EP1702137B1 - Motor mit einer aktiven mono-energie- und/oder bi-energiekammer mit druckluft und/oder zusätzlicher energie und thermodynamischer zyklus davon - Google Patents

Motor mit einer aktiven mono-energie- und/oder bi-energiekammer mit druckluft und/oder zusätzlicher energie und thermodynamischer zyklus davon Download PDF

Info

Publication number
EP1702137B1
EP1702137B1 EP04805466A EP04805466A EP1702137B1 EP 1702137 B1 EP1702137 B1 EP 1702137B1 EP 04805466 A EP04805466 A EP 04805466A EP 04805466 A EP04805466 A EP 04805466A EP 1702137 B1 EP1702137 B1 EP 1702137B1
Authority
EP
European Patent Office
Prior art keywords
engine
active chamber
piston
work
energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04805466A
Other languages
English (en)
French (fr)
Other versions
EP1702137A1 (de
Inventor
Guy c/o MDI S.A. NEGRE
Cyril c/o MDI S.A. NEGRE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
MDI Motor Development International SA
Original Assignee
MDI Motor Development International SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by MDI Motor Development International SA filed Critical MDI Motor Development International SA
Priority to PL04805466T priority Critical patent/PL1702137T3/pl
Priority to SI200430546T priority patent/SI1702137T1/sl
Publication of EP1702137A1 publication Critical patent/EP1702137A1/de
Application granted granted Critical
Publication of EP1702137B1 publication Critical patent/EP1702137B1/de
Priority to CY20071101531T priority patent/CY1108097T1/el
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B19/00Positive-displacement machines or engines of flexible-wall type
    • F01B19/02Positive-displacement machines or engines of flexible-wall type with plate-like flexible members
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B17/00Reciprocating-piston machines or engines characterised by use of uniflow principle
    • F01B17/02Engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B9/00Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups
    • F01B9/02Reciprocating-piston machines or engines characterised by connections between pistons and main shafts and not specific to preceding groups with crankshaft
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B41/00Engines characterised by special means for improving conversion of heat or pressure energy into mechanical power
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/32Engines characterised by connections between pistons and main shafts and not specific to preceding main groups

Definitions

  • the invention relates to an engine operating in particular with compressed air or any other gas, and more particularly using a piston stroke control device having the effect of stopping the piston at its top dead center for a period of time and an ambient thermal energy recovery device that can operate in mono energy or bi energy.
  • thermal heater despite the use of a fossil fuel, has the advantage of being able to use clean continuous combustions that can be catalysed or cleaned up by any known means in order to obtain emissions. pollutant.
  • variable volume expansion chamber consisting of two separate capacitors, one of which is in communication with the compressed air supply and the other twinned with the cylinder and which can be placed in communication with one another or isolated in such a way that during the exhaust cycle it is possible to charge compressed air with the first of these capacities and then to establish the pressure in the second, at the end of the exhaust while the piston is stopped at its top dead center and before the recovery of its stroke, the two capacities remaining in communication and relaxing together to perform the engine time and at least one of the two capacities is provided with means for changing their volume to allow equal pressure to vary the torque resulting from the engine .
  • the engine according to the invention uses a device for stopping the engine piston at top dead center. It is preferably supplied with compressed air or any other compressed gas contained in a high-pressure storage tank, through a so-called working capacity buffer capacity.
  • the working capacity in bi energy version comprises an air heating device powered by additional energy (fossil or other energy) for increasing the temperature and / or the pressure of the air passing through it.
  • the engine expansion chamber according to the invention actively participates in the work.
  • the engine according to the invention is called active chamber engine.
  • the engine according to the invention is advantageously equipped with a variable flow regulator according to WO 03/089764 A1 dynamic expansion valve that allows to supply the working capacity to its operating pressure by compressed air from the storage tank by performing a relaxation without work of the isothermal type.
  • thermodynamic cycle according to the invention is characterized by an isothermal expansion without work allowed by the dynamic expansion valve followed by a transfer accompanied by a very slight relaxation almost isothermal - for example a capacity of 3,000 cubic centimeters in a capacity of 3050 centimeters cubic - with working by the use of the air pressure included in the working capacity during the filling of the expansion chamber, then a polytropic expansion of the expansion chamber in the engine cylinder with work and lowering of the temperature to end with the escape of the air relaxed to the atmosphere.
  • the compressed air contained in the working capacity is heated by additional energy in a thermal heater.
  • This arrangement makes it possible to increase the amount of usable and available energy by the fact that the compressed air before its introduction into the active chamber will increase its temperature and increase pressure and / or volume allowing the increase in performance and / or autonomy.
  • the use of a thermal heater has the advantage of being able to use clean continuous combustions that can be catalysed or cleaned up by any known means in order to obtain emissions of minute pollutants.
  • the thermal heater can use for energy a fossil fuel such as gasoline gas, or LPG gas CNG, it can use bio fuels or alcohols - ethanol, methanol - to achieve a bi-energy operation with external combustion where a burner will cause a rise in temperature.
  • a fossil fuel such as gasoline gas, or LPG gas CNG
  • bio fuels or alcohols - ethanol, methanol - to achieve a bi-energy operation with external combustion where a burner will cause a rise in temperature.
  • the heater advantageously uses thermochemical processes based on absorption and desorption processes, such as those used and described, for example in patents EP 0 307297 A1 and EP 0 382586 B1 these processes using the evaporation transformation of a fluid for example liquid ammonia gas reacting with salts such as calcium chloride, manganese or other, the system operating as a thermal battery.
  • the active chamber motor is equipped with a burner heat heater, or the like, and a thermochemical heater of the aforementioned type that can be used jointly or successively, during phase 1 of the heater thermochemical where the thermal burner heater will allow to regenerate (phase 2) the thermochemical heater when the latter is empty by heating its reactor during the continued operation of the group with the use of the burner heater.
  • the active chamber engine according to the invention is an external combustion engine engine said external combustion engine.
  • the combustions of said heater can be internal by bringing the flame directly into contact with the operating compressed air, the engine is then said to "external-internal combustion” or the combustions of said heater are external by heating the air operating through an exchanger and the engine is then said to "external-external combustion".
  • variable-volume expansion chamber known as the active chamber consists of a so-called sliding piston sliding in a cylinder and connected by a connecting rod to the crankshaft of the engine, a classic concept which determines a two-phase kinematics: downward stroke and ascending race.
  • the engine piston is controlled by a piston stop device at the top dead center which determines a three-phase kinematics: upstroke, stop at top dead center and down stroke.
  • the strokes of the load piston and of the engine piston are different, that of the load piston being longer and predetermined so that when in the downward stroke of the load piston, the volume chosen as the "actual expansion chamber volume" is reached, the downward stroke of the engine piston starts and during this downward stroke, the load piston continues and ends its own down stroke - still producing a job - then begins its upward stroke as the shorter and faster racing engine piston catches it in its upstroke so that both pistons reach their top dead spots substantially at the same time.
  • the load piston undergoes during the beginning of its upward stroke a negative work which, in fact, has been compensated by a surplus of positive work in the end of its downward stroke.
  • the engine according to the invention is controlled in torque and in speed, by controlling the pressure in the working capacity, said control being advantageously provided by the dynamic expander, when it operates in dual energy mode with additional energy (fossil or other) an electronic computer controls the amount of additional energy provided, depending on the pressure in said work capacity
  • the active chamber engine according to the invention is coupled to a compressor air supply for supplying compressed air to the high-pressure compressed air storage tank.
  • the bi-energy active chamber engine thus equipped normally operates in two modes by using, on a vehicle in town for example, zero pollution operation with compressed air contained in the high pressure storage tank, and on the road, always for the example, in operation additional energy with its thermal heater powered by fossil energy or other, while supplying air through an air compressor the high pressure storage tank.
  • the air compressor directly supplies the working capacity.
  • the control of the engine is carried out by the pressure control of the compressor and the dynamic expander between the high pressure storage tank and the working capacity remains closed.
  • the air compressor supplies either the high pressure reservoir or the working capacity or the two volumes in combination.
  • the active chamber engine is also feasible in mono energy with fossil fuel or other when coupled to an air compressor supplying the working capacity as described above, the high pressure compressed air storage tank being then purely and simply deleted.
  • the motor consists of several expansion stages, each stage comprising an active chamber according to the invention; between each stage is positioned a heat exchanger for heating the exhaust air of the preceding stage in the case of a mono-energy operation compressed air and / or an additional energy heating device in the case of operation in bi energy.
  • the displacements of the next stage being larger than those of the previous stage.
  • the expansion in the first cylinder having produced a lowering of temperature the air will be heated advantageously in an air-air heat exchanger with the ambient temperature.
  • a bi-energy engine in additional energy mode it is proceeded to the heating of the air by additional energy in a thermal heater, for example fossil.
  • the exhaust air is directed to a single multi-stage heater, thus making it possible to use only one combustion source.
  • the heat exchangers may be air-to-air exchangers or liquid air or any other device or gas producing the desired effect.
  • the active chamber engine according to the invention can be used on all land, maritime, railway, aeronautical vehicles.
  • the active chamber motor according to the invention can also and advantageously find its application in the emergency generator sets, as well as in many domestic cogeneration applications producing electricity, heating and air conditioning.
  • FIG. 1 represents an active chamber motor according to the invention, in which the engine cylinder in which the piston 1 (shown at its top dead center) slides in a cylinder 2, which is controlled by a lever pressure.
  • the piston 1 is connected by its axis to the free end 1A of a pressure lever consisting of an arm 3 articulated on a common axis 5 to another arm 4 fixed oscillating on a stationary axis 6.
  • a control rod 7 On the axis common to the two arms 3 and 4 is attached a control rod 7 connected to the crankpin 8 of a crankshaft 9 rotating on its axis 10.
  • the control rod 7 exerts a force on the common axis 5 of the two arms 3 and 4 of the pressure lever, thus allowing the displacement of the piston 1 along the axis of the cylinder 2, and transmits back to the crankshaft 9 the forces exerted on the piston 1 during the engine time thus causing its rotation.
  • the engine cylinder is in communication through a passage 12 in its upper part with the active chamber cylinder 13 in which slides a piston 14 said load piston connected by a connecting rod 15 to a crankpin 16 of the crankshaft 9.
  • An intake duct 17 controlled by a valve 18 opens into the passage 12 connecting the engine cylinder 2 and the active chamber cylinder 13 and supplies the engine with compressed air from the working chamber 19 maintained at the working pressure itself fed with compressed air through a conduit 20 controlled by a dynamic expander 21 by the high pressure storage tank 22.
  • a conduit 20 controlled by a dynamic expander 21 by the high pressure storage tank 22 In the upper part of the cylinder 2 is provided an exhaust duct 23 controlled by an exhaust valve 24.
  • a device controlled by the accelerator pedal controls the dynamic expander 21 to allow to regulate the pressure in the working chamber and thus drive the motor.
  • FIG. 2 shows schematically, seen in cross section, the active chamber motor according to the invention being admitted; the engine piston 1 is stopped at its top dead position and the intake valve 18 has just been opened, the pressure of the air contained in the working capacity 19 pushes the load piston 14 while filling the cylinder with the active chamber 13 and producing a job by causing by its connecting rod 15 the rotation of the crankshaft 9, the work being considerable because performed at almost constant pressure. By continuing its rotation, the crankshaft authorizes (FIG.
  • FIG. 5 shows the shape of the comparative curves of the piston strokes where the rotation of the crankshaft can be seen on the abscissa and the displacement of the pistons, the load and the engine, from their top dead center to their bottom dead point, and return where, according to the invention, the stroke of the load piston is greater than that of the engine piston.
  • the graph is divided into 4 main phases. During phase A, the engine piston is kept at its top dead center and the load piston performs most of its downward stroke producing a job and then in Phase B the engine piston performs its descending downward stroke producing a job. while the load piston finishes its downward stroke also producing a job. As the load piston reaches its bottom dead point, phase C, the engine piston continues its downward stroke and the load piston begins its upward stroke.
  • phase D the two pistons reach their top dead center almost simultaneously for start a new cycle.
  • phases A, B, C the engine produces a job.
  • FIG. 6 represents the graph of the thermodynamic cycle in mono-energy compressed air mode, in which the different phases of the cycle can be seen in the different capacities (on the abscissa) constituting the active-chamber motor according to the invention, the pressures being in the ordinate ; in the first capacity, which is the storage tank, we see a network of isothermal curves ranging from the storage pressure Pst to the initial working pressure PIT, the storage pressure decreasing as the tank is emptied while the PIT pressure will be controlled depending on the desired coupling between a minimum operating pressure and a maximum operating pressure here, for example, between 10 and 30 bar. In the working capacity during the charging of the active chamber, the pressure remains almost identical.
  • the compressed air contained in the working capacity is transferred to the active chamber producing a job accompanied by a very slight pressure decrease, for example, for a working capacity of 3000 cm3. and an active chamber of 35 cm3, the pressure drop is 1.16% and, still for the example, a real working pressure of 29.65 bar for an initial working pressure of 30 bar.
  • the engine piston starts its downward stroke with a polytropic expansion which produces a work with lowering of the pressure until the opening of the exhaust valve (for example around 2 bar) followed by the return to atmospheric pressure. during the escape time, to start a new cycle again.
  • FIG. 7 shows the engine and its assembly in a bi-energy version with additional energy or it can be seen in the working capacity 19 a schematic device for heating the compressed air with additional energy input here, a burner 25
  • the combustion shown in this figure is therefore an external-internal combustion and makes it possible to considerably increase the volume and / or the pressure of the compressed air coming from the storage tank.
  • FIG. 8 represents a graph of the thermodynamic cycle in dual energy compressed air and additional energy mode, in which the different phases of the cycle can be seen in the different capacities constituting the active-chamber motor according to the invention, in the ordinate the pressures in the first capacity which is the storage tank we see a network of isothermal curves ranging from the storage pressure Pst to the initial working pressure PIT, the storage pressure decreasing as the tank empties while the pressure PIT will be controlled according to the desired torque between a minimum operating pressure and a maximum operating pressure here for the example between 10 and 30 bar.
  • the reheating of the compressed air makes it possible to considerably increase the pressure from the initial pressure PIT to the final working pressure PFT: for example for a PIT of 30 bar a temperature increase of the order of 300 degrees makes it possible to obtain a PFT of the order of 60 bar.
  • the inlet valve opens, the compressed air contained in the working capacity is transferred into the active chamber, producing a job, accompanied by a very slight pressure decrease: for example for a working capacity of 3000 cm3 and an active chamber of 35 cm3 the pressure drop is 1.16% is and still for the example, a real working pressure of 59.30 bars for an initial working pressure of 60 bars; then the engine piston starts its downward stroke with a polytropic expansion that produces a work with lowering of the pressure until the opening of the exhaust valve (for example around 4 bars) followed by the return to atmospheric pressure during the exhaust time, to start a new cycle.
  • the active chamber motor also operates in dual-energy mode autonomously with the so-called additional fossil energy (or other) (FIG. 9) when, according to a variant of the invention, it drives a compressed air compressor. 27 which feeds the storage tank 22.
  • the general operation of the machine is the same as that described previously in FIGS. 1 to 4. However, this arrangement makes it possible to fill the storage tank during operation with additional energy but causes a relatively high energy loss due to the compressor.
  • the air compressor directly supplies the working capacity; in this case of operation, the dynamic expansion valve 21 is kept closed and the compressor supplies compressed air to the working capacity in which the latter is heated by the heating device and increases pressure and / or volume to supply the active chamber 13 as described in the previous cases.
  • the motor is controlled by the pressure regulation directly by the compressor and the energy loss due to the compressor is much less than in the previous case.
  • the compressor supplies the high-pressure storage tank 22 and the working capacity 19 simultaneously with the energy requirements 19.
  • a bidirectional valve 28 can supply either the reservoir storage 22 is the working capacity 19 or both simultaneously. The choice is then a function of the energy requirements of the engine with regard to the energy requirements of the compressor: if the demand on the engine is relatively low, the high pressure reservoir is then supplied; if the energy needs of the engine are high, only the working capacity is then fed.
  • FIG. 11 schematically represents an active chamber motor according to the invention comprising two stages of relaxation where the storage tank can be seen the high-pressure compressed air 22 the dynamic expansion valve 21 the working capacity 19 and the first stage comprising a driving cylinder 2 in which the piston 1 (shown at its top dead center), which is controlled by a pressure lever, slides.
  • the piston 1 is connected by its axis to the free end 1A of a pressure lever consisting of an arm 3 articulated on a common axis 5 to another arm 4 fixed oscillating on a stationary axis 6.
  • On the axis common to the two arms 3 and 4 is attached a control rod 7 connected to the crank pin 8 of a crankshaft 9 rotating on its axis 10.
  • the engine cylinder is in communication through a passage 12 in its upper part with the active chamber cylinder 13 in which slides a piston 14 said load piston connected by a connecting rod 15 to a crankpin 16 of the crankshaft 9.
  • An intake duct 17 controlled by a valve 18 opens into the passage 12 connecting the engine cylinder 2 and the active chamber cylinder 13 and supplies the engine with compressed air from the working chamber 19 maintained at the working pressure and itself fed compressed by a duct 20 controlled by a dynamic expansion valve 21.
  • the exhaust duct 23 is connected through an exchanger 29 to the inlet 17B of the second stage of the engine comprising a motor cylinder 2B in which slides the piston 1B which is controlled by a pressure lever.
  • the piston 1B is connected by its axis to the free end 1C of a pressure lever consisting of an arm 3B articulated on a common axis 5B to another arm 4B fixed oscillating on a stationary axis 6B.
  • a control rod 7B connected to the crank pin 8B of a crankshaft 9 rotating on its axis 10.
  • the control rod 7B exerts a force on the common axis 5B of the two arms 3B and 4B of the pressure lever, thereby allowing the piston 1B to move along the axis of the cylinder 2B, and in return to the crankshaft 9 transmit the forces exerted on the piston 1B during the engine time thereby causing its rotation.
  • the engine cylinder is in communication through a passage 12B in its upper part with the active chamber cylinder 13B in which slides a piston 14B said load piston connected by a connecting rod 15B to a crank pin 16B of the crankshaft 9.
  • a intake pipe 17B controlled by a valve 18B opens into the passage 12B connecting the engine cylinder 2B and the active chamber cylinder 13B and provides power to the engine with compressed air.
  • the second floor is shown next to the first floor. It goes without saying that preferentially it is used a single crankshaft and that the second floor is on the same longitudinal plane as the first floor.
  • the exhaust duct 23 of the first engine stage is connected to through an air-to-air exchanger 29 to the intake duct 17B of the second engine stage.
  • the first stage will be dimensioned so that at the end of engine relaxation, the exhaust air has a residual pressure to allow, after its heating in the air-air exchanger, where it will increase pressure and / or volume, to have sufficient energy to properly ensure the operation of the next stage.
  • FIG. 12 shows a monoenergy active chamber engine operating with a fossil fuel, the engine is coupled to a compressor 27 which supplies compressed air to the working capacity 19 which here comprises a burner 25 supplied with energy by a gas cylinder 26.
  • the general operation of the machine is the same as that described above.
  • the active chamber motor is described with operation with compressed air. However, it can use any compressed gas without changing the described invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Medicines Containing Plant Substances (AREA)
  • Soil Working Implements (AREA)
  • Supercharger (AREA)
  • Wind Motors (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)

Claims (20)

  1. Motor mit aktiver Kammer mit zumindest einem in einem Zylinder (2) gleitenden Motorkolben (1), gesteuert durch eine Vorrichtung für das Halten des Motorkolbens auf seinem oberen Totpunkt und mit Druckluft oder jeglichem anderen, in einem Sammeltank (22) enthaltenen Hochdruckgas beaufschlagt, das vorzugsweise durch eine dynamische Druckminderungsvorrichtung in einer Arbeitskapazität (19) auf einen mittleren Druck, den sogenannten Arbeitsdruck, entspannt wird, dadurch gekennzeichnet:
    - dass die Expansionskammer aus einem mit Mitteln zum Erzeugen einer Arbeit ausgestatteten variablen Volumen besteht und dadurch, dass sie durch einen Durchlass (12) mit dem Raum oberhalb des Motorkolbens (1) gekoppelt und permanent verbunden ist,
    - dass die Druckluft oder das Druckgas während des Halts des Motorkolbens (1) auf seinem oberen Totpunkt in die Expansionskammer einströmt, wenn diese ihr niedrigstes Volumen aufweist, und dadurch, dass letztere unter der Schubwirkung dieser Druckluft ihr Volumen arbeitsleistend vergrößert,
    - dass, da die Expansionskammer im Wesentlichen auf ihrem maximalen Volumen gehalten wird, sich die in ihr enthaltene Druckluft anschließend in den Motorzylinder (2) entspannt und auf diese Weise den auf seinem Abwärtsweg seinerseits eine Arbeit leistenden Motorkolben (1) zurückschiebt,
    - dass während der Aufwärtsbewegung des Motorkolbens (1) beim Ausstoßtakt das variable Volumen der Expansionskammer auf sein niedrigstes Volumen zurückgeführt wird, um erneut einen vollständigen Arbeitszyklus zu beginnen.
  2. Motor mit aktiver Kammer nach Anspruch 1, dadurch gekennzeichnet, dass der Arbeitszyklus der aktiven Kammer bezogen auf den Zyklus des Motorkolbens drei Phasen wie folgt aufweist:
    - während des Halts des Motorkolbens auf seinem oberen Totpunkt: Einströmen einer Ladung in die aktive Kammer unter Arbeitsleistung durch Vergrößerung ihres Volumens,
    - während des Expansionstakts des Motorkolbens: Beibehalten eines vorgegebenen Volumens, welches das effektive Volumen der Expansionskammer ist,
    - während des Ausstoßtakts des Motorkolbens: Rückstellen der aktiven Kammer auf ihr kleinstes Volumen, um den Zyklus erneut zu ermöglichen.
  3. Motor mit aktiver Kammer nach den Ansprüchen 1 und 2 dessen thermodynamischer Betriebszyklus im Mono-Energie-Betriebsmodus mit Druckluft gekennzeichnet ist durch eine isotherme Druckentspannung ohne Arbeit mit Energieerhaltung, die zwischen dem Hochdruckluft-Sammeltank und der Arbeitskapazität erfolgt, gefolgt von einer Übertragung, die von einer sehr geringen, sogenannten quasi-isothermen Druckentspannung mit Arbeit im Druckzylinder begleitet ist, dann von einer polytropischen Druckentspannung mit Arbeit im Motorzylinder und schließlich einem Ausstoß bei atmosphärischem Umgebungsdruck, somit gekennzeichnet durch vier Phasen, wie folgt:
    - eine isotherme Druckentspannung ohne Arbeit,
    - eine sogenannte quasi-isotherme Übertragung - geringe Druckentspannung mit Arbeit,
    - eine polytropische Druckentspannung mit Arbeit
    - ein Ausstoß bei Umgebungsdruck.
  4. Motor mit aktiver Kammer nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, dass die Arbeitskapazität (19) eine Vorrichtung (25, 26) zur Erwärmung der Druckluft mittels einer zusätzlichen fossilen oder sonstigen Energie umfasst, wobei die Vorrichtung es ermöglicht, die Temperatur und/oder den Druck der sie durchströmenden Luft zu erhöhen.
  5. Motor mit aktiver Kammer nach Anspruch 4, dadurch gekennzeichnet, dass die Erwärmung der Druckluft durch die Verbrennung eines fossilen oder Biobrennstoffs unmittelbar in der Druckluft bewirkt wird, wobei der Motor dann als Motor mit externer interner Verbrennung bezeichnet wird.
  6. Motor mit aktiver Kammer nach Anspruch 4, dadurch gekennzeichnet, dass die Erwärmung der in der Arbeitskapazität enthaltenen Luft durch die Verbrennung eines fossilen oder Biobrennstoffs über einen Wärmetauscher bewirkt wird, wobei die Flamme keinen Kontakt mit der Druckluft hat und der Motor dann als Motor mit externer externer Verbrennung bezeichnet wird.
  7. Motor mit aktiver Kammer nach einem der Ansprüche 4 bis 6, dadurch gekennzeichnet, dass der thermische Erwärmer ein thermochemisches Verfahren der Gas-Feststoff-Reaktion verwendet, das auf der Transformation durch Verdampfung eines in einem Verdampfer enthaltenen Reaktant-Fluids, beispielsweise flüssigen Ammoniaks, in ein Gas beruht, das mit einem in einem Rektor enthaltenen reaktiven Feststoff reagiert, beispielsweise Salzen wie Calciumchloriden, Magnesiumchloriden, Bariumchloriden oder anderen, deren chemische Reaktion Wärme produziert und der nach beendeter Reaktion regenerierbar ist, indem dem Reaktor Wärme zugeführt wird, um die Desorption des gasförmigen Ammoniaks auszulösen, der in dem Verdampfer rekondensiert.
  8. Motor mit aktiver Kammer nach einem der Ansprüche 4 bis 7, dessen thermodynamischer Betriebszyklus im Bi-Energie-Betrieb im Betriebsmodus mit zusätzlicher Energie gekennzeichnet ist durch eine isotherme Druckentspannung ohne Arbeit mit Energieerhaltung, die durch ein Erhöhen der Temperatur durch das Erwärmen der Luft mittels einer fossilen Energie in der Arbeitskapazität erfolgt, gefolgt von einer sehr geringen sogenannten quasi-isothermen Druckentspannung mit Arbeit, einer polytropischen Druckentspannung mit Arbeit im Motorzylinder und schließlich einem Ausstoß bei atmosphärischem Umgebungsdruck, 5 aufeinanderfolgende Phasen wie folgt darstellend:
    - eine isotherme Druckentspannung,
    - eine Erhöhung der Temperatur,
    - eine sogenannte quasi-isotherme Übertragung - geringe Druckentspannung mit Arbeit,
    - eine polytropische Druckentspannung mit Arbeit,
    - ein Ausstoß bei Umgebungsdruck.
  9. Motor mit aktiver Kammer nach einem der obenstehenden Ansprüche, dadurch gekennzeichnet, dass das Drehmoment und die Drehzahl des Motors durch die Kontrolle des Drucks in der Arbeitskapazität (19) gesteuert werden.
  10. Motor mit aktiver Kammer nach einem der obenstehenden Ansprüche, dadurch gekennzeichnet, dass im Bi-Energie-Betriebsmodus mit zusätzlicher Energie ein elektronischer Rechner den vom Druck der Druckluft, also von der in die Arbeitskapazität eingeführten Luftmasse abhängigen Energieeintrag kontrolliert.
  11. Motor mit aktiver Kammer nach einem der obenstehenden Ansprüche, dadurch gekennzeichnet, dass das Volumen der aktiven Kammer durch einen in einem Zylinder (13) gleitenden Kolben (14), den sogenannten Druckkolben gebildet ist, der durch eine Stange (15) mit der Kurbelwelle (9) des Motors gemäß einer herkömmlichen Kinematik verbunden ist.
  12. Motor mit aktiver Kammer nach Anspruch 11, dadurch gekennzeichnet, dass der Weg des Druckkolbens (14) so bestimmt ist, dass, wenn das als Kammervolumen gewählte Volumen erreicht wurde und während der Abwärtsbewegung des Motorkolbens (1) der Druckkolben (14) seine Abwärtsbewegung beendet und seine Aufwärtsbewegung beginnt, so dass er auf diese Weise seinen oberen Totpunkt annähernd zu dem Zeitpunkt erreicht, zu dem der Motorkolben seinen eigenen oberen Totpunkt erreicht.
  13. Motor mit aktiver Kammer nach einem der obenstehenden Ansprüche, dadurch gekennzeichnet, dass, um das autonome Betreiben bei seiner Verwendung mit zusätzlicher Energie und/ oder wenn der Druckluft-Sammeltank (22) leer ist, zu ermöglichen, der erfindungsgemäße Motor mit aktiver Kammer mit einem Luftverdichter (27) gekoppelt ist, der es ermöglicht, den Hochdruckluft-Sammeltank (22) mit Druckluft zu versorgen.
  14. Motor mit aktiver Kammer nach dem obenstehenden Anspruch 13, dadurch gekennzeichnet, dass der Luftverdichter (27) die Arbeitskapazität (19) direkt versorgt. In diesem Fall erfolgt die Steuerung des Motors über die Steuerung des Drucks des Verdichters (27) und die dynamische Druckminderungsvorrichtung (21) zwischen dem Hochdruck-Sammeltank und der Arbeitskapazität bleibt verschlossen.
  15. Motor mit aktiver Kammer nach den Ansprüchen 13 und 14, dadurch gekennzeichnet, dass der gekoppelte Luftverdichter (27) gleichzeitig oder nacheinander in Kombination den Sammeltank (22) und die Arbeitskapazität (19) versorgt.
  16. Motor mit aktiver Kammer nach einem der obenstehenden Ansprüche, gekennzeichnet durch einen Mono-Energie-Betrieb mit einem fossilen Brennstoff (oder dergleichen), wobei die Arbeitskapazität (19) ausschließlich von dem gekoppelten Verdichter (27) versorgt wird und der Hochdruckluft-Sammeltank dann ganz einfach entfernt wird.
  17. Motor mit aktiver Kammer nach Anspruch 6 und einem der Ansprüche 13 bis 16, dadurch gekennzeichnet, dass das Abgas nach Druckentspannung zu dem Einlass des gekoppelten Verdichters rückgeführt wird.
  18. Motor mit aktiver Kammer nach einem der obenstehenden Ansprüche, im Mono-Energie-Betrieb mit Druckluft betrieben, dadurch gekennzeichnet, dass der Motor aus mehreren Druckentspannungs-Stufen mit zunehmendem Hubraum besteht, wobei jede Stufe eine erfindungsgemäße aktive Kammer umfasst und dadurch, dass zwischen den einzelnen Stufen jeweils ein Wärmetauscher (29) angeordnet ist, der es ermöglicht, die von der vorhergehenden Stufe ausgestoßene Luft zu erwärmen.
  19. Motor mit aktiver Kammer nach Anspruch 18 im Bi-Energie-Betrieb betrieben, dadurch gekennzeichnet, dass der jeweils zwischen den einzelnen Stufen angeordnete Austauscher eine mit zusätzlicher Energie betriebene Erwärmungsvorrichtung aufweist.
  20. Motor mit aktiver Kammer nach den Ansprüchen 18 und 19, dadurch gekennzeichnet, dass die Wärmetauscher und die Erwärmungsvorrichtung gemeinsam oder unabhängig voneinander in einer mehrstufigen Vorrichtung zusammengefasst sind und dieselbe Energiequelle verwenden.
EP04805466A 2003-11-17 2004-11-17 Motor mit einer aktiven mono-energie- und/oder bi-energiekammer mit druckluft und/oder zusätzlicher energie und thermodynamischer zyklus davon Active EP1702137B1 (de)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PL04805466T PL1702137T3 (pl) 2003-11-17 2004-11-17 Silnik z komorą aktywną monoenergetyczny lub bioenergetyczny zasilany sprężonym powietrzem i/lub energią dodatkową oraz jego cykl termodynamiczny
SI200430546T SI1702137T1 (sl) 2003-11-17 2004-11-17 Motor z aktivno mono-energijsko in/ali bi-energijsko komoro s stisnjenim zrakom in/ali dodatno energijo in njegovim termodinamicnim ciklom
CY20071101531T CY1108097T1 (el) 2003-11-17 2007-12-03 Κινητηρας ενεργου θαλαμου μονης ή/και διπλης ενεργειας με συμπιεσμενο αερα ή/και προσθετη ενεργεια και θερμοδυναμικο κυκλο

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0313401A FR2862349B1 (fr) 2003-11-17 2003-11-17 Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle et son cycle thermodynamique
PCT/FR2004/002929 WO2005049968A1 (fr) 2003-11-17 2004-11-17 Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle et son cycle thermodynamique

Publications (2)

Publication Number Publication Date
EP1702137A1 EP1702137A1 (de) 2006-09-20
EP1702137B1 true EP1702137B1 (de) 2007-09-19

Family

ID=34508500

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805466A Active EP1702137B1 (de) 2003-11-17 2004-11-17 Motor mit einer aktiven mono-energie- und/oder bi-energiekammer mit druckluft und/oder zusätzlicher energie und thermodynamischer zyklus davon

Country Status (30)

Country Link
US (1) US7469527B2 (de)
EP (1) EP1702137B1 (de)
JP (2) JP2007511697A (de)
KR (1) KR101156726B1 (de)
CN (1) CN100439655C (de)
AP (1) AP2006003652A0 (de)
AT (1) ATE373769T1 (de)
AU (1) AU2004291704B2 (de)
BR (1) BRPI0416222A (de)
CY (1) CY1108097T1 (de)
DE (1) DE602004009104T2 (de)
DK (1) DK1702137T3 (de)
EA (1) EA008067B1 (de)
EC (1) ECSP066652A (de)
ES (1) ES2294572T3 (de)
FR (1) FR2862349B1 (de)
GE (1) GEP20084479B (de)
HK (1) HK1103779A1 (de)
HR (1) HRP20060223B1 (de)
IL (1) IL175697A (de)
MA (1) MA28332A1 (de)
MX (1) MXPA06005551A (de)
NO (1) NO339215B1 (de)
NZ (1) NZ547975A (de)
PL (1) PL1702137T3 (de)
PT (1) PT1702137E (de)
SI (1) SI1702137T1 (de)
TN (1) TNSN06143A1 (de)
WO (1) WO2005049968A1 (de)
ZA (1) ZA200604895B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106089424A (zh) * 2016-08-18 2016-11-09 江苏三能动力总成有限公司 一种可变排量的发动机

Families Citing this family (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887591B1 (fr) * 2005-06-24 2007-09-21 Mdi Motor Dev Internat Sa Groupe moto-compresseur basses temperatures a combustion "froide" continue a pression constante et a chambre active
CN100364800C (zh) * 2006-04-21 2008-01-30 江苏大学 太阳能-压缩空气或液氮动力汽车
FR2902285A1 (fr) * 2006-06-19 2007-12-21 Guy Negre Procede et dispositif de desinfection des sols par generation d'air comprime chaud humidifie
FR2904054B1 (fr) * 2006-07-21 2013-04-19 Guy Joseph Jules Negre Moteur cryogenique a energie thermique ambiante et pression constante et ses cycles thermodynamiques
FR2905404B1 (fr) * 2006-09-05 2012-11-23 Mdi Motor Dev Internat Sa Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle.
US9435202B2 (en) 2007-09-07 2016-09-06 St. Mary Technology Llc Compressed fluid motor, and compressed fluid powered vehicle
WO2009033191A2 (en) * 2007-09-07 2009-03-12 Rafalski Leroy J Jr Compressed fluid motor
US8448433B2 (en) 2008-04-09 2013-05-28 Sustainx, Inc. Systems and methods for energy storage and recovery using gas expansion and compression
US8240140B2 (en) 2008-04-09 2012-08-14 Sustainx, Inc. High-efficiency energy-conversion based on fluid expansion and compression
US8225606B2 (en) 2008-04-09 2012-07-24 Sustainx, Inc. Systems and methods for energy storage and recovery using rapid isothermal gas expansion and compression
US8250863B2 (en) 2008-04-09 2012-08-28 Sustainx, Inc. Heat exchange with compressed gas in energy-storage systems
US8677744B2 (en) 2008-04-09 2014-03-25 SustaioX, Inc. Fluid circulation in energy storage and recovery systems
US8479505B2 (en) 2008-04-09 2013-07-09 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8037678B2 (en) 2009-09-11 2011-10-18 Sustainx, Inc. Energy storage and generation systems and methods using coupled cylinder assemblies
US8359856B2 (en) 2008-04-09 2013-01-29 Sustainx Inc. Systems and methods for efficient pumping of high-pressure fluids for energy storage and recovery
US7958731B2 (en) 2009-01-20 2011-06-14 Sustainx, Inc. Systems and methods for combined thermal and compressed gas energy conversion systems
US8474255B2 (en) 2008-04-09 2013-07-02 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US20100307156A1 (en) 2009-06-04 2010-12-09 Bollinger Benjamin R Systems and Methods for Improving Drivetrain Efficiency for Compressed Gas Energy Storage and Recovery Systems
WO2009126784A2 (en) 2008-04-09 2009-10-15 Sustainx, Inc. Systems and methods for energy storage and recovery using compressed gas
US8225900B2 (en) * 2008-04-26 2012-07-24 Domes Timothy J Pneumatic mechanical power source
USRE47647E1 (en) 2008-04-26 2019-10-15 Timothy Domes Pneumatic mechanical power source
US8561747B2 (en) 2008-04-26 2013-10-22 Timothy Domes Pneumatic mechanical power source
WO2009152141A2 (en) 2008-06-09 2009-12-17 Sustainx, Inc. System and method for rapid isothermal gas expansion and compression for energy storage
WO2010105155A2 (en) 2009-03-12 2010-09-16 Sustainx, Inc. Systems and methods for improving drivetrain efficiency for compressed gas energy storage
US8104274B2 (en) 2009-06-04 2012-01-31 Sustainx, Inc. Increased power in compressed-gas energy storage and recovery
US8196395B2 (en) 2009-06-29 2012-06-12 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8247915B2 (en) 2010-03-24 2012-08-21 Lightsail Energy, Inc. Energy storage system utilizing compressed gas
US8436489B2 (en) * 2009-06-29 2013-05-07 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
US8146354B2 (en) 2009-06-29 2012-04-03 Lightsail Energy, Inc. Compressed air energy storage system utilizing two-phase flow to facilitate heat exchange
DE102009033249B3 (de) * 2009-07-14 2011-01-20 Konrad Heimanns Kurbeltrieb
WO2011056855A1 (en) 2009-11-03 2011-05-12 Sustainx, Inc. Systems and methods for compressed-gas energy storage using coupled cylinder assemblies
MX2011011837A (es) * 2010-03-15 2011-11-29 Scuderi Group Llc Motor hibrido de aire de ciclo dividido con modo de encendido y carga.
US8171728B2 (en) 2010-04-08 2012-05-08 Sustainx, Inc. High-efficiency liquid heat exchange in compressed-gas energy storage systems
US8191362B2 (en) 2010-04-08 2012-06-05 Sustainx, Inc. Systems and methods for reducing dead volume in compressed-gas energy storage systems
US8234863B2 (en) 2010-05-14 2012-08-07 Sustainx, Inc. Forming liquid sprays in compressed-gas energy storage systems for effective heat exchange
US8495872B2 (en) 2010-08-20 2013-07-30 Sustainx, Inc. Energy storage and recovery utilizing low-pressure thermal conditioning for heat exchange with high-pressure gas
FR2965581B1 (fr) * 2010-10-04 2014-05-16 Motor Development Int Sa Moteur a chambre active incluse mono et/ou bi energie a air comprime et/ou a energie additionnelle
FR2965582B1 (fr) 2010-10-05 2016-01-01 Motor Development Int Sa Moteur autodetendeur plurimodal a air comprime a chambre active incluse
US8591449B2 (en) 2010-10-18 2013-11-26 Dennis Sheanne Hudson Vessel for storing fluid at a constant pressure across a range of internal deformations
CN102031994A (zh) * 2010-10-27 2011-04-27 王超 液态气体气化膨胀动力装置
US8578708B2 (en) 2010-11-30 2013-11-12 Sustainx, Inc. Fluid-flow control in energy storage and recovery systems
CN102094679B (zh) * 2010-12-02 2017-03-15 无锡中阳新能源科技有限公司 一种环射式多级串联压缩空气发动机及其工质流程
KR20140031319A (ko) 2011-05-17 2014-03-12 서스테인쓰, 인크. 압축 공기 에너지 저장 시스템 내의 효율적인 2상 열전달을 위한 시스템 및 방법
CN102226425A (zh) * 2011-05-23 2011-10-26 浙江大学 气动内燃混合动力发动机
US20130091835A1 (en) 2011-10-14 2013-04-18 Sustainx, Inc. Dead-volume management in compressed-gas energy storage and recovery systems
CN103061817B (zh) * 2011-10-18 2014-12-03 周登荣 二冲程空气动力发动机总成
CN103061818B (zh) 2011-10-18 2014-09-03 周登荣 具有补充压缩空气回路的压缩空气发动机总成
CN103089936B (zh) * 2011-10-28 2014-03-26 周登荣 用于空气动力发动机的多柱体动力分配器
CN103306728A (zh) * 2012-03-13 2013-09-18 周登荣 V型多缸空气动力发动机
CN103452590B (zh) * 2012-06-05 2016-02-17 周登荣 一种空气动力发动机操作控制方法
CN103485829B (zh) * 2012-06-15 2015-08-12 周登荣 一种空气动力发动机的安全监测控制方法
CN103510987B (zh) * 2012-06-20 2016-03-30 周登荣 一种多缸空气动力发动机总成的停缸控制方法
WO2014161065A1 (en) * 2013-04-03 2014-10-09 Sigma Energy Storage Inc. Compressed air energy storage and recovery
CN104121158B (zh) * 2013-04-25 2017-11-10 牛顺喜 气体内循环发动机及太阳能发电系统
CN103742261A (zh) * 2014-01-23 2014-04-23 马平川 增容循环发动机
FR3021347B1 (fr) 2014-05-22 2016-05-20 Motor Dev Int S A Moteur a air comprime a chambre active incluse et a distribution active a l'admission
CN110469399B (zh) * 2019-08-01 2021-03-02 燕山大学 一种液态空气和燃油双能源混合动力式发动机
CN111691925B (zh) * 2020-06-24 2021-11-09 张谭伟 一种空气发动机
CN112267954A (zh) * 2020-10-20 2021-01-26 朱国钧 无油空气动力发电发动机
WO2022100810A1 (fr) 2020-11-11 2022-05-19 Motor Development International S.A. Moteur à air comprimé à chambre active incluse et à distribution active à soupape équilibrée
FR3135486A1 (fr) 2022-05-10 2023-11-17 Motor Development International Sa Moteur à air comprimé à chambre active incluse et à distribution active à soupape d’échappement équilibrée permettant une désactivation de cylindre
CN114909197B (zh) * 2022-06-23 2023-06-27 西安热工研究院有限公司 一种重力压缩空气储能装置及运行方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3961607A (en) * 1972-05-12 1976-06-08 John Henry Brems Internal combustion engine
JPS5240243Y2 (de) * 1973-06-07 1977-09-12
JPS51105508A (ja) * 1975-03-14 1976-09-18 Shigeto Fukuzawa Kapuruenjin
US4149370A (en) * 1977-02-28 1979-04-17 Eduardo Ayala Vargas Self starting internal combustion engine with means for changing the expansion ratio
US4444024A (en) * 1981-08-04 1984-04-24 Mcfee Richard Dual open cycle heat pump and engine
US4696158A (en) * 1982-09-29 1987-09-29 Defrancisco Roberto F Internal combustion engine of positive displacement expansion chambers with multiple separate combustion chambers of variable volume, separate compressor of variable capacity and pneumatic accumulator
JPH08158887A (ja) * 1992-09-24 1996-06-18 Saburo Shirayanagi エンジン
DE19515325A1 (de) * 1995-04-18 1996-10-24 Juergen Peter Hill Ventilgesteuerter Zweitaktdieselmotor mit Knickpleuel
FR2749882B1 (fr) * 1996-06-17 1998-11-20 Guy Negre Procede de moteur depolluant et installation sur autobus urbain et autres vehicules
FR2753487B1 (fr) * 1996-09-19 1998-11-20 Guy Negre Installation de compresseurs d'alimentation en air comprime haute pression pour moteur depollue ou depolluant
FR2754309B1 (fr) * 1996-10-07 1998-11-20 Guy Negre Procede et dispositif de reacceleration pour vehicule equipe de compresseurs d'alimentation en air comprime haute pression pour moteur depollue ou depolluant
FR2758589B1 (fr) * 1997-01-22 1999-06-18 Guy Negre Procede et dispositif de recuperation de l'energie thermique ambiante pour vehicule equipe de moteur depollue a injection d'air comprime additionnel
FR2769949B1 (fr) * 1997-10-17 1999-12-24 Guy Negre Procede de controle du mouvement de piston de machine, dispositif de mise en oeuvre et equilibrage du dispositif
FR2773849B1 (fr) * 1998-01-22 2000-02-25 Guy Negre Procede et dispositif de rechauffage thermique additionnel pour vehicule equipe de moteur depollue a injection d'air comprime additionnel
FR2779480B1 (fr) * 1998-06-03 2000-11-17 Guy Negre Procede de fonctionnement et dispositif de moteur a injection d'air comprime additionnel fonctionnant en mono energie, ou en bi energie bi ou tri modes d'alimentation
US6568186B2 (en) * 2001-06-21 2003-05-27 Nano Precision, Inc. Hybrid expansible chamber engine with internal combustion and pneumatic modes
FR2831598A1 (fr) * 2001-10-25 2003-05-02 Mdi Motor Dev Internat Groupe motocompresseur-motoalternateur a injection d'air comprime additionnel fonctionnant en mono et pluri energies

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106089424A (zh) * 2016-08-18 2016-11-09 江苏三能动力总成有限公司 一种可变排量的发动机

Also Published As

Publication number Publication date
DE602004009104D1 (de) 2007-10-31
KR101156726B1 (ko) 2012-06-14
EA200600967A1 (ru) 2006-10-27
SI1702137T1 (sl) 2008-02-29
KR20060124650A (ko) 2006-12-05
AU2004291704B2 (en) 2011-05-26
US7469527B2 (en) 2008-12-30
JP2007511697A (ja) 2007-05-10
NO339215B1 (no) 2016-11-14
ECSP066652A (de) 2007-02-28
HRP20060223A2 (en) 2007-05-31
DK1702137T3 (da) 2008-01-28
ZA200604895B (en) 2008-08-27
CY1108097T1 (el) 2014-02-12
TNSN06143A1 (fr) 2007-11-15
BRPI0416222A (pt) 2007-01-02
AU2004291704A1 (en) 2005-06-02
GEP20084479B (en) 2008-09-10
NZ547975A (en) 2010-09-30
MXPA06005551A (es) 2007-01-26
JP2011094629A (ja) 2011-05-12
PT1702137E (pt) 2007-11-21
HK1103779A1 (en) 2007-12-28
AP2006003652A0 (en) 2006-06-30
CN100439655C (zh) 2008-12-03
ES2294572T3 (es) 2008-04-01
DE602004009104T2 (de) 2008-06-12
US20070101712A1 (en) 2007-05-10
EA008067B1 (ru) 2007-02-27
PL1702137T3 (pl) 2008-02-29
IL175697A (en) 2010-11-30
ATE373769T1 (de) 2007-10-15
MA28332A1 (fr) 2006-12-01
FR2862349A1 (fr) 2005-05-20
IL175697A0 (en) 2008-02-09
WO2005049968A1 (fr) 2005-06-02
NO20062827L (no) 2006-08-17
HRP20060223B1 (en) 2012-05-31
EP1702137A1 (de) 2006-09-20
FR2862349B1 (fr) 2006-02-17
JP5001421B2 (ja) 2012-08-15
CN1926307A (zh) 2007-03-07

Similar Documents

Publication Publication Date Title
EP1702137B1 (de) Motor mit einer aktiven mono-energie- und/oder bi-energiekammer mit druckluft und/oder zusätzlicher energie und thermodynamischer zyklus davon
FR2905404A1 (fr) Moteur a chambre active mono et/ou bi energie a air comprime et/ou energie additionnelle.
EP1899578B1 (de) Niedrigtemperaturmotorkompressoreinheit mit kontinuierlicher kaltverbrennung bei konstantem druck und mit aktiver kammer
FR2831598A1 (fr) Groupe motocompresseur-motoalternateur a injection d'air comprime additionnel fonctionnant en mono et pluri energies
CA2810930C (fr) Moteur mono et/ou bi-energie a air comprime et/ou a energie additionnelle a chambre active incluse dans le cylindre
US7975485B2 (en) High efficiency integrated heat engine (HEIHE)
FR2904054A1 (fr) Moteur cryogenique a energie thermique ambiante et pression constante et ses cycles thermodynamiques
FR2965582A1 (fr) Moteur autodetendeur plurimodal a air comprime a chambre active incluse
WO2016038384A1 (en) An internal combustion engine with a 4-stroke expansion cycle
EP2554819A1 (de) Pneumatisch-thermischer Hybridmotor
FR2945578A1 (fr) Procede et systeme de moteur hybride a synergie thermodynamique a charge thermique et pneumatique a cycles divises par plusieurs modes de fonctionnement
FR3066227B1 (fr) Moteur a combustion interne avec compression isotherme haute pression d’un flux d’air admis
WO2014154715A1 (fr) Systeme mecanique de production et de stockage d'azote liquide et de production d'energie mecanique a partir dudit azote liquide
FR3025251A1 (fr) Moteur mixte thermique/air comprime
OA16375A (en) Ship whose deck has a cavity incorporating a turntable.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060616

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK YU

RAX Requested extension states of the european patent have changed

Extension state: LV

Payment date: 20060614

Extension state: YU

Payment date: 20060614

Extension state: AL

Payment date: 20060614

Extension state: LT

Payment date: 20060614

Extension state: MK

Payment date: 20060614

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK YU

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REF Corresponds to:

Ref document number: 602004009104

Country of ref document: DE

Date of ref document: 20071031

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20071025

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20071109

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20070403522

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: EE

Ref legal event code: FG4A

Ref document number: E001705

Country of ref document: EE

Effective date: 20071219

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2294572

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E002690

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20080620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20140506

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: EE

Payment date: 20140506

Year of fee payment: 10

Ref country code: IE

Payment date: 20140509

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BG

Payment date: 20140510

Year of fee payment: 10

Ref country code: IS

Payment date: 20140507

Year of fee payment: 10

Ref country code: SK

Payment date: 20140505

Year of fee payment: 10

Ref country code: AT

Payment date: 20140506

Year of fee payment: 10

Ref country code: CZ

Payment date: 20140506

Year of fee payment: 10

Ref country code: SI

Payment date: 20140506

Year of fee payment: 10

Ref country code: FI

Payment date: 20140505

Year of fee payment: 10

Ref country code: RO

Payment date: 20140506

Year of fee payment: 10

Ref country code: SE

Payment date: 20140505

Year of fee payment: 10

Ref country code: TR

Payment date: 20140506

Year of fee payment: 10

Ref country code: PT

Payment date: 20140507

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20140506

Year of fee payment: 10

Ref country code: HU

Payment date: 20140430

Year of fee payment: 10

Ref country code: DK

Payment date: 20140505

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CY

Payment date: 20140507

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 20150518

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

Effective date: 20141130

REG Reference to a national code

Ref country code: LT

Ref legal event code: MM9D

Effective date: 20141117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 373769

Country of ref document: AT

Kind code of ref document: T

Effective date: 20141117

Ref country code: EE

Ref legal event code: MM4A

Ref document number: E001705

Country of ref document: EE

Effective date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141118

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150518

Ref country code: RO

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: BG

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150630

Ref country code: EE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141118

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 2780

Country of ref document: SK

Effective date: 20141117

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141118

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20150531

PGRI Patent reinstated in contracting state [announced from national office to epo]

Ref country code: BE

Effective date: 20150528

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20150720

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141117

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20180426

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20180503

Year of fee payment: 14

Ref country code: DE

Payment date: 20180427

Year of fee payment: 14

Ref country code: CH

Payment date: 20180427

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180507

Year of fee payment: 14

Ref country code: GR

Payment date: 20180427

Year of fee payment: 14

Ref country code: FR

Payment date: 20180425

Year of fee payment: 14

Ref country code: BE

Payment date: 20180427

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180427

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004009104

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20181201

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20181117

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190605

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190601

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181117

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20200103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20181118