EP1701307B1 - Röntgen-CT-Gerät und Datendetektionsverfahren des Röntgen-CT-Geräts - Google Patents

Röntgen-CT-Gerät und Datendetektionsverfahren des Röntgen-CT-Geräts Download PDF

Info

Publication number
EP1701307B1
EP1701307B1 EP06004332A EP06004332A EP1701307B1 EP 1701307 B1 EP1701307 B1 EP 1701307B1 EP 06004332 A EP06004332 A EP 06004332A EP 06004332 A EP06004332 A EP 06004332A EP 1701307 B1 EP1701307 B1 EP 1701307B1
Authority
EP
European Patent Office
Prior art keywords
ray
data
groups
local region
center
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP06004332A
Other languages
English (en)
French (fr)
Other versions
EP1701307A3 (de
EP1701307A2 (de
Inventor
Miwa c/o Intellectual Property Division Okumura
Satoru c/o Intellectual Property Div. Nakanishi
Masaharu c/o Intellectual Property Div. Tsuyuki
Yasuo c/o Intellectual Property Division Saito
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Canon Medical Systems Corp
Original Assignee
Toshiba Corp
Toshiba Medical Systems Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Medical Systems Corp filed Critical Toshiba Corp
Publication of EP1701307A2 publication Critical patent/EP1701307A2/de
Publication of EP1701307A3 publication Critical patent/EP1701307A3/de
Application granted granted Critical
Publication of EP1701307B1 publication Critical patent/EP1701307B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/02Arrangements for diagnosis sequentially in different planes; Stereoscopic radiation diagnosis
    • A61B6/03Computed tomography [CT]
    • A61B6/032Transmission computed tomography [CT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/4007Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units
    • A61B6/4014Arrangements for generating radiation specially adapted for radiation diagnosis characterised by using a plurality of source units arranged in multiple source-detector units
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/48Diagnostic techniques
    • A61B6/482Diagnostic techniques involving multiple energy imaging
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T11/002D [Two Dimensional] image generation
    • G06T11/003Reconstruction from projections, e.g. tomography
    • G06T11/006Inverse problem, transformation from projection-space into object-space, e.g. transform methods, back-projection, algebraic methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B6/00Apparatus or devices for radiation diagnosis; Apparatus or devices for radiation diagnosis combined with radiation therapy equipment
    • A61B6/40Arrangements for generating radiation specially adapted for radiation diagnosis
    • A61B6/405Source units specially adapted to modify characteristics of the beam during the data acquisition process
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2211/00Image generation
    • G06T2211/40Computed tomography
    • G06T2211/412Dynamic

Definitions

  • the present invention relates to an X-ray CT (computed tomography) apparatus and a data detecting method of X-ray CT apparatus reconstructing a diagnostic image of an object using X-ray detection data acquired by exposing an X-ray to the object, and more particularly, to an X-ray CT apparatus and a data detecting method of X-ray CT apparatus having a plurality of tubes.
  • An X-ray CT apparatus reconstructs a diagnostic image of an object by applying an X-ray from an X-ray tube to the object, acquiring X-ray detection data by an X-ray detector, and subjecting the acquired data to image reconstruction processing.
  • Half reconstruction is one method for reconstructing a diagnostic image with the X-ray CT apparatus.
  • half reconstruction reconstructs a diagnostic image by generating one image on the basis of projection data for an angle less than 360° (in general, projection data for the sum of 180° and the fan angle).
  • Half reconstruction is frequently used to obtain an image of a part, such as the heart, which moves locally, because of its capabilities of reconstructing an image from projection data for a narrow angle range and obtaining an image with high time resolution.
  • an image of the heart is obtained by half reconstruction using X-ray detection data for an angle less than 360° acquired in synchronization with an electrocardiogram (ECG)
  • ECG electrocardiogram
  • FIG. 10 is a conceptual diagram explaining the method for acquiring data for half reconstruction in synchronization with an electrocardiogram by the conventional X-ray CT apparatus.
  • an X-ray is applied from a tube #1 to an object, and half data Dh is acquired by an X-ray detector during the heartbeats shown in an ECG signal.
  • the angle range of the half data Dh in FIG. 10 is set in the range of approximately 210° to 240°, for example, at 240°.
  • the length tb of one heartbeat is 0.5 sec, and therefore, high corresponding time resolution is required in order to acquire data within one heart beat. In normal cases, however, it is often difficult to sufficiently acquire half data within one heartbeat. Accordingly, a method of acquiring half data in divided segments within a plurality of heartbeats has been proposed.
  • FIG. 11 is a conceptual diagram explaining the method for acquiring data for half reconstruction from divided segments in synchronization with an electrocardiogram by the conventional X-ray CT apparatus.
  • a first segment S1 of half data is acquired within a first heartbeat B1
  • second and third segments S2 and S3 of the half data are acquired within second and third heartbeats B2 and B3 respectively.
  • a multi-tube X-ray CT apparatus have been proposed as an attempt to increase the time resolution.
  • X-rays are emitted from a plurality of tubes to an object, and are detected by X-ray detectors arranged opposite to the corresponding tubes.
  • One of the multi-tube X-ray CT apparatuses is a three-tube X-ray CT apparatus including three tubes.
  • three pairs of a tube and a detector are equally spaced 120° apart (see, for example, Japanese Patent Application (Laid-Open) No.H5-168616 or Japanese Patent Application (Laid-Open) No.2001-346791 ).
  • the three-tube X-ray CT apparatus enables 360° data to be acquired by rotating each pair 120°. For this reason, ideally, it is expected to acquire data in one third of the time taken for an X-ray CT apparatus including only one tube to acquire data.
  • FIG. 12 is a conceptual diagram explaining the method for acquiring data by the conventional proposed three-tube X-ray CT apparatus.
  • FIG. 13 is a conceptual diagram showing data acquired by the conventional proposed three-tube X-ray CT apparatus.
  • the ordinate indicates the data acquisition range expressed as the angle of application of X-rays to an object
  • the abscissa indicates the used channels (Ch) of the X-ray detectors.
  • X-ray detectors #1', #2', and #3' opposing the three corresponding tubes #1, #2, and #3 acquire different data for each 120°.
  • the X-ray detectors #1', #2', and #3' are equivalent in terms of the number of channels of detecting elements provided therein, and X-rays are detected in all the channels.
  • the equivalent number of data of 120° data D#1', D#2' and D#3' according to the number of the channels is acquired by the X-ray detectors #1', #2' and #3' respectively, as shown in FIG. 13 . That is, 360° data that is proportional to the number of the channels is acquired by the three-tube X-ray CT apparatus.
  • Such a multi-tube X-ray CT apparatus is considered effective for high-speed scanning from a viewpoint of time resolution.
  • the tubes need not be rotated 360° because of the number of tubes, and this makes the time resolution higher than when full reconstruction is performed with a one-tube X-ray CT apparatus.
  • the manufacturing cost increases.
  • high time resolution is particularly required mainly in a case in which the FOV is narrow and an image of a local part, such as the heart, is obtained. Therefore, the time resolution is also expected to be increased with a simpler configuration.
  • US 5 966 422 discloses an X-ray CT apparatus according to the preamble of claim 1.
  • the present invention has been made in light of the conventional situations, and it is an object of the present invention to provide an X-ray CT apparatus and a data detecting method of X-ray CT apparatus which can image with time resolution and FOV according to a purpose by exposing X-rays from a plurality of tubes to an object.
  • the X-ray CT apparatus and the data detecting method of X-ray CT apparatus as described above make it possible to image with time resolution and FOV according to a purpose by exposing X-rays from a plurality of tubes to an object.
  • Fig. 1 is a functional block diagram showing an X-ray CT apparatus according to a first embodiment of the present invention.
  • An X-ray CT apparatus 1 includes a gantry 2, a computer 3, and an ECG unit 4.
  • the gantry 2 includes a high-voltage generator 5, a drive control unit 6, a plurality of X-ray tubes, such as three tubes 7a, 7b, and 7c, for emitting X-rays from focus portions (X-ray emitting portions), X-ray detectors 9a, 9b, and 9c arranged opposed to the corresponding tubes 7a, 7b, and 7c to form pairs 8a, 8b, and 8c, and a data acquisition system (DAS) 10.
  • DAS data acquisition system
  • the tubes 7a, 7b, and 7c and the X-ray detectors 9a, 9b, and 9c are arranged on a common rotating member (not shown), and are rotated on the same plane by rotating the rotating member.
  • the rotating member is rotatably supported on a gantry fixing unit by a bearing.
  • the high-voltage generator 5 provided in the gantry 2 applies a high-voltage to X-ray tubes constituted by the tubes 7a, 7b, and 7c so that the tubes 7a, 7b, and 7c emit X-rays to an object.
  • the drive control unit 6 rotates the rotating member to rotate the tubes 7a, 7b, and 7c and the X-ray detectors 9a, 9b, and 9c opposed to the tubes.
  • the pairs 8a, 8b, and 8c respectively formed by the tubes 7a, 7b, and 7c and the X-ray detectors 9a, 9b, and 9c are rotated by the driving control unit 6, and a high voltage is applied from the high-voltage generator 5 to the tubes 7a, 7b, and 7c.
  • a high voltage is applied from the high-voltage generator 5 to the tubes 7a, 7b, and 7c.
  • X-rays are emitted from the tubes 7a, 7b, and 7c to an object, and are then detected by the X-ray detectors 9a, 9b, and 9c opposed to the corresponding tubes 7a, 7b, and 7c.
  • X-ray detected data obtained by the X-ray detectors 9a, 9b, and 9c are given to the DAS 10 so as to be converted into digital raw data.
  • the pairs 8a, 8b, and 8c of the tubes 7a, 7b, and 7c and the X-ray detectors 9a, 9b, and 9c are unequally spaced so that data acquisition can be properly performed by image reconstruction, preferably, half reconstruction, so that the pairs 8a, 8b, and 8c cover at least the required ranges, and so that one, two, or all of the angles formed between the adjoining pairs 8a, 8b, and 8c in the direction of application of the X-rays are different.
  • the pairs 8a, 8b, and 8c are arranged at the positions corresponding to the angles obtained by equally dividing the angle range necessary for data acquisition by half reconstruction.
  • the tubes 7a, 7b, and 7c be arranged at the positions corresponding to the angles obtained by equally dividing an appropriate angle range for half reconstruction and that the X-ray detectors 9a, 9b, and 9c be arranged opposed to the corresponding tubes 7a, 7b, and 7c respectively.
  • the reference pair is not limited to the center pair 8b, and may be any of the pairs 8a, 8b, and 8c. Further, the angles ⁇ 1 and ⁇ 2 shown in FIG. 1 may be different from each other.
  • the X-ray detectors 9a, 9b, and 9c are two-dimensional detectors, and each include a plurality of rows of detecting elements for a plurality of channels arranged along the direction of the body axis (direction perpendicular to the plane of FIG. 1 ). While each of the X-ray detectors 9a, 9b, and 9c includes a plurality of detecting elements, the X-ray detector 9 in at least one pair 8 includes a number of detecting elements corresponding to a sufficient number of channels to cover a wide FOV needed to obtain an image of the entire cross section of the object by full reconstruction or half reconstruction.
  • the X-ray detector 9 in the other pair 8 includes a number of detecting elements corresponding to a sufficient number of channels to cover an appropriate local FOV (narrower than the above-described wide FOV) for imaging by half reconstruction.
  • the local FOV has a size that is proper for imaging of the heart.
  • the X-ray detector 9b of the center pair 8b includes a number of detecting elements corresponding to approximately 1000 channels that sufficiently cover a wide FOV having a diameter D1 of approximately 500 mm suited for imaging by full reconstruction or half reconstruction.
  • Each of the X-ray detectors 9a and 9b in the side pairs 8a and 8c includes a number of detecting elements corresponding to approximately 500 channels that sufficiently cover a local FOV having a diameter D2 of approximately 200 mm suited for imaging by half reconstruction.
  • the computer 3 includes an input device 11, a display unit 12, a scan control unit 13, a full image reconstructing unit 14 as an example of a second image reconstructing unit, a half image reconstructing unit 15 as an example of a first image reconstructing unit, a reconstructed image storage unit 16, an absorption correction unit 17, and a display processing unit 18. All or some of the above-described elements can be constructed with circuits or by reading a data processing program into an operation device (not shown).
  • the ECG unit 4 obtains an ECG signal of the object, and sends the ECG signal to the scan control unit 13.
  • the scan control unit 13 is triggered by the ECG signal received from the ECG unit 4, and outputs a control signal to the high-voltage generator 5 to execute ECG-synchronized scanning. Further, the scan control unit 13 determines the imaging range and whether imaging is to be performed by full reconstruction or half reconstruction in accordance with an instruction inputted from the input device 11. Depending on the determined reconstruction method, the scan control unit 13 sends control signals to the high-voltage generator 5 and the drive control unit 6 so that it can control which of the tubes 7a, 7b, and 7c emit X-rays, the emission timing, and the rotation angle of the tubes 7a, 7b, and 7c and the X-ray detectors 9a, 9b, and 9c.
  • data acquisition is performed with the X-ray detector 9b including the detecting elements that cover a wide FOV on imaging for a wide range, and with a plurality of X-ray detectors 9 including the detecting elements which cover a local FOV on imaging for a local range by half reconstruction, preferably, all the X-ray detectors 9a, 9b, and 9c.
  • the scan control unit 13 switches between imaging modes on the basis of a command from the input device 11. It is possible to set, as the imaging modes, a first imaging mode in which imaging is performed by full reconstruction over a wide FOV only with the center large X-ray detector 9b, as described above, and a second imaging mode in which imaging is performed by half reconstruction over a local FOV with all the X-ray detectors 9a, 9b, and 9c.
  • the first imaging mode can cover a wide FOV. While the FOV is local in the second imaging mode, the number of detecting elements used for data acquisition is large in the rotating direction of the X-ray detectors 9a, 9b, and 9c, and therefore, the time necessary for data acquisition can be made shorter than in the first imaging mode. This can achieve a high time resolution for a local FOV. For this reason, the second imaging mode is suitable for, for example, scanning the heart. An imaging mode may be set in which reconstruction other than half reconstruction is performed for data acquired from a local FOV.
  • an arbitrary imaging condition can be set as an imaging mode.
  • Other imaging modes that are effective when data acquisition is performed with the three X-ray detectors 9a, 9b, and 9c, as shown in FIG. 1 are, for example, a third imaging mode in which the two X-ray detectors 9a and 9b, that is, the large X-ray detector 9b covering a wide FOV and one small X-ray detector 9a covering a local FOV are used and in which different energies (tube voltages) are applied to the X-ray detectors 9a and 9b, and a fourth imaging mode in which two small X-ray detectors 9a and 9c covering a local FOV are used and in which different energies (tube voltages) are applied to the X-ray detectors 9a and 9c.
  • the third imaging mode two images having different contrasts can be obtained by using data from a wide FOV and data from a local FOV. By combining the two images, an image having contrast that is diagnostically useful can be obtained.
  • the crossing angle formed by the paths of X-rays exposed from the two tubes 7a and 7c is larger than in the third imaging mode. For this reason, the fourth imaging mode can reduce the occurrence and influence of scattered rays.
  • control information about the voltage to be generated and information about which of the tubes 7a, 7b, and 7c is to be used is sent from the scan control unit 13 to the high-voltage generator 5 in order to adjust the tube voltages to be applied to the X-ray detectors 9a and 9b or the X-ray detectors 9a and 9c.
  • the first and second imaging modes will be described below.
  • the full image reconstructing unit 14 obtains, from the DAS 10, raw data acquired from an FOV for full reconstruction, and reconstructs image data by subjecting the raw data to image reconstructing processing.
  • the full image reconstructing unit 14 also writes the reconstructed image data in the reconstructed image storage unit 16 to be stored in it. That is, the full image reconstructing unit 14 reconstructs image data by full reconstruction using data detected by the detecting elements of the X-ray detector 9b that can acquire data from a FOV for full reconstruction wider than a local FOV for half reconstruction.
  • the half image reconstructing unit 15 obtains, from the DAS 10, raw data acquired from a local region for half reconstruction, and reconstructs local image data by subjecting the raw data to image reconstructing processing for half reconstruction.
  • the half image reconstructing unit 15 also writes the reconstructed image data in the reconstructed image storage unit 16 to be stored in it.
  • the absorption correction unit 17 subjects the local image data, which is reconstructed by half reconstruction and is stored in the reconstructed image storage unit 16, to absorption correction using data acquired from the outside of the local region. That is, the absorption correction unit 17 makes absorption correction to the image data reconstructed by the half image reconstructing unit 15 by using data from outside the local region, of the data detected by the detecting elements of the X-ray detector 9b that can acquire data from the region wider than the local region.
  • the display processing unit 18 generates image signals by subjecting the image data stored in the reconstructed image storage unit 16 to display processing, and sends the generated image signals to the display unit 12 to display images.
  • the input device 11 directs the scan control unit 13 to perform a wide-range imaging of an object by full reconstruction or local imaging of, for example, the heart by half reconstruction.
  • the scan control unit 13 is directed to perform wide-range imaging of the object by full reconstruction, the center pair 8b is used for imaging.
  • control signals are given from the scan control unit 13 to the high-voltage generator 5 and to the drive control unit 6.
  • An X-ray is applied from the center tube 7b to an object (not shown), passes through the object, and is detected by the X-ray detector 9b that covers a wide FOV.
  • the detected X-rays are converted into raw data by the DAS 10, which is then output to the full image reconstructing unit 14.
  • the full image reconstructing unit 14 generates image data by executing image reconstruction processing using only the raw data obtained via the X-ray detector 9b that covers the wide FOV. Therefore, wide-range image data is generated by the full image reconstructing unit 14.
  • the generated image data is appropriately stored in the reconstructed image storage unit 16, and is then given as image signals from the display processing unit 18 to the display unit 12 so as to enable the image to be displayed.
  • the scan control unit 13 when the scan control unit 13 is directed to perform local imaging of the heart by half reconstruction over a data acquisition range of 240°, all the three pairs 8a, 8b, and 8c are used for imaging.
  • X-rays are exposed from all the three tubes 7a, 7b, and 7c onto an object (not shown) in synchronization with an ECG signal from the ECG unit 4, pass through the object, and are detected by the center X-ray detector 9b covering the wide FOV and the two side X-ray detectors 9a and 9c covering the local FOV.
  • the center X-ray detector 9b covering the wide FOV
  • the two side X-ray detectors 9a and 9c covering the local FOV.
  • data acquisition ranges of the X-ray detectors 9a, 9b, and 9c may slightly overlap, they are different in substance.
  • FIG. 2 is a diagram showing the changes of the positions of the X-ray detectors 9a, 9b, and 9c in the X-ray CT apparatus 1 shown in FIG. 1 during detection of data for half reconstruction using the three X-ray detectors 9a, 9b, and 9c.
  • FIG. 3 is a conceptual diagram explaining the method for detecting data for half reconstruction using the three X-ray detectors 9a, 9b, and 9c in synchronization with an ECG signal by the X-ray CT apparatus 1 shown in FIG. 1 .
  • FIG. 4 is another conceptual diagram explaining the method for detecting data for half reconstruction using the three X-ray detectors 9a, 9b, and 9c in synchronization with an ECG signal by the X-ray CT apparatus 1 shown in FIG. 1 .
  • data for half reconstruction are simultaneously detected by the three x-ray detectors 9a, 9b, and 9c during the heartbeats shown in an ECG signal. That is, X-rays applied from the three tubes 7a, 7b, and 7c are simultaneously detected by the corresponding first (#1), second (#2), and third (#3) X-ray detectors 9a, 9b, and 9c, thereby acquiring half data Dh.
  • the length tb of one heartbeat is 0.5 sec.
  • the time needed to rotate the tubes 7a, 7b, and 7c by 80° is 80/360 ⁇ 0.3 ⁇ 0.07 (sec) when the rotation speed of the tubes 7a, 7b, and 7c is 0.3 sec/rot. That is, the time needed to perform data acquisition for 240° is 0.07 sec, and high time resolution with respect to the length of one heartbeat can be achieved.
  • the tubes 7a, 7b, and 7c are helically moved around the object, and data for 240° in a reconstruction plane Y are simultaneously acquired from separate regions by the first (#1), second (#2), and third (#3) X-ray detectors 9a, 9b, and 9c within one heartbeat.
  • data acquisition can sometimes be performed a plurality of times during one heartbeat, as shown in FIG. 3 .
  • data accuracy can be increased by acquiring data a plurality of times and averaging the data.
  • data for a 80° segment, of the 240° for half reconstruction is acquired by the first (#1) X-ray detector 9a, data for another 80° segment Is acquired by the second (#2) X-ray detector 9b, and data for the remaining 80° segment is acquired by the third (#3) X-ray detector 9c.
  • the X-ray detection data thus acquired by the X-ray detectors 9a, 9b, and 9c are converted into raw data by the DAS 10, are combined for half reconstruction, and are then outputted to the half image reconstructing unit 15.
  • FIG .5 is a conceptual diagram showing data for half reconstruction acquired by the three X-ray detectors 9a, 9b, and 9c or the X-ray CT apparatus 1 shown in FIG. 1 .
  • the abscissa indicates the channel (Ch) to which the acquired data belong
  • the ordinate indicates the data acquisition range expressed by the angle of application of the X-rays onto the object.
  • data D#1, D#2, and D#3 for each 80° are respectively acquired by the first (#1), second (#2), and third (#3) X-ray detectors 9a, 9b, and 9c, and consequently, data for the total angle of 240° that is appropriate for half reconstruction can be obtained.
  • the first (#1) and third (#3) X-ray detectors 9a and 9c each include a number of detecting elements only corresponding to the number of channels that cover the local FOV, they acquire data D#1 and D#3 on fewer channels than those in case of the second (#2) X-ray detector 9b including a number of detecting elements corresponding to the channels that cover the wide FOV.
  • data D#1 and D#3 acquired by the first (#1) and third (#3) X-ray detectors 9a and 9c are obtained only from the channels in the local FOV.
  • data D#2 acquired by the second (#2) X-ray detector 9b can be divided into data D#2a from channels within the local FOV and data D#2b from channels within the wide FOV outside the local FOV.
  • the half image reconstructing unit 15 reconstructs image data by using the data D#1, D#2a, and D#3 from the channels within the local FOV obtained by the first (#1), second (#2), and third (#3) X-ray detectors 9a, 9b, and 9c in an ECG-synchronized manner.
  • the obtained local image data is appropriately stored in the reconstructed image storage unit 16.
  • the data D#2b which is acquired by the second (#2) X-ray detector 9b from the channels within the wide FOV outside the local FOV, can be added as additional information to the obtained image data for the purpose of absorption correction which will be described below.
  • the absorption correction unit 17 subjects the local image data, which is reconstructed by half reconstruction by the half image reconstructing unit 15 and stored in the reconstructed image storage unit 16, to absorption correction using the data D#2b, serving as the additional information, obtained from the outside the local region.
  • a CT value of the heart when the local image data is, for example, image data on the heart, it is expressed as a CT value of the heart.
  • the data D#2b acquired as the additional information from the outside of the local region can be used for absorption correction.
  • the image data is stored again in the reconstructed image storage unit 16 after absorption correction, and is given as image signals from the display processing unit 18 to the display unit 12 so as to enable the image to be displayed.
  • an image can be obtained with a time resolution and an FOV, which fit the required purpose, by switching between half reconstruction and full reconstruction.
  • imaging can be performed with a time resolution locally increased by half reconstruction.
  • half reconstruction can be performed with a time resolution of 50 to 60 msec.
  • arranging the three X-ray detectors 9a, 9b and 9c to line symmetry on the rotational plane so as to be near as much as possible mutually and setting the FOV of the center X-ray detector 9b wider than that of the two side X-ray detectors 9a and 9c as shown in FIG .1 make it possible to arrange more detecting elements without interference to improve time resolution as well as facilitate processing of data by symmetry property.
  • setting the distances between the adjacent X-ray detectors 9a, 9b and 9c shorter gives a wider size of FOV which can acquire data with high time resolution.
  • FIG. 6 is a functional block diagram showing a modified example of the X-ray CT apparatus 1 shown in FIG. 1 .
  • X-ray detectors do not always need to be physically separate as long as they can detect X-rays exposed from a plurality of different directions. That is, a plurality of or a single common detector support frame 20 may be provided inside a rotating frame 21, and a plurality of groups of detecting elements can be provided as detector units 22a, 22b, and 22c on the detector support frame 20.
  • the rotating frame 21 is typically cast in metal such as aluminum.
  • the detector support frame 20 can also be integral cast in metal, such as aluminum, as a part of the rotating frame 21.
  • three detector units 22a, 22b, and 22c are provided on the single detector support frame 20, the center detector unit 22b can cover a wide FOV, and the two side detector units 22a and 22c can cover a local FOV, for example.
  • the configuration and structures of the above-described X-ray CT apparatus 1 may be simplified. For example, when a plurality of X-ray detectors 9 are equally spaced, and are made different only in the number of channels of groups of detecting elements, that is, in the size of the FOV which the detectors can cover, the manufacturing cost of the X-ray detectors 9 can be decreased while the time resolution of the multi-tube X-ray CT apparatus can be obtained. Conversely, when X-ray detectors 9 that can cover the same FOV are unequally spaced at appropriate positions for half reconstruction, the manufacturing cost of the X-ray detectors 9 is increased, but it can be expected to provide an apparatus specialized in imaging with high time resolution over a wider FOV and half reconstruction of a local image.
  • FIG. 7 is a diagram showing a structure of an X-ray detector included in an X-ray CT apparatus according to a second embodiment of the present invention.
  • An X-ray CT apparatus 1A shown in FIG. 7 is different from the X-ray CT apparatus 1 shown in FIG. 1 in terms of the sizes and arrangements (center distances) of detecting elements 30 provided in at least one of a plurality of X-ray detectors 9a, 9b, and 9c, practically, in the X-ray detector 9b that covers a wide FOV. Since other structures and operations are substantially the same as those employed in the X-ray CT apparatus 1 shown in FIG. 1 , only the X-ray detector 9b is shown. The same structures are denoted by the same reference numerals, and descriptions thereof are omitted.
  • a plurality of detecting elements 30 are two-dimensionally arrayed in the rotating direction Dr of the X-ray detector 9b and in the direction Da of the rotation axis thereof. Some of the detecting elements 30 have a size different from that of the other detecting elements 30. Further, the center distance (pitch) between some adjoining detecting elements 30 is different from that of the other adjoining detecting elements 30. At least one of the size and the pitch may be different between the detecting elements.
  • the pitch Pa between the adjoining detecting elements 30a having a small size Xa be short according to the size Xa and that the pitch Pb between the adjoining detecting elements 30b having a large size Xb be long according to the size Xb, as shown in FIG. 7 .
  • the size Xa of some detecting elements 30a is half the size Xb of the other detecting elements 30b
  • the pitch Pa between the small detecting elements 30a having the half size Xa is half the pitch Pb between the detecting elements 30b having the large size Xb.
  • the sizes Xa and Xb of the detecting elements 30a and 30b and the pitches Pa and Pb between the detecting elements 30a and 30b are different in the two-dimensional directions in the X-ray detector 9b shown in FIG. 7 , they may be different only in the rotating direction Dr of the X-ray detector 9b.
  • sensitivity of the large-sized detecting elements 30 increases to reduce noise, depending on the size X thereof.
  • spatial resolution and time resolution of the small-sized detecting elements 30 can be increased depending on the size thereof. That is, sections that are different in sensitivity, time resolution and spatial resolution can be formed on the single X-ray detector 9b.
  • the pitch P between some detecting elements 30 when the pitch P between some detecting elements 30 is changed, noise is reduced in a section of the X-ray detector 9b in which the pitch P is long, depending on the pitch P. Moreover, since the structure is simplified, the manufacturing cost can be reduced. Conversely, the time resolution and spatial resolution can be increased in a section of the X-ray detector 9b in which the pitch P is short, depending on the pitch P. That is, when the pitch P between some detecting elements 30 is changed, sections that are different in time resolution and spatial resolution can also be formed on the single X-ray detector 9b.
  • detecting elements 30 having a smaller size X are preferably arranged in the section at a shorter pitch P.
  • detecting elements 30 having a size X such as to detect data necessary for at least image reconstruction are preferably arranged in the section at the required pitch P.
  • the size X of the detecting elements 30 in the two small X-ray detectors 9a and 9c that cover the local FOV L shown in FIG. 1 , and the size Xa of the detecting elements 30a in a section for detecting data from the local FOV L on the large X-ray detector 9b that covers the wide FOV W are made small, and the detecting elements 30 and 30a are arranged in the X-ray detectors 9a, 9b, and 9c at a small pitch Pa, high time resolution and high spatial resolution with respect to data from the local FOV L can be obtained.
  • FIG. 8 is a diagram explaining the method for detecting data in case of acquiring the data from the wide FOV W using the X-ray detector 9b shown in FIG. 7.
  • FIG. 9 is a diagram explaining the method for detecting data in case of acquiring the data from the local FOV L using the X-ray detector 9b shown in FIG. 7 .
  • signals outputted from a fixed number of (two in FIG. 8 ) detecting elements 30a are combined to output as single detection data (DATA W1, DATA W2) by each of the signal distributing and combining circuits 31. Consequently, more uniform detection data (DATA W1, DATA W2, DATA W3, DATA W4) can be acquired.
  • X-rays are detected only by the detecting elements 30a having the small size X, as shown in FIG. 9 .
  • Signals outputted from the detecting elements 30a having the small size X are outputted as detection data (DATA L1, DATA L2, DATA L3, DATA L4) by the signal distributing and combining circuits 31. This can achieve higher spatial resolution and higher time resolution.
  • the X-ray detectors 9a, 9b, and 9c may have the same size, and one or both of the size and pitch of the detecting elements in any of the X-ray detectors 9a, 9b, and 9c may be changed in order to increase the time resolution and spatial resolution with respect to data from a local FOV.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Physics & Mathematics (AREA)
  • Surgery (AREA)
  • General Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Optics & Photonics (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Animal Behavior & Ethology (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Pulmonology (AREA)
  • Algebra (AREA)
  • Mathematical Analysis (AREA)
  • Mathematical Optimization (AREA)
  • Mathematical Physics (AREA)
  • Pure & Applied Mathematics (AREA)
  • Apparatus For Radiation Diagnosis (AREA)

Claims (14)

  1. Röntgen-CT-Vorrichtung, enthaltend
    drei Röntgenstrahlerzeugungseinheiten (7a, 7b, 7c), die angeordnet sind, um einen ersten Winkel (α1), der durch eine erste Röntgenstrahlausgaberichtung und eine zweite Röntgenstrahlausgaberichtung auf deren Drehebene gebildet ist, gleich einem zweiten Winkel (α2) zu machen, der durch die zweite Röntgenstrahlausgaberichtung und eine dritte Röntgenstrahlausgaberichtung auf der Drehebene gebildet ist;
    drei Gruppen (8a, 8b, 8c) von Detektionselementen (9a, 9b, 9c), die den drei Röntgenstrahlerzeugungseinheiten (7a, 7b, 7c) jeweils gegenüberliegend angeordnet sind; und
    eine Rekonstruktionseinheit (15); dadurch gekennzeichnet, dass
    der erste und der zweite Winkel (al, α2) kleiner als 120 Grad sind;
    die drei Gruppen (8a, 8b, 8c) angeordnet sind, um ein Sichtfeld (D1), das in einem Zentrum gebildet ist, breiter als zwei Seitensichtfelder (D2) zu machen;
    die Rekonstruktionseinheit (15) konfiguriert ist zum Durchführen einer Halbrekonstruktion eines Bildes unter Verwendung von Detektionsdaten, die durch die drei Gruppen (8a, 8b, 8c) von Detektionselementen (9a, 9b, 9c) detektiert werden,
    die Rekonstruktionseinheit (15) konfiguriert ist zum Verwenden von Daten von einer lokalen Region zur Halbrekonstruktion, wobei die Daten von der lokalen Region unter Verwendung der drei Gruppen (8a, 8b, 8c) gewonnen werden, und
    eine Absorptionskorrektureinheit (17) konfiguriert ist zum Durchführen einer Absorptionskorrektur von Bilddaten unter Verwendung von Daten außerhalb der lokalen Region und einer Region breiter als die lokale Region, die durch eine Zentrale von den drei Gruppen (8a, 8b, 8c) gewonnen werden, wobei die Bilddaten durch eine Halbrekonstruktionsverarbeitung der Rekonstruktionseinheit gewonnen werden.
  2. Röntgen-CT-Vorrichtung nach Anspruch 1, bei der die drei Gruppen (8a, 8b, 8c) jeweils in individuellen Röntgendetektoren angeordnet sind.
  3. Röntgen-CT-Vorrichtung nach Anspruch 1 oder 2, ferner mit einem Trägerelement, das mindestens zwei von den drei Gruppen von Detektionselementen gemeinsam trägt.
  4. Röntgen-CT-Vorrichtung nach einem der Ansprüche 1 bis 3, ferner mit einer Abtaststeuerungseinheit (13), die konfiguriert ist zum Durchführen eines Abtastens mit einem Schalten eines ersten Bildgebungsmodus zum Erfassen von Daten einer lokalen Region unter Verwendung der drei Gruppen (8a, 8b, 8c) der Detektionselemente (9a, 9b, 9c) und eines zweiten Bildgebungsmodus zum Erfassen von Daten einer Region, die breiter als die lokale Region ist, unter Verwendung einer Zentralen von den drei Gruppen (8a, 8b, 8c).
  5. Röntgen-CT-Vorrichtung nach einem der Ansprüche 1 bis 3, ferner mit einer Abtaststeuerungseinheit (13), die konfiguriert ist zum Durchführen eines Abtastens in einem Bildgebungsmodus zum Erfassen von Daten mit gegebenen Energien, die voneinander unterschiedlich sind, für eine Zentrale der drei Gruppen (8a, 8b, 8c) und eine Gruppe benachbart zu der Zentralen.
  6. Röntgen-CT-Vorrichtung nach einem der Ansprüche 1 bis 3, ferner mit einer Abtaststeuerungseinheit (13), die konfiguriert ist zum Durchführen eines Abtastens in einem Bildgebungsmodus zum Erfassen von Daten mit gegebenen Energien, die voneinander unterschiedlich sind, für zwei Gruppen ausgenommen einer Zentralen von den drei Gruppen (8a, 8b, 8c).
  7. Röntgen-CT-Vorrichtung nach einem der Ansprüche 1 bis 6, bei der die Rekonstruktionseinheit (15) konfiguriert ist zum Verwenden von Daten von einer lokalen Region für eine Halbrekonstruktion und von Daten von einer Region breiter als die lokale Region für eine Vollrekonstruktion, wobei die Daten von der lokalen Region gewonnen werden unter Verwendung der drei Gruppen (8a, 8b, 8c), wobei die Daten von der Region breiter als die lokale Region gewonnen werden durch Verwenden einer Zentralen von den drei Gruppen (8a, 8b, 8c).
  8. Datendetektierverfahren einer Röntgen-CT-Vorrichtung, mit den Schritten:
    Ausgeben eines Röntgenstrahls von mindestens einer von drei Röntgenstrahlerzeugungseinheiten (7a, 7b, 7c), die an Positionen angeordnet sind, so dass ein erster Winkel (α1), der durch eine erste Röntgenstrahlausgaberichtung und eine zweite Röntgenstrahlausgaberichtung auf deren Drehebene gebildet ist, gleich einem zweiten Winkel (α2) wird, der durch die zweite Röntgenstrahlausgaberichtung und eine dritte Röntgenstrahlausgaberichtung auf der Drehebene gebildet ist, wobei der erste Winkel und der zweite Winkel (α1, α2) kleiner als 120 Grad sind;
    Detektieren eines ausgegebenen Röntgenstrahls als Detektionsdaten unter Verwendung von drei Gruppen (8a, 8b, 8c) von Detektionselementen (9a, 9b, 9c), die den drei Röntgenstrahlerzeugungseinheiten (7a, 7b, 7c) jeweils gegenüberliegend angeordnet sind, so dass ein Sichtfeld (D1), das in einem Zentrum gebildet ist, breiter ist als zwei Seitensichtfelder (D2);
    Durchführen einer Halbrekonstruktion eines Bildes unter Verwendung der Detektionsdaten, wobei
    Daten von einer lokalen Region, die unter Verwendung der drei Gruppen (8a, 8b, 8c) gewonnen werden, zur Halbrekonstruktion verwendet werden, und
    ferner mit einem Schritt zum Durchführen einer Absorptionskorrektur von Bilddaten unter Verwendung von Daten außerhalb der lokalen Region und einer Region breiter als die lokale Region, die durch eine Zentrale von den drei Gruppen (8a, 8b, 8c) gewonnen werden, wobei die Bilddaten durch die Halbrekonstruktionsverarbeitung gewonnen werden.
  9. Datendetektierverfahren einer Röntgen-CT-Vorrichtung nach Anspruch 8, wobei die drei Gruppen (8a, 8b, 8c) jeweils auf individuellen Röntgendetektoren angeordnet sind.
  10. Datendetektierverfahren einer Röntgen-CT-Vorrichtung nach Anspruch 8 oder 9, wobei mindestens zwei der drei Gruppen (8a, 8b, 8c) durch ein Trägerelement gemeinsam getragen werden.
  11. Datendetektierverfahren einer Röntgen-CT-Vorrichtung nach einem der Ansprüche 8 bis 10, wobei das Abtasten durchgeführt wird mit einem Schalten eines ersten Bildgebungsmodus zum Erfassen von Daten einer lokalen Region unter Verwendung der drei Gruppen (8a, 8b, 8c) der Detektionselemente (9a, 9b, 9c) und eines zweiten Bildgebungsmodus zum Erfassen von Daten einer Region, die breiter als die lokale Region ist, indem eine Zentrale von den drei Gruppen (8a, 8b, 8c) verwendet wird.
  12. Datendetektierverfahren einer Röntgen-CT-Vorrichtung nach einem der Ansprüche 8 bis 10, wobei das Abtasten in einem Bildgebungsmodus durchgeführt wird zum Erfassen von Daten mit gegebenen Energien, die voneinander verschieden sind, für eine Zentrale der drei Gruppen (8a, 8b, 8c) und einer Benachbarten zu der Zentralen.
  13. Datendetektierverfahren einer Röntgen-CT-Vorrichtung nach einem der Ansprüche 8 bis 10, wobei das Abtasten durchgeführt wird in einem Bildgebungsmodus zum Erfassen von Daten mit gegebenen Energien, die voneinander verschieden sind, für zwei Gruppen ausgenommen einer Zentralen von den drei Gruppen (8a, 8b, 8c).
  14. Datendetektierverfahren einer Röntgen-CT-Vorrichtung nach einem der Ansprüche 8 bis 13, wobei Daten von einer lokalen Region, die durch Verwendung der drei Gruppen (8a, 8b, 8b) gewonnen werden, zur Halbrekonstruktion verwendet werden, und Daten von einer Region, die breiter als die lokale Region ist, zur Vollrekonstruktion verwendet werden, wobei die Daten von der Region, die breiter als die lokale Region ist, gewonnen werden durch Verwenden einer Zentralen von den drei Gruppen (8a, 8b, 8c).
EP06004332A 2005-03-07 2006-03-03 Röntgen-CT-Gerät und Datendetektionsverfahren des Röntgen-CT-Geräts Expired - Fee Related EP1701307B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005061911 2005-03-07

Publications (3)

Publication Number Publication Date
EP1701307A2 EP1701307A2 (de) 2006-09-13
EP1701307A3 EP1701307A3 (de) 2006-11-02
EP1701307B1 true EP1701307B1 (de) 2010-04-21

Family

ID=36602502

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06004332A Expired - Fee Related EP1701307B1 (de) 2005-03-07 2006-03-03 Röntgen-CT-Gerät und Datendetektionsverfahren des Röntgen-CT-Geräts

Country Status (5)

Country Link
US (1) US7421062B2 (de)
EP (1) EP1701307B1 (de)
JP (1) JP2012030117A (de)
CN (1) CN1830391A (de)
DE (1) DE602006013733D1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102009019514A1 (de) * 2009-04-30 2010-11-11 Siemens Aktiengesellschaft CT-System und Verfahren zur Phasenkontrast- und Absorptionsbildgebung
US9271689B2 (en) 2010-01-20 2016-03-01 General Electric Company Apparatus for wide coverage computed tomography and method of constructing same
CN102608142B (zh) * 2012-03-20 2014-04-23 华北电力大学 压水堆核电站管道腐蚀产物检测方法
US9737279B2 (en) * 2012-08-31 2017-08-22 Toshiba Medical Systems Corporation X-ray CT apparatus
JP2014226376A (ja) * 2013-05-23 2014-12-08 株式会社東芝 X線ct装置
CN104574292B (zh) 2014-11-26 2018-06-26 沈阳东软医疗系统有限公司 一种ct图像的校正方法和装置
CN106999135B (zh) * 2014-12-10 2020-11-13 皇家飞利浦有限公司 辐射发射成像系统和方法
US20170215818A1 (en) * 2016-02-03 2017-08-03 General Electric Company High-resolution computed tomography or c-arm imaging

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2614083B2 (de) * 1976-04-01 1979-02-08 Siemens Ag, 1000 Berlin Und 8000 Muenchen Röntgenschichtgerät zur Herstellung von Transversalschichtbildern
JPS53114378A (en) * 1977-03-16 1978-10-05 Toshiba Corp Tomographic pickup unit by radiation
JPH0252640A (ja) 1988-08-15 1990-02-22 Toshiba Corp X線ctスキャナ装置
JPH05168616A (ja) 1991-12-26 1993-07-02 Toshiba Corp X線ct装置
US5966422A (en) * 1992-07-20 1999-10-12 Picker Medical Systems, Ltd. Multiple source CT scanner
DE19802405B4 (de) * 1998-01-22 2004-07-08 Siemens Ag Röntgendiagnostikeinrichtung mit einem Computertomographen
US6421412B1 (en) * 1998-12-31 2002-07-16 General Electric Company Dual cardiac CT scanner
JP4267180B2 (ja) 2000-06-07 2009-05-27 株式会社日立メディコ X線ct装置
DE10302567A1 (de) * 2003-01-22 2004-08-12 Siemens Ag Bildgebendes Tomographiegerät mit wenigstens zwei Strahler-Detektor-Systemen und Verfahren zum Betrieb eines solchen Tomographiegeräts
DE10302565A1 (de) 2003-01-22 2004-08-12 Siemens Ag Bildgebendes Tomographiegerät mit wenigstens zwei Strahler-Detektor-Kombinationen
WO2005004722A2 (en) * 2003-07-15 2005-01-20 Koninklijke Philips Electronics N.V. Computed tomography scanner with large gantry bore
US7194061B2 (en) * 2004-09-14 2007-03-20 Kabushiki Kaisha Toshiba X-ray computer tomography apparatus
DE102004051172A1 (de) * 2004-10-20 2006-04-27 Siemens Ag Detektor für ein Computertomographiegerät und Computertomographiegerät mit einem solchen Detektor
US7062006B1 (en) * 2005-01-19 2006-06-13 The Board Of Trustees Of The Leland Stanford Junior University Computed tomography with increased field of view

Also Published As

Publication number Publication date
DE602006013733D1 (de) 2010-06-02
US7421062B2 (en) 2008-09-02
US20060210014A1 (en) 2006-09-21
EP1701307A3 (de) 2006-11-02
EP1701307A2 (de) 2006-09-13
CN1830391A (zh) 2006-09-13
JP2012030117A (ja) 2012-02-16

Similar Documents

Publication Publication Date Title
EP1701307B1 (de) Röntgen-CT-Gerät und Datendetektionsverfahren des Röntgen-CT-Geräts
US6876719B2 (en) X-ray CT apparatus
US7848480B2 (en) X-ray CT scanner and data processing method of X-ray CT scanner
JP2930123B2 (ja) Ctスキャナ装置及びct画像を得る方法
WO2003101301A1 (fr) Dispositif tomodensitometre rayons x a tranches multiples
JP4828839B2 (ja) X線コンピュータ断層撮影装置、画像処理装置及び画像処理方法
JP2004509690A (ja) 時間的に一貫した大きい照射範囲のためのctスキャナ
JP2001137232A (ja) 従来型のコンピュータ断層撮影による心臓撮像方法及び装置
JPH08299322A (ja) Ct装置
JPH0638957A (ja) Ct装置
JP2004000356A (ja) マルチスライスx線ct装置および方法
JP5468190B2 (ja) 画像表示装置及びx線ct装置
US6947516B2 (en) X-ray CT apparatus
JP2008012206A (ja) X線断層撮影装置
JP4416884B2 (ja) コンピュータトモグラフの像再構成方法
JPH09262230A (ja) X線ct装置
JP4398525B2 (ja) X線コンピュータ断層撮影装置
CN102440798A (zh) 利用双源ct设备扫描心脏的方法以及双源ct设备的结构
US6873678B2 (en) Methods and apparatus for computed tomographic cardiac or organ imaging
JP4309266B2 (ja) X線検出器における故障チャネルの信号復元方法および医療装置
JP4025530B2 (ja) X線ct装置
JP4076283B2 (ja) 放射線断層撮影装置およびx線管
JP2006280919A (ja) X線ct装置
JP4551612B2 (ja) コンピュータ断層撮影装置
JP4119110B2 (ja) X線コンピュータ断層撮影装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060303

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: G06T 11/00 20060101AFI20060704BHEP

Ipc: A61B 6/03 20060101ALI20060928BHEP

17Q First examination report despatched

Effective date: 20061213

AKX Designation fees paid

Designated state(s): DE NL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE NL

REF Corresponds to:

Ref document number: 602006013733

Country of ref document: DE

Date of ref document: 20100602

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110124

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20110317

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110223

Year of fee payment: 6

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20121001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602006013733

Country of ref document: DE

Effective date: 20121002

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121002