartäre Ammoniumverbindung gemäß Formel (I) und/oder (II) enthalten, sind vorteilhaft, weil sie bei entsprechender Applikation dazu führen, daß Textilien nicht nur sehr weich und geschmeidig werden, eine verringerte Trocknungszeit aufweisen, leichter zu bügeln sind und gegebenenfalls sogar antistatisch ausgerüstet sind, sondern daß sich auch zum Teil Verbesserungen hinsichtlich Inkrustationsneigung, Weißgrad, Vergrauung bzw. Sekundärwaschwirkung einstellen. Es ergeben sich Vorteile bezüglich der Bildung von Inkrustrationen auf Substratoberflächen.
In einer bevorzugten Ausführungsform handelt es sich bei dem kationischen Tensid um eine C8-Ci6-Alkyl-di(hydroxyethyl)-methyl ammonium-Verbindung, vorzugsweise um eine C 2-C1 - Alkyl-di(hydroxyethyl)-methyl ammonium- Verbindung, und/oder um eine C8-Cι6-Alkyl (hydroxyethyl)-dimethyl ammonium- Verbindung, vorzugsweise C12-C14-Alkyl (hydroxyethyl)- dimethyl ammonium- Verbindung, handelt, insbesondere um die jeweiligen Halogenide, Me- thosulfate, Methophosphate oder Phosphate sowie Mischungen aus diesen.
Die vorgenannten kationischen Verbindung sind zwar im Rahmen dieser Erfindung prädestiniert, nichtsdestoweniger können aber auch andere kationische Tenside eingesetzt werden, vorteilhafterweise allerdings alkylierte quartäre Ammoniumverbindungen, vorzugsweise mit zwei hydrophoben Gruppen, die insbesondere über Ester- oder Amidobindungen mit einem quaternierten Di- bzw. Triethanolamin oder einer analogen Verbindung verknüpft sind.
Solche Verbindungen sind vorteilhafterweise ausgewählt aus der nachfolgenden Formel (III):
hierbei steht R9 für einen aliphatischen Alkylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1 , 2 oder 3 Doppelbindungen; R10 steht für H, OH oder insbesondere O(CO)R12, R11 steht unabhängig von R10 für H, OH oder O(CO)R13, wobei R12 und R13 unabhängig voneinander jeweils für einen aliphatischen Alkylrest mit 12 bis 22 Kohlenstoffatomen mit 0, 1 , 2 oder 3 Doppelbindungen steht, a, b und c können jeweils unabhängig voneinander den Wert 1 , 2 oder 3 haben, X" ist ein passendes Anion, vorzugsweise ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen sein, und/oder der Formel (IV) handelt:
R14, R15 und R16 unabhängig voneinander für eine C1_4-Alkyi-, Alkenyl- oder Hydroxyalkyl- gruppe steht, R17 und R18 jeweils unabhängig ausgewählt eine C8_28-Alkylgruppe mit 0, 1 , 2 oder 3 Doppelbindungen darstellt und u eine Zahl zwischen 0 und 5 ist, X~ ist ein passendes Anion, vorzugsweise ein Halogenid-, Methosulfat-, Methophosphat- oder Phosphation sowie Mischungen aus diesen sein.
Bevorzugte Vertreter dieser Gattung sind N-Methyl-N(2-hydroxyethyl)-N,N-(ditalgacyloxy- ethyl)ammonium-methosulfat oder N-Methyl-N(2-hydroxyethyl)-N,N-(dipalmitoylethyl)ammo- nium-methosulfat.
Nun werden mögliche Aniontenside näher beschrieben. Als Tenside vom Sulfonat-Typ kommen vorzugsweise C9-C13-Alkylbenzolsulfonate, Olefinsulfonate, d. h. Gemische aus Alken- und Hydroxyalkansulfonaten sowie Disulfonaten, wie man sie beispielsweise aus C12-C18- Monoolefinen mit end- oder innenständiger Doppelbindung durch Sulfonieren mit gasförmigem Schwefeltrioxid und anschließende alkalische oder saure Hydrolyse der Sulfonie- rungsprodukte erhält, in Betracht.
Geeignet sind auch Alkansulfonate, die aus C12-C18-Alkanen beispielsweise durch Sul- fochlo erung oder Sulfoxidation mit anschließender Hydrolyse bzw. Neutralisation gewonnen werden.
Geeignet sind auch die Ester von alpha -Sulfofettsäuren (Estersulfonate), z. B. die alpha - sulfonierten Methylester der hydrierten Kokos-, Palmkern- oder Taigfettsäuren, die durch alpha -Sulfonierung der Methylester von Fettsäuren pflanzlichen und/oder tierischen Ursprungs mit 8 bis 20 C- Atomen im Fettsäuremolekül und nachfolgende Neutralisation zu wasserlöslichen Mono- Salzen hergestellt werden, in Betracht. Vorzugsweise handelt es sich hierbei um die alpha -sulfonierten Ester der hydrierten Kokos-, Palm-, Palmkern- oder Taigfettsäuren, wobei auch Sulfonierungsprodukte von ungesättigten Fettsäuren, beispielsweise Ölsäure, in geringen Mengen, vorzugsweise in Mengen nicht oberhalb etwa 2 bis 3 Gew.-%, vorhanden sein können. Insbesondere sind alpha -Sulfofettsäurealkylester bevorzugt, die eine Alkylkette mit nicht mehr als 4 C-Atomen in der Estergruppe aufweisen, beispielsweise Methylester, Ethylester, Propylester und Butylester. Mit besonderem Vorteil werden die Methylester der alpha - Sulfofettsäuren (MES), aber auch deren verseifte Disalze eingesetzt.
Weitere geeignete Aniontenside sind sulfierte Fettsäureglycerinester, welche Mono-, Di- und Triester sowie deren Gemische darstellen, wie sie bei der Herstellung durch Veresterung durch ein Monoglycerin mit 1 bis 3 Mol Fettsäure oder bei der Umesterung von Triglyceriden mit 0,3 bis 2 Mol Glycerin erhalten werden.
Als Alk(en)ylsulfate werden die Alkali- und insbesondere die Natriumsalze der Schwefelsäurehalbester der C12-C18-Fettalkohole beispielsweise aus Kokosfettalkohol, Taigfettalkohol, Lauryl-, Myristyl-, Cetyl- oder Stearylalkohol oder der C 0-C20-Oxoalkohole und diejenigen Halbester sekundärer Alkohole dieser Kettenlänge bevorzugt. Weiterhin bevorzugt sind Alk(en)ylsulfate der genannten Kettenlänge, welche einen synthetischen, auf petrochemi- scher Basis hergestellten geradkettigen Alkylrest enthalten, die ein analoges Abbauverhalten besitzen wie die adäquaten Verbindungen auf der Basis von fettchemischen Rohstoffen. Aus waschtechnischem Interesse sind C12-C16-Alkylsulfate und C12-C15-ALkylsulfate sowie C14- C15-Alkylsulfate insbesondere bevorzugt.
Auch die Schwefelsäuremonoester der mit 1 bis 6 Mol Ethylenoxid ethoxylierten geradkettigen oder verzweigten C7-C21-Alkohole, wie 2-Methylverzweigte Cg-C-n -Alkohole mit im Durchschnitt 3,5 Mol Ethylenoxid (EO) oder C12-C18-Fettalkohole mit 1 bis 4 EO, sind geeignet. Sie werden in Waschmitteln aufgrund ihres hohen Schaumverhaltens nur in relativ geringen Mengen, beispielsweise in Mengen von 1 bis 5 Gew.-%, eingesetzt.
Bevorzugte Aniontenside sind auch die Salze der Alkylsulfobernsteinsäure, die auch als Sul- fosuccinate oder als Sulfobernsteinsäureester bezeichnet werden und die Monoester und/oder Diester der Sulfobemsteinsäure mit Alkoholen, vorzugsweise Fettalkoholen und insbesondere ethoxylierten Fettalkoholen darstellen. Bevorzugte Sulfosuccinate enthalten C8- bis C18-Fettalkoholreste oder Mischungen aus diesen. Insbesondere bevorzugte Sulfosuccinate enthalten einen Fettalkoholrest, der sich von ethoxylierten Fettalkoholen ableitet, die für sich betrachtet nichtionische Tenside darstellen (Beschreibung siehe unten). Dabei sind wiederum Sulfosuccinate, deren Fettalkohol-Reste sich von ethoxylierten Fettalkoholen mit eingeengter Homologenverteilung ableiten, besonders bevorzugt. Ebenso ist es auch möglich, Alk(en)ylbemsteinsäure mit vorzugsweise 8 bis 18 Kohlenstoffatomen in der AI k(en)yl kette oder deren Salze einzusetzen.
Als weitere anionische Tenside kommen Fettsäure-Derivate von Aminosäuren, beispielsweise von N-Methyltaurin (Tauride) und/oder von N-Methylglycin (Sarkoside) in Betracht. Insbesondere bevorzugt sind dabei die Sarkoside bzw. die Sarkosinate und hier vor allem Sarkosinate von höheren und gegebenenfalls einfach oder mehrfach ungesättigten Fettsäuren wie Oleylsarkosinat.
Die anionischen Tenside können in Form ihrer Natrium-, Kalium- oder Ammoniumsalze sowie als lösliche Salze organischer Basen, wie Mono-, Di- oder Thethanol-amin, vorliegen. Vorzugsweise liegen die anionischen Tenside in Form ihrer Natrium- oder Kaliumsalze, insbesondere in Form der Natriumsalze vor.
Neben den anionischen Tensiden und zwitterionischen und amphoteren Tensiden sind vor allem nichtionische Tenside bevorzugt.
Als nichtionische Tenside werden vorzugsweise alkoxylierte, vorteilhafterweise ethoxylierte, insbesondere primäre Alkohole mit vorzugsweise 8 bis 18 C-Atomen und durchschnittlich 1 bis 12 Mol Ethylenoxid (EO) pro Mol Alkohol eingesetzt, in denen der Alkoholrest linear oder bevorzugt in 2-Stellung methylverzweigt sein kann bzw. lineare und methylverzweigte Reste im Gemisch enthalten kann, so wie sie üblicherweise in Oxoalkoholresten vorliegen.
Insbesondere sind jedoch Alkoholethoxylate mit linearen Resten aus Alkoholen nativen Ursprungs mit 12 bis 18 C-Atomen, z. B. aus Kokos-, Palm-, Taigfett- oder Oleylalkohol, und durchschnittlich 2 bis 8 EO pro Mol Alkohol bevorzugt. Zu den bevorzugten ethoxylierten Alkoholen gehören beispielsweise C12-C14-Alkohole mit 3 EO oder 4 EO, Cg-Cι Alkohole mit 7 EO, C13-C15-Alkohole mit 3 EO, 5 EO, 7 EO oder 8 EO, C12-C18-Alkohole mit 3 EO, 5 EO oder 7 EO und Mischungen aus diesen, wie Mischungen aus C12-C-ι4-Alkohol mit 3 EO und Cι2-C18-Alkohol mit 7 EO. Die angegebenen Ethoxylierungsgrade stellen statistische Mittelwerte dar, die für ein spezielles Produkt eine ganze oder eine gebrochene Zahl sein können. Bevorzugte Alkoholethoxylate weisen eine eingeengte Homologenverteilung auf (narrow ränge ethoxylates, NRE). Zusätzlich zu diesen nichtionischen Tensiden können - wie oben beschrieben - auch Fettalkohole mit mehr als 12 EO eingesetzt werden. Beispiele hierfür sind (Talg-)Fettalkohole mit 14 EO, 16 EO, 20 EO, 25 EO, 30 EO oder 40 EO. Zu den nichtionischen Tensiden zählen auch Alkylglykoside der allgemeinen Formel RO(G)x, in der R einen primären geradkettigen oder methylverzweigten, insbesondere in 2-Stellung methylverzweigten aliphatischen Rest mit 8 bis 22, vorzugsweise 12 bis 18 C-Atomen bedeutet und G für eine Glykoseeinheit mit 5 oder 6 C-Atomen, vorzugsweise für Glucose, steht. Der Oligomerisierungsgrad x, der die Verteilung von Monoglykosiden und Oligoglyko- siden angibt, ist eine beliebige Zahl - die als analytisch zu bestimmende Größe auch gebrochene Werte annehmen kann - zwischen 1 und 10; vorzugsweise liegt x bei 1 ,2 bis 1 ,4.
Ebenfalls geeignet sind Polyhydroxyfettsäureamide der Formel (V), in der R19CO für einen aliphatischen Acylrest mit 6 bis 22 Kohlenstoffatomen, R20 für Wasserstoff, einen Alkyl- oder Hydroxyalkylrest mit 1 bis 4 Kohlenstoffatomen und Z für einen linearen oder verzweigten Polyhydroxyalkylrest mit 3 bis 10 Kohlenstoffatomen und 3 bis 10 Hydroxylgruppen steht:
(V) R19-CO-N-[Z]
R 2o
Vorzugsweise leiten sich die Polyhydroxyfettsäureamide von reduzierenden Zuckern mit 5 oder 6 Kohlenstoffatomen, insbesondere von der Glucose ab. Zur Gruppe der Polyhydroxyfettsäureamide gehören auch Verbindungen der Formel (VI),
(VI) R^-CO-N-[Z] I R 2-OR23
in der R21 für einen linearen oder verzweigten Alkyl- oder Alkenylrest mit 7 bis 12 Kohlenstoffatomen, R22 für einen linearen, verzweigten oder cyclischen Alkylenrest oder einen Ary- lenrest mit 2 bis 8 Kohlenstoffatomen und R23 für einen linearen, verzweigten oder cyclischen Alkylrest oder einen Arylrest oder einen Oxy-Alkylrest mit 1 bis 8 Kohlenstoffatomen steht, wobei C C4-Alkyl- oder Phenylreste bevorzugt sind, und Z für einen linearen Polyhydroxyalkylrest, dessen Alkylkette mit mindestens zwei Hydroxylgruppen substituiert ist, oder alkoxy- lierte, vorzugsweise ethoxylierte oder propoxylierte Derivate dieses Restes steht. Z wird auch hier vorzugsweise durch reduktive Aminierung eines Zuckers wie Glucose, Fructose, Maltose, Lactose, Galactose, Mannose oder Xylose erhalten. Die N-Alkoxy- oder N-Aryloxy- substituierten Verbindungen können dann beispielsweise durch Umsetzung mit Fett- säuremethylestern in Gegenwart eines Alkoxids als Katalysator in die gewünschten Polyhydroxyfettsäureamide überführt werden.
Eine weitere Klasse bevorzugt eingesetzter nichtionischer Tenside, die entweder als alleiniges nichtionisches Tensid oder in Kombination mit anderen nichtionischen Tensiden, insbesondere zusammen mit alkoxylierten Fettalkoholen und/oder Alkylglykosiden, eingesetzt werden, sind alkoxylierte, vorzugsweise ethoxylierte oder ethoxylierte und propoxylierte Fett- säurealkylester, vorzugsweise mit 1 bis 4 Kohlenstoffatomen in der Alkylkette, insbesondere Fettsäuremethylester, wie sie beispielsweise in der japanischen Patentanmeldung JP 58/217598 beschrieben sind. Als Niotenside sind Cι2-C18-Fettsäuremethylester mit durchschnittlich 3 bis 15 EO, insbesondere mit durchschnittlich 5 bis 12 EO bevorzugt, während als Bindemittel - wie oben beschrieben - vor allem höher ethoxylierte Fettsäuremethylester vorteilhaft sind. Insbesondere C12-Cι8- Fettsäuremethylester mit 10 bis 12 EO können sowohl als Tenside als auch als Bindemittel eingesetzt werden.
Auch nichtionische Tenside vom Typ der Aminoxide, beispielsweise N-Kokosalkyl-N,N- dimethylaminoxid und N-Talgalkyl-N,N-dihydroxyethylaminoxid, und der Fettsäurealkanol- amide können geeignet sein. Die Menge dieser nichtionischen Tenside beträgt vorzugsweise nicht mehr als die der ethoxylierten Fettalkohole, insbesondere nicht mehr als die Hälfte davon.
Als weitere Tenside kommen sogenannte Gemini-Tenside in Betracht. Hierunter werden im allgemeinen solche Verbindungen verstanden, die zwei hydrophile Gruppen und zwei hydrophobe Gruppen pro Molekül besitzen. Diese Gruppen sind in der Regel durch einen sogenannten "Spacer" voneinander getrennt. Dieser Spacer ist in der Regel eine Kohlenstoffkette, die lang genug sein sollte, dass die hydrophilen Gruppen einen ausreichenden Abstand haben, damit sie unabhängig voneinander agieren können.
Derartige Tenside zeichnen sich im allgemeinen durch eine ungewöhnlich geringe kritische Micellkonzentration und die Fähigkeit, die Oberflächenspannung des Wassers stark zu reduzieren, aus. In Ausnahmefällen werden jedoch unter dem Ausdruck Gemini-Tenside nicht nur dimere, sondern auch trimere Tenside verstanden. Geeignete Gemini-Tenside sind beispielsweise sulfatierte Hydroxymischether oder Dimeralkohol-bis- und Trimeralkohol- trissulfate und -ethersulfate. Endgruppenverschlossene dimere und trimere Mischether zeichnen sich insbesondere durch ihre Bi- und Multifunktionalität aus. So besitzen die ge- nannten endgruppenverschlossenen Tenside gute Netzeigenschaften und sind dabei schaumarm, so dass sie sich insbesondere für den Einsatz in maschinellen Wasch- oder Reinigungsverfahren eignen. Eingesetzt werden können aber auch Gemini- Polyhydroxyfettsäureamide oder Poly-Polyhydroxyfettsäureamide.
Bleichmittel wurden bereits oben angeführt. Unter den als Bleichmittel dienenden, in Wasser H2O2 liefernden Verbindungen haben das Natriumperborattetrahydrat, das Natriumperborat- monohydrat und das Natriumpercarbonat besondere Bedeutung. Weitere brauchbare Bleichmittel sind beispielsweise Peroxypyrophosphate, Citratperhydrate sowie H2O2 liefernde persaure Salze oder Persäuren, wie Perbenzoate, Peroxophthalate, Diperazelainsäure, Phthaloiminopersäure oder Diperdodecandisäure. Wie bereits weiter oben ausgeführt wird in einer bevorzugten Ausführungsform Natriumpercarbonat als Bleichmittel eingesetzt.
Zu den sonstigen Waschmittelbestandteilen zählen Vergrauungsinhibitoren (Schmutzträger), Schauminhibitoren, Bleichaktivatoren, optische Aufheller, Enzyme, textilweichmachende Stoffe, Färb- und Duftstoffe sowie Neutralsalze wie Sulfate und Chloride in Form ihrer Natrium- oder Kaliumsalze.
Bleichaktivatoren wurden bereits oben angeführt. Als Bleichaktivatoren können Verbindungen, die unter Perhydrolysebedingungen aliphatische Peroxocarbonsäuren mit vorzugsweise 1 bis 10 C-Atomen, insbesondere 2 bis 4 C- Atomen, und/oder gegebenenfalls substituierte Perbenzoesäure ergeben, eingesetzt werden. Geeignet sind Substanzen, die O- und/oder N- Acylgruppen der genannten C-Atomzahl und/oder gegebenenfalls substituierte Benzoylgrup- pen tragen.
Bevorzugt sind mehrfach acylierte Alkylendiamine, insbesondere Tetraacetylethylendiamin (TAED), acylierte Triazinderivate, insbesondere 1 ,5-Diacetyl-2,4-dioxohexahydro-1 ,3,5- triazin (DADHT), acylierte Glykolurile, insbesondere Tetraacetylglykoluril (TAGU), N- Acylimide, insbesondere N- Nonanoylsuccinimid (NOSI), acylierte Phenolsulfonate, insbesondere n-Nonanoyl- oder Isononanoyloxybenzolsulfonat (n- bzw. iso-NOBS), Carbonsäureanhydride, insbesondere Phthalsäureanhydrid, acylierte mehrwertige Alkohole, insbesondere Triacetin, Ethylenglykoldiacetat, 2,5-Diacetoxy-2,5-dihydrofuran und die aus den deutschen Patentanmeldungen DE-A-196 16 693 und DE-A-196 16 767 bekannten Eno- lester sowie acetyliertes Sorbitol und Mannitol beziehungsweise deren in der europäischen Patentanmeldung EP-A-0 525 239 beschriebene Mischungen (SORMAN), acylierte Zuckerderivate, insbesondere Pentaacetylglukose (PAG), Pentaacetylfruktose, Tetraacetylxylose und Octaacetyllactose sowie acetyliertes, gegebenenfalls N-alkyliertesGlucamin und Gluco- nolacton, und/oder N-acylierte Lactame, beispielsweise N-Benzoylcaprolactam. Hydrophil substituierte Acylacetale und Acyllactame werden ebenfalls bevorzugt eingesetzt. Derartige Bleichaktivatoren sind vorteilhafterweise im üblichen Mengenbereich, vorzugsweise in Mengen von 1 Gew.-% bis 10 Gew.-%, insbesondere 2 Gew.-% bis 8 Gew.-%, bezogen auf das gesamte Wasch- und/oder Reinigungsmittel, enthalten.
Als Schauminhibitoren eignen sich beispielsweise Organopolysiloxane und deren Gemische mit mikrofeiner, ggf. signierter Kieselsäure sowie Paraffine, Wachse, Mikrokristallinwachse und deren Gemische mit signierter Kieselsäure oder Bistearylethylendiamid. Mit Vorteilen werden auch Gemische aus verschiedenen Schauminhibitoren verwendet, z. B. solche aus Silikonen, Paraffinen oder Wachsen. Vorzugsweise sind die Schauminhibitoren, insbesondere Silikon- und/oder Paraffin-haltige Schauminhibitoren, an eine granuläre, in Wasser lösliche bzw. dispergierbare Trägersubstanz gebunden.
Insbesondere sind dabei Mischungen aus Paraffinen und Bistearylethylendiamiden bevorzugt.
Als Enzyme kommen insbesondere solche aus der Klasse der Hydrolasen, wie der Pro- teasen, Lipasen bzw. lipolytisch wirkenden Enzyme, Amylasen, Cellulasen bzw. deren Gemische in Frage. Auch Oxireduktasen sind geeignet.
Besonders gut geeignet sind aus Bakterienstämmen oder Pilzen, wie Bacillus subtilis, Bacil- lus licheniformis, Streptomyces griseus und Humicola insolens gewonnene enzymatische Wirkstoffe. Vorzugsweise werden Proteasen vom Subtilisin-Typ und insbesondere Protea- sen, die aus Bacillus lentus gewonnen werden, eingesetzt. Dabei sind Enzymmischungen, beispielsweise aus Protease und Amylase oder Protease und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease und Cellulase oder aus Cellulase und Lipase bzw. lipolytisch wirkenden Enzymen oder aus Protease, Amylase und Lipase bzw. lipolytisch wirkenden Enzymen oder Protease, Lipase bzw. lipolytisch wirkenden Enzymen und Cellulase, insbesondere jedoch Protease- und/oder Lipase-haltige Mischungen bzw. Mischungen mit lipolytisch wirkenden Enzymen von besonderem Interesse. Beispiele für derartige lipolytisch wirkende Enzyme sind die bekannten Cutinasen. Auch Peroxidasen oder Oxidasen haben sich in einigen Fällen als geeignet erwiesen. Zu den geeigneten Amylasen zählen insbesondere alpha - Amylasen, Iso-Amylasen, Pullulanasen und Pektinasen. Als Cellulasen werden vorzugswei- se Cellobiohydrolasen, Endoglucanasen und beta -Glucosidasen, die auch Cellobiasen genannt werden, bzw. Mischungen aus diesen eingesetzt. Da sich die verschiedenen Cellula- se-Typen durch ihre CMCase- und Avicelase-Aktivitäten unterscheiden, können durch gezielte Mischungen der Cellulasen die gewünschten Aktivitäten eingestellt werden.
Die Enzyme können an Trägerstoffen adsorbiert und/oder in Hüllsubstanzen eingebettet sein, um sie gegen vorzeitige Zersetzung zu schützen. Der Anteil der Enzyme, Enzymmischungen oder Enzymgranulate kann beispielsweise etwa 0,1 bis 5 Gew.-%, vorzugsweise 0,1 bis etwa 2 Gew.-% betragen.
Zusätzlich zu Phosphonaten können die Wasch- und/oder Reinigungsmittel noch weitere Enzymstabilisatoren enthalten. Beispielsweise können 0,5 bis 1 Gew.-% Natriumformiat eingesetzt werden. Möglich ist auch der Einsatz von Proteasen, die mit löslichen Calciumsalzen und einem Calciumgehalt von vorzugsweise etwa 1 ,2 Gew.-%, bezogen auf das Enzym, stabilisiert sind. Ausser Calciumsalzen dienen auch Magnesiumsalze als Stabilisatoren. Besonders vorteilhaft ist jedoch der Einsatz von Borverbindungen, beispielsweise von Borsäure, Boroxid, Borax und anderen Alkalimetallboraten wie den Salzen der Orthoborsäure (H3BO3), der Metaborsäure (HBO2) und der Pyroborsäure (Tetraborsäure H2B4O7).
Als Vergrauungsinhibitoren können bevorzugt Celluloseether, wie Carboxymethylcellulose (Na-Salz), Methylcellulose, Hydroxyalkylcellulose und Mischether, wie Methylhydroxyethyl- cellulose, Methylhydroxypropylcellulose, Methylcarboxymethylcellulose und deren Gemische, sowie Polyvinylpyrrolidon beispielsweise in Mengen von 0,1 bis 5 Gew.-%, bezogen auf die Wasch- und/oder Reinigungsmittel, eingesetzt werden.
Die Wasch- und/oder Reinigungsmittel können als optische Aufheller Derivate der Diami- nostilbendisulfonsäure bzw. deren Alkalimetallsalze enthalten. Geeignet sind z. B. Salze der 4,4'-Bis(2-anilino-4-morpholino- 1 ,3,5-triazinyl-6-amino)stilben-2,2'-disulfonsäure oder gleichartig aufgebaute Verbindungen, die anstelle der Morpholino-Gruppe eine Diethanol- aminogruppe, eine Methylaminogruppe, eine Anilinogruppe oder eine 2-Methoxyethylami- nogruppe tragen. Weiterhin können Aufheller vom Typ der substituierten Diphenylstyryle anwesend sein, z. B. die Alkalisalze des 4,4'-Bis(2-sulfostyryl)-diphenyls, 4,4'-Bis(4-chlor-3- sulfostyryl)-diphenyls, oder 4-(4- Chlorstyryl)-4'-(2-sulfostyryl)-diphenyls. Auch Gemische der vorgenannten Aufheller können verwendet werden. Die erfindungsgemäßen Wasch- und/oder Reinigungsmittel können, so sie denn teilchenför- mig sind, was bevorzugt ist, beliebige Schüttgewichte aufweisen. Dabei reicht die Palette der möglichen Schüttgewichte von niedrigen Schüttgewichten unter 600 g/l, beispielsweise 300 g/l, über den Bereich mittlerer Schüttgewichte von 600 bis 750 g/l bis zum Bereich hoher Schüttgewichte von mindestens 750 g/l. In einer bevorzugten Variante der erfindungsgemäßen Wasch- und/oder Reinigungsmittel mit hohen Schüttgewichten liegt das Schüttgewicht jedoch sogar oberhalb von 800 g/l, wobei Schüttgewichte oberhalb 850 g/l besonders vorteilhaft sein können.
Zur Herstellung solcher Wasch- und/oder Reinigungsmittel sind beliebige, aus dem Stand der Technik bekannte Verfahren, geeignet.
In einer, insbesondere wenn Wasch- und/oder Reinigungsmittel hoher Schüttdichte erhalten werden sollen, bevorzugten Herstellungsvariante werden die Wasch- und/oder Reinigungsmittelgemische abschliessend einem Kompaktierungsschritt unterworfen, wobei z.B. auch weitere Inhaltsstoffe den Wasch- und/oder Reinigungsmitteln erst nach dem Kompaktierungsschritt zugemischt werden.
Die Kompaktierung der Inhaltsstoffe findet in einer bevorzugten Ausführungsform der Erfindung in einem Pressagglomerationsverfahren statt. Der Pressagglomerationsvorgang, dem das feste Vorgemisch (getrocknetes Basiswaschmittel) unterworfen wird, kann dabei in verschiedenen Apparaten realisiert werden. Je nach dem Typ des verwendeten Agglo- merators werden unterschiedliche Pressagglomerationsverfahren unterschieden. Die vier häufigsten und im Rahmen der vorliegenden Erfindung bevorzugten Pressagglomerationsverfahren sind dabei die Extrusion, das Walzenpressen bzw. -kompaktieren, das Lochpressen (Pelletieren) und das Tablettieren, so dass im Rahmen der vorliegenden Erfindung bevorzugte Pressagglomerationsvorgänge Extrusions-, Walzenkompaktierungs-, Pelletie- rungs- oder Tablettierungsvorgänge sind. Allen genannten bevorzugten Kompaktierungsver- fahren ist gemeinsam, dass das Vorgemisch unter Druck verdichtet und plastifiziert wird und die einzelnen Partikel unter Verringerung der Porosität aneinandergedrückt werden und aneinander haften. Bei allen Verfahren (bei der Tablettierung mit Einschränkungen) lassen sich die Werkzeuge dabei auf höhere Temperaturen aufheizen oder zur Abführung der durch Scherkräfte entstehenden Wärme kühlen. In allen Verfahren kann als Hilfsmittel zur Verdichtung ein Bindemittel eingesetzt werden. Beispiele
Folgende Waschmittel gemäß den Rezepturen B bis G wurden hergestellt-
B C D E F G Gew.-°/c . Gew.-% Gew.-% Gew.-°/c , Gew.-% Gew.-%
Soda 50 50 50 50
Bicarbonat 50 50
Na-Sulfat 15 7 7 3 15 7
Wasserglas 11 11 11 4 11 11
Perborat 10 10
Percarbonat 10 10 10 10
Sokalan CP 5 8 8 8
Metasilikat K0 11
Seife 7 7 7 7 7 7
Niotensid 3 3 3 3 3 3
FAS 4 4 4 4 4 4
Sokalan CP 5 : Maleinsäure-Acrylsäure-Copolymer-Na-Salz (30:70) FAS : Fettalkoholsulfat
In Waschversuchen (13 mal gewaschen bei 60°C, Wasserhärte 16 Grad Deutsche Härte, in automatischer Trommelwaschmaschine; Gewebe: Bleichnessel und Frottiergewebe) wurden die Sekundärwaschergebnisse über Parameter wie R-Wert (Remissionswert), Berger Weißgrad, Asche und Inkrustation bestimmt. Diese Werte sind nachfolgend mit Bezug zur jeweiligen Rezeptur angegeben. AW kennzeichnet den Anfangswert. A steht für ein marktgängiges Markenwaschmittel.
AW A B C D E F G Bleichnessel
R-Wert % 84,2 84,1 82,3 80,9 80,5 80,7 81 ,6 80,9
Berger Weißgrad 76,4 169,2 157,3 159,8 157,9 157,2 157,7 159,3 Asche % 0,07 0,9 3,3 0,8 1,0 1,0 3,0 0,6
Inkrustation % 1 ,1 2,2 7,6 2,4 2,3 2,4 6,2 2,0 AW A B C D E F G Frottiergewebe
R-Wert % 79,5 84,1 78,8 77,5 77,4 77,2 77,5 77,2
Berger Weißgrad 158,8 165,9 158,2 159,5 159,5 159,0 155,6 157,4 Asche % 0,2 0,5 3,0 1 ,1 0,9 1 ,0 3,8 1 ,2
Wie die Ergebnisse zeigen, ergaben Rezepturen C, D, E und G, welche So- da(Bicarbonat)/Seifengemische und Sokalan CP 5 als Dispergator enthielten , nahezu keine Ascheablagerungen in Form von Calciumcarbonat. Dagegen zeigten die Rezepturen B und F, welche keinen Dispergator enthielten, deutliche Aschablagerungen. Durch die dispergierte Ca-Seife entstand, wie die Versuche zeigten, eine leicht angehobene, aber akzeptable organische Inkrustation. Diese Calciuminkrustationen wirkten jedoch positiv auf das Gewebe, indem sie dies avivierten und den Griff weich machten.
Es wurden außerdem noch weitere Waschversuche (13 mal gewaschen bei 60°C, Wasserhärte 16 Grad Deutsche Härte, in automatischer Trommelwaschmaschine) mit den folgenden Rezepturen durchgeführt:
A1 B1 C1 D1 E1 F1 G1 Gew.% Gew.% Gew.% Gew.% Gew.% Gew.% Gew.%
ABS 7 7 10 7 10 2 2
Lutensol 15 12 12 12 12
Seife 10 7 7 7 7 4
Soda 25 48 48 48 48 32,5 32,5
Metasilikat K0 25 23,4 23,4
Perborat-Monohdyrat 10 10 10 10 10 23 23
Sokalan CP 5 8 8 8 12 12 5
Lutensol : C12-14 Fettalkohole ethoxyliert (8 EO)
ABS: Alkylbenzolsulfonat
Dabei wurde nach den Waschversuchen zur Bestimmung der Sekundärwaschergebnisse jeweils die Asche bestimmt. A1 B1 C1 D1 E1 F1 G1
Frottiergewebe
Asche % 0,47 0,99 0,95 0,44 0,27
Bleichnessel Asche % 0,59 0,71 0,66 0,39 0,26 7,7 2,4
Wie die Ergebnisse zeigen, ergaben Rezepturen A1 bis E1 sowie G1 , welche Soda/Seifengemische und Sokalan CP 5 als Dispergator enthielten, nahezu keine Ascheablagerungen in Form von Calciumcarbonat. Dagegen zeigte die Rezeptur F1 , welche keinen Dispergator enthielt, deutliche Aschablagerungen.
Es wurden außerdem noch weitere Waschversuche (13 mal gewaschen bei 60°C, Wasserhärte 16 Grad Deutsche Härte, in automatischer Trommelwaschmaschine) mit der folgenden Rezeptur (A2 ) durchgeführt:
A2 Gew.-%
Soda 22
Bicarbonat 17,25
Schichtsilikat 36
Cellulase 0,25
PVI/PVP 0,25
Siliconöl/Paraffinöl 0,25
Sokalan CP 5 —
Polyaspartat 8
Seife 5
Niotensid 4
FAS 7 Es resultierten folgende Sekundärwaschergebnisse bzgl. Vergrauung, Farbvergrauung und Asche: A2 Angaben in % Vergrauung
WFK Cotton 5,0
WFK Cotton Frottier 4,8
WFK Polyester/Cotton 65/35 6,0
Farbvergrauung 2,9
Asche 0,8
Auch diese Rezeptur mit Polyaspartat als Dispergator zeigte einen hervorragenden Aschwert.

Claims

Patentansprüche
1. Verfahren zum Enthärten von Wasser durch kombinierten Einsatz von Dispergator(en), Fettsäure(n) und/oder deren Alkalisalz(en) und Fällenthärter.
2. Verfahren nach Anspruch 1 , dadurch gekennzeichnet, daß der Fällenthärter ausgewählt ist aus Alkalicarbonat und/oder Alkalibicarbonat und/oder wasserlöslichem Silikat.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Dispergator ausgewählt ist aus Polyasparginsäure, den wasserlöslichen Polyasparaginsäuresalzen, Po- lyacrylsäure, den wasserlöslichen Polyacrylsäuresalzen, sulfonierten bzw. sulfatierten Ölen, Blockcopolymere des PEP-PEO-Typs (Copolymere von Polyethylenpropylen und Polyethylenoxid), Natriumdodecylsulfat, polymeren Polycarboxylaten, Natriumphosphaten sowie deren Mischungen.
4. Verfahren nach Anspruch 1 bis 3, dadurch gekennzeichnet, daß das Gewichtsverhältnis von Fettsäure und/oder deren Alkalisalz zum Dispergator 20:1 bis 1 :3, vorzugsweise 10:1 bis 2:1 beträgt.
5. Verfahren nach Anspruch 1 bis 4, dadurch gekennzeichnet, daß das Gewichtsverhältnis von Fällenthärter, vorzugsweise ausgewählt aus Alkalicarbonat, Alkalibicarbonat, wasserlöslichen Silikaten sowie deren Mischungen, zum Dispergator 20:1 bis 2:1 beträgt, vorzugsweise 10:1 bis 2:1.
6. Verfahren nach Anspruch 1 bis 5, dadurch gekennzeichnet, daß man die Kombination aus Dispergator(en), Fettsäure(n) und/oder deren Alkalisalz(en) und Fällenthärter in Konzentrationen im Bereich von 10 bis 60 Gew.-%, insbesondere 16 bis 50 Gew.-% einsetzt.
7. Verfahren nach Anspruch 1 bis 6, dadurch gekennzeichnet, daß man zusätzlich stark komplexierend wirkende Verbindungen, vorzugsweise ausgewählt aus Imidobemstein- säure, Nitrilotriessigsäure, Zitronensäure, Carboxymethyl-Tartronsäure oder -Apfelsäure und/oder deren Alkalisalze, Natriumphosphate, Ethylendiamintetraacetat, Phosphonate wie Aminotrismethylenphosphonsäure (ATMP) oder vergleichbar wirkende Ca- komplexierende Verbindungen oder deren Mischungen, einsetzt.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß das Gewichtsverhältnis von Dispergator zu den stark komplexierenden Verbindungen 5:1 bis 1 :5, vorzugsweise 1 :1 bis 3:1 beträgt.
9. Wasserenthärtungsmittel enthaltend Dispergator, Fettsäure und/oder deren Alkalisalz und Fällenthärter.
10. Mittel nach Anspruch 9, enthaltend a) 10 bis 70 Gew.-% Fällenthärter, b) 5 bis 20 Gew.-% Fettsäure und oder deren Alkalisalz c) 0 bis 25 Gew.-% Persauerstoffverbindung, d) 0 bis 10 Gew.-% nichtionische Tensid, e) 0 bis 15 Gew.-% Aniontensid, f) Dispergator.
11. Mittel nach Anspruch 9 oder 10, dadurch gekennzeichnet, daß als Persauerstoffverbindung Alkalipercarbonat, Alkaliperborat, Alkaliperessigäure (TAED) oder Phthalimidopero- xohexansäure und/oder Mischungen davon eingesetzt werden.
12. Verwendung eines Mittels nach Anspruch 9 bis 11 als Waschmittel, Waschhilfsmittel, Bleichmittel, Reinigungsmittel, Maschinen- und Geschirrspülmittel oder als Bestandteil solcher Mittel.
13. Wasch- und Reinigungsmittel, enthaltend ein Wasserenthärtungsmittel nach Anspruch 9 bis 12.
EP05700759A 2004-01-22 2005-01-08 System zur wasserenthärtung für waschmittel, bleichmittel und maschinen- und handgeschirrspülmittel durch fällenthärtung Withdrawn EP1708968A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102004003286A DE102004003286A1 (de) 2004-01-22 2004-01-22 System zur Wasserenthärtung durch Fällenthärtung
PCT/EP2005/000109 WO2005070839A1 (de) 2004-01-22 2005-01-08 System zur wasserenthärtung für waschmittel, bleichmittel und maschinen-und handgeschirrspülmittel durch fällenthärtung

Publications (1)

Publication Number Publication Date
EP1708968A1 true EP1708968A1 (de) 2006-10-11

Family

ID=34800895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05700759A Withdrawn EP1708968A1 (de) 2004-01-22 2005-01-08 System zur wasserenthärtung für waschmittel, bleichmittel und maschinen- und handgeschirrspülmittel durch fällenthärtung

Country Status (5)

Country Link
US (1) US20070021315A1 (de)
EP (1) EP1708968A1 (de)
JP (1) JP2007522922A (de)
DE (1) DE102004003286A1 (de)
WO (1) WO2005070839A1 (de)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006026039A1 (de) * 2005-10-07 2007-04-19 Söll Gmbh Zusammensetzung zur Vernichtung von Fadenalgen
EP2175975B1 (de) * 2007-07-03 2012-06-20 Basf Se Verfahren zur herstellung eines rieselfähigen und lagerstabilen feststoffes enthaltend im wesentlichen alpha-alanin-n,n-diessigsäure und/oder ein oder mehrere derivate der alpha-alanin-n,n-diessigsäure
US20100263689A1 (en) * 2009-04-21 2010-10-21 Ecolab Usa Inc. Methods and apparatus for controlling water hardness
CN101817599B (zh) * 2010-01-25 2013-02-13 夏光甫 汽车水箱除垢清洗液及其制备方法
CN102452725B (zh) * 2010-10-20 2015-01-14 中国石油化工股份有限公司 一种复合阻垢缓蚀剂及其应用
CN102452722B (zh) * 2010-10-20 2014-04-16 中国石油化工股份有限公司 一种无磷复合阻垢缓蚀剂及其在水处理中的应用
JP5788671B2 (ja) * 2010-12-17 2015-10-07 花王株式会社 自動洗浄機用粉末洗浄剤組成物
US9193610B2 (en) 2011-08-10 2015-11-24 Ecolab USA, Inc. Synergistic interaction of weak cation exchange resin and magnesium oxide
US9758927B2 (en) 2011-09-01 2017-09-12 Colgate-Palmolive Company Method for ease of ironing
WO2013032479A1 (en) * 2011-09-01 2013-03-07 Colgate-Palmolive Company Method for providing fast dry to fabric
WO2013032481A1 (en) 2011-09-01 2013-03-07 Colgate-Palmolive Company Method for increased fragrance release during ironing
WO2013032480A1 (en) 2011-09-01 2013-03-07 Colgate-Palmolive Company Method for ease of ironing
CN103030238B (zh) * 2011-09-29 2015-08-05 中国石油化工股份有限公司 一种去离子水做补水的循环水处理方法
CN102432112B (zh) * 2011-11-01 2014-06-11 中冶建筑研究总院有限公司 一种复合剂
CN104649427A (zh) * 2013-11-22 2015-05-27 冯克颖 一种采暖节能热介质
CN103949154B (zh) * 2014-05-08 2015-09-23 河南铭源环保科技有限公司 汽车尾气排放净化处理液
CN104692546B (zh) * 2015-03-04 2016-05-25 陕西理工学院 一种软化水质水处理剂及其制备方法和应用
CN106698686A (zh) * 2015-08-05 2017-05-24 中国石油化工股份有限公司 一种复合阻垢缓蚀剂及其在循环冷却水处理中的应用
CN113047038B (zh) * 2021-03-15 2022-11-22 上海金堂轻纺新材料科技有限公司 一种纺织前处理用复合茶皂素助剂及其制备方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5433885A (en) * 1991-07-17 1995-07-18 Church & Dwight Co., Inc. Stabilization of silicate solutions
CA2110066A1 (en) * 1992-03-30 1993-10-14 Marcello Ferrara Water compositions
WO1994025557A1 (en) * 1993-04-27 1994-11-10 The Procter & Gamble Company Liquid or granular automatic dishwashing detergent compositions
WO1996009366A1 (en) * 1994-09-23 1996-03-28 Church & Dwight Company, Inc. Aqueous metal cleaner
DE19616693A1 (de) * 1996-04-26 1997-11-06 Henkel Kgaa Enolester als Bleichaktivatoren für Wasch- und Reinigungsmittel
CA2297160C (en) * 1997-07-29 2004-07-13 The Procter & Gamble Company Aqueous, gel laundry detergent composition
US20030100468A1 (en) * 1997-12-19 2003-05-29 The Procter & Gamble Company Nonaqueous, particulate-containing liquid detergent compositions with alkyl benzene sulfonate surfactant
DE19819187A1 (de) * 1998-04-30 1999-11-11 Henkel Kgaa Festes maschinelles Geschirrspülmittel mit Phosphat und kristallinen schichtförmigen Silikaten
DE19857687A1 (de) * 1998-12-15 2000-06-21 Henkel Ecolab Gmbh & Co Ohg Pastenförmiges Waschmittel
US6723687B2 (en) * 2001-05-01 2004-04-20 The Procter & Gamble Company Automatic dishwashing compositions comprising diacyl peroxide bleach and blooming perfume
US20030154556A1 (en) * 2001-09-07 2003-08-21 Valerio Del Duca Bleaching composition comprising a dye maintenance agent

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005070839A1 *

Also Published As

Publication number Publication date
WO2005070839A1 (de) 2005-08-04
JP2007522922A (ja) 2007-08-16
US20070021315A1 (en) 2007-01-25
DE102004003286A1 (de) 2005-09-29

Similar Documents

Publication Publication Date Title
EP1708968A1 (de) System zur wasserenthärtung für waschmittel, bleichmittel und maschinen- und handgeschirrspülmittel durch fällenthärtung
EP0757094B1 (de) Wasch- und Reinigungsmittel mit Iminodisuccinaten
EP1280878B1 (de) Verwendung von nanoskaligen teilchen zur verbesserung der schmutzablösung
EP2262884B1 (de) Farbschützendes wasch- oder reinigungsmittel
WO2012095354A1 (de) Farbschützende waschmittel
DE102005039580A1 (de) Farbschützendes Waschmittel
WO2009071356A2 (de) Wasch- oder reinigungsmittel mit amidinverbindungen und/oder amidiniumbicarbonaten
DE19954959A1 (de) Umhüllte teilchenförmige Peroxoverbindungen
WO2008110469A1 (de) Farbschützendes waschmittel
EP0658189B1 (de) Wasch- und reinigungsmittel mit buildersubstanzen
US20060281665A1 (en) Soluble builder system
DE60102922T2 (de) Waschmittelzusammensetzungen
EP2252676B1 (de) Sprühgetrocknete wasch- oder reinigungsmittelprodukte
DE4311440A1 (de) Gerüststoff für Wasch- oder Reinigungsmittel
DE19936614B4 (de) Verfahren zur Herstellung eines Waschmittels
EP0682693B1 (de) Gerüststoff für wasch- oder reinigungsmittel
WO2000039261A1 (de) Niederdosierter, löslicher builder
EP0853655B1 (de) Acrolein-vinylacetat-copolymerisathaltige gerüststoffkombinationen, wasch- und reinigungsmittel, die diese enthalten, sowie deren herstellung
DE19858888A1 (de) Verhinderung von Ablagerungen
EP1050575B1 (de) Alkalische Wasch- und Reinigungsmittelzusammensetzung enthaltend Alkylbenzolsulfonate und Alkanolamine
DE10148354A1 (de) Rückstandsfreie Waschmittel und Verfahren zu ihrer Herstellung
DE19813652A1 (de) Tensidsystem zum Einsatz in pulverförmigen bis granularen oder flüssigen Wasch- und Reinigungsmitteln
DE19948671A1 (de) Waschmittel
DE3340164A1 (de) Waschmittel
WO2001012770A2 (de) Verhinderung von ablagerungen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080428

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: HENKEL AG & CO. KGAA

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150811