EP1697036A1 - Syntheseofen - Google Patents

Syntheseofen

Info

Publication number
EP1697036A1
EP1697036A1 EP04790323A EP04790323A EP1697036A1 EP 1697036 A1 EP1697036 A1 EP 1697036A1 EP 04790323 A EP04790323 A EP 04790323A EP 04790323 A EP04790323 A EP 04790323A EP 1697036 A1 EP1697036 A1 EP 1697036A1
Authority
EP
European Patent Office
Prior art keywords
furnace
burners
burner
synthesis
inclination
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04790323A
Other languages
English (en)
French (fr)
Inventor
Erfindernennung liegt noch nicht vor Die
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ThyssenKrupp Industrial Solutions AG
Original Assignee
Uhde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Uhde GmbH filed Critical Uhde GmbH
Publication of EP1697036A1 publication Critical patent/EP1697036A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/15Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively
    • C07C29/151Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases
    • C07C29/152Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring by reduction of oxides of carbon exclusively with hydrogen or hydrogen-containing gases characterised by the reactor used
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/02Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds
    • B01J8/06Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes
    • B01J8/062Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes with stationary particles, e.g. in fixed beds in tube reactors; the solid particles being arranged in tubes being installed in a furnace
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/384Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts the catalyst being continuously externally heated
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01CAMMONIA; CYANOGEN; COMPOUNDS THEREOF
    • C01C1/00Ammonia; Compounds thereof
    • C01C1/02Preparation, purification or separation of ammonia
    • C01C1/04Preparation of ammonia by synthesis in the gas phase
    • C01C1/0405Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst
    • C01C1/0417Preparation of ammonia by synthesis in the gas phase from N2 and H2 in presence of a catalyst characterised by the synthesis reactor, e.g. arrangement of catalyst beds and heat exchangers in the reactor
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0227Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step
    • C01B2203/0233Processes for making hydrogen or synthesis gas containing a reforming step containing a catalytic reforming step the reforming step being a steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/08Methods of heating or cooling
    • C01B2203/0805Methods of heating the process for making hydrogen or synthesis gas
    • C01B2203/0811Methods of heating the process for making hydrogen or synthesis gas by combustion of fuel
    • C01B2203/0816Heating by flames
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to a synthesis furnace having a furnace chamber enclosed by a circumferential furnace wall, in which a plurality of burners arranged substantially in one plane and directed downwards Brenneraustritts- direction and a plurality of substantially vertically and mutually parallel reaction tubes are arranged, the Reaction tube to be heated from the outside by the firing burner.
  • Such synthesis furnaces for example for the production of ammonia, methanol or hydrogen, are well known and are often designed for industrial use as a generic ceiling-fired box ovens with vertical reaction / crevices.
  • These split tubes are arranged in rows and are flowed through from top to bottom of process gas. This process gas is subjected to a so-called splitting process. The process gas is collected down inside or outside the furnace in exit collectors.
  • the tubes are heated by the vertically downwardly firing burner located in the top of the furnace, the flue gas produced by the burners flows through the furnace from top to bottom and is drawn off through flue gas tunnels located at the bottom (eg published in: "Ammonia: Principles and Industrial Practice / Max Appl - Weinheim; New York, Chichester; Brisbane; Singapore; Toronto: Wiley-VCH, 1999, ISBN 3 - 527 -29593 -3, pages 80-89).
  • the object of the invention is therefore to improve the heat distribution and the total heat transfer to constructive and control technology as simple as possible.
  • the flame deflection of the outer rows of burners towards the center of the furnace can be significantly reduced by this compared to the above-described known solutions completely different approach to constructive and control technology simple way.
  • the result is a much more uniform outflow of the flue gases along the reaction tubes, the heat transfer is improved and the increased material load of the reaction tube by "hot spots" in prior art synthesis furnaces is significantly reduced, so that the lifetime of the reaction tube increases significantly.
  • the inclination of the burner outlet directions of the individual burners is different. This means that the burners are arranged at a corresponding angle of inclination depending on the suction effect of adjacent burner flames on the respective own flame (opposite to the suction effect of adjacent burners).
  • the inclination of the burner outlet directions of the burner increases outwardly toward the furnace wall. While the centrally located burners e.g. have no inclination, the inclination of the burner rows then increases to the outside to a maximum value.
  • the angle of inclination starting from the center, is between 0 and 10 °, preferably between 0 and 5 °.
  • the burners are mounted with an inclined burner outlet direction inclined overall and / or their burner opening is arranged inclined.
  • the inclination of the burner outlet directions is adjustable, ie this can be changed during the operation of the synthesis furnace to adapt to the respective conditions.
  • a control which takes into account the operating parameters of the synthesis furnace is provided for setting the inclinations.
  • Fig. 4 is a graph showing the heat flux density for the outermost row of tubes over the tube length for a prior art synthesis furnace and a synthesis furnace according to the invention.
  • a synthesis furnace is generally designated 1 in FIG.
  • This synthesis furnace is box-shaped or parallelepiped-shaped and has a furnace chamber 3 enclosed by a circumferential furnace wall 2.
  • a plurality of substantially vertical and mutually parallel reaction tubes 4 are arranged, through which process gas is introduced from above, which is not shown in detail. This process gas flows from top to bottom through the reaction tubes 4 and is collected in the lower region of the furnace or outside thereof in outlet collectors, not shown.
  • a plurality of burners 5 are arranged in the upper region of the furnace chamber 3 substantially in a plane. These burners 5 each have a downwardly directed burner outlet direction, in FIG. 1, a vertical burner axis 6 is shown by dash-dotted lines for each burner 5.
  • a vertical burner axis 6 is shown by dash-dotted lines for each burner 5.
  • At least the outer burners 5 arranged in the region of the furnace wall 2 have a burner outlet direction R, which is inclined away from the center of the synthesis furnace 1 with respect to the vertical. This angle of inclination is designated ⁇ in FIG. 1 and defined relative to the associated vertical burner axis 6.
  • this inclination may also or additionally, depending on the arrangement of the burners, extend with respect to the center of the furnace space 3 in the plane extending transversely to the illustrated plane of the drawing ,
  • the center of the furnace chamber 3 is located in the region of the middle reaction tubes 4m receiving level.
  • the arrangement is then made so that the inclination increases starting from the inner burners to the furnace wall 2, can be seen the inclination ⁇ of the inner burner is smaller than the inclination ß of the middle burner and this in turn smaller than the slope a of the outer burner.
  • the angle of inclination a. the outer burner is about a maximum of 10 °, preferably at 5 °, the inclination angle ß and ⁇ are suitably chosen smaller.
  • the inclination of the burner 5 can be realized in different ways, it can be provided on the one hand, that the burners are installed inclined overall or only their burner port or burner nozzle.
  • a controller not shown, may be provided for the synthesis furnace 1, which makes an adjustment of inclinations taking into account the operating parameters of the synthesis furnace 1 ,
  • FIG. 2 a shows a very uneven temperature distribution in a conventional synthesis furnace without a tendency to burn.
  • FIG. 2b an embodiment according to the invention is shown. To recognize staltung, in which the outer burner or its burner outlet direction is inclined by 5 °, it shows a much more homogeneous temperature distribution.
  • FIG. 3a shows the flow conditions in a conventional synthesis furnace without a tendency to burn
  • FIG. 3b with a tendency to burn, namely by 5 ° in the case of the outer burners.
  • the unwanted dead zones are significantly reduced in the design according to the invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Devices And Processes Conducted In The Presence Of Fluids And Solid Particles (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Combustion Of Fluid Fuel (AREA)

Abstract

Mit einem Syntheseofen mit einem von einer umlaufenden Ofenwand umschlossenen Ofenraum, in dem eine Vielzahl von im Wesentlichen in einer Ebene angeordneten Brennern mit nach unten gerichteter Brenneraustrittsrichtung und eine Vielzahl von im Wesentlichen vertikal und parallel zueinander angeordneten Reaktionsrohren angeordnet sind, wobei die Reaktionsrohre von aussen durch die feuernden Brenner beheizt werden, soll auf konstruktiv und steuerungstechnisch möglichst einfache Weise die Wärmeverteilung und der gesamte Wärmeübergang verbessert werden. Dies wird dadurch erreicht, dass wenigstens die äusseren, im Bereich der Ofenwand (2) angeordneten Brenner (5) eine Brenneraustrittsrichtung (R) aufweisen, welche vom Zentrum des Ofens wegführend gegenüber der Vertikalen geneigt ist.

Description

"Syntheseofen"
Die Erfindung betrifft einen Syntheseofen mit einem von einer umlaufenden Ofenwand umschlossenen Ofenraum, in dem eine Vielzahl von im Wesentlichen in einer Ebene angeordneten Brennern mit nach unten gerichteter Brenneraustritts- richtung und eine Vielzahl von im Wesentlichen vertikal und parallel zueinander angeordneten Reaktionsrohren angeordnet sind, wobei die Reaktionsröhre von außen durch die feuernden Brenner beheizt werden.
Derartige Syntheseöfen, z.B. zur Erzeugung von Ammoniak, Methanol oder Wasserstoff, sind hinreichend bekannt und sind für den großtechnischen Einsatz häufig als gattungsgemäße deckengefeuerte Kastenöfen mit senkrecht stehenden Reaktions-/Spaltrohren ausgebildet. Diese Spaltrohre sind in Reihen angeordnet und werden von oben nach unten von Prozessgas durchströmt. Dieses Prozessgas wird dabei einem sogenannten Spaltprozess unterzogen. Das Prozessgas wird unten innerhalb oder außerhalb des Ofens in Austrittskollektoren gesammelt. In den zwischen den Rohrreihen liegenden Gassen werden die Rohre durch die oben im Ofen angeordneten vertikal nach unten feuernden Brenner erwärmt, dabei durchströmt das von den Brennern erzeugte Rauchgas den Ofen von oben nach unten und wird durch am Boden angeordnete Rauchgastunnel abgezogen (z.B. veröffentlicht in: "Ammonia: Principles and Industrial Practice/Max Appl - Weinheim; New York, Chichester; Brisbane; Singapore; Toronto: Wiley-VCH, 1999, ISBN 3 - 527 -29593 -3 , Seiten 80 - 89 ) .
In derartigen Syntheseöfen, insbesondere mit einer Vielzahl von Rohrreihen, wird eine sehr ungleichmäßige, insbesondere in den äußeren Rohrreihen vor allem durch Rezirkulation geprägte Strömung beobachtet. Diese Rezirkulation führt zu niedrigen Rauchgas- und Prozessgastemperaturen in den äußeren Rohrreihen im Vergleich zu den mittleren Reihen. Diese niedrige Temperatur in den Außenreihen wirkt sich nachteilig auf den Spaltprozess aus. Bei den äußeren Brennerreihen kommt es außerdem zur Flammenablenkung, was den gesamten Wärmeübergang verschlechtert und die Materialbelastung erhöht.
Zur Vermeidung dieser bekannten Probleme sind bereits verschiedene Lösungswege vorgeschlagen worden (Fluegas Flow Patterns in Top-fired Steam Reforming Furnaces, P.W. Farneil & W.J. Cotton, Synetix, Billingham, England, 44th Annual Safety in Ammonia Plants and Related Facilities Symposium, Seattle, Washington, Paper no. 3e, September 27-30, 1999) . So ist zum einen vorgeschlagen worden, die äußeren Brenner mit höheren Luftaustrittsgeschwindigkeiten zu betreiben und zum anderen, das Prozessgas gezielt in unterschiedlicher Menge auf die Reaktionsröhre zu verteilen. Diese beiden Lösungen haben sich jedoch nicht als zufriedenstellend herausgestellt. Außerdem ist vorgeschlagen worden, den Brennerab- stand zur Ofenwand zu vergrößern. Diese Lösung behebt die vorbeschriebenen Probleme jedoch ebenfalls nicht.
Aufgabe der Erfindung ist es deshalb, auf konstruktiv und steuerungstechnisch möglichst einfache Weise die Wärmeverteilung und den gesamten Wärmeübergang zu verbessern.
Diese Aufgabe wird bei einem Syntheseofen der eingangs bezeichneten Art erfindungsgemäß dadurch gelöst, dass wenigstens die äußeren, im Bereich der Ofenwand angeordneten Brenner eine Brenneraustrittsrichtung aufweisen, welche vom Zentrum des Ofens wegführend gegenüber der Vertikalen geneigt ist.
Es hat sich herausgestellt, dass durch diesen gegenüber den vorbeschriebenen bekannten Lösungswegen ganz anderen Lösungsweg auf konstruktiv und steuerungstechnisch einfache Weise die Flammenablenkung der äußeren Brennerreihen zum Zentrum des Ofens hin deutlich reduziert werden kann. Es entsteht eine wesentlich gleichmäßigere Abströmung der Rauchgase entlang der Reaktionsrohre, der Wärmeübergang wird verbessert und die erhöhte Materialbelastung der Reaktions- röhre durch "hot spots" bei Syntheseöfen nach dem Stand der Technik wird deutlich reduziert, so dass die Lebensdauer der Reaktionsröhre deutlich zunimmt. Um eine besonders gute Wärmeverteilung bzw. Rauchgasströmung zu erzielen, ist bevorzugt vorgesehen, dass die Neigung der Brenneraustrittsrichtungen der einzelnen Brenner unterschiedlich ist. Dies bedeutet, dass die Brenner abhängig von der Saugwirkung benachbarter Brennerflammen auf die jeweilige eigene Flamme in einem entsprechenden Neigungswinkel angeordnet werden (entgegengesetzt zur Saugwirkung benachbarter Brenner) .
Dabei ist ganz besonders bevorzugt vorgesehen, dass die Neigung der Brenneraustrittsrichtungen der Brenner, ausgehend vom Zentrum des Ofens, nach außen zur Ofenwand hin zunimmt. Während die zentral angeordneten Brenner z.B. keine Neigung aufweisen, nimmt die Neigung der Brennerreihen dann bis nach außen auf einen Maximalwert hin zu.
Es hat sich als besonders zweckmäßig herausgestellt, dass der Neigungswinkel, ausgehend von Zentrum, zwischen 0 bis 10°, vorzugsweise zwischen 0 bis 5°, liegt.
Um die Neigung der Brenner zu realisieren, kann konstruktiv bevorzugt vorgesehen sein, dass die Brenner mit geneigter Brenneraustrittsrichtung insgesamt geneigt eingebaut sind und/oder ihre Brenneröffnung geneigt angeordnet ist . Ganz besonders bevorzugt ist vorgesehen, dass die Neigung der Brenneraustrittsrichtungen einstellbar ist, d.h. diese kann während des Betriebes des Syntheseofens zur Anpassung an die jeweiligen Verhältnisse verändert werden.
Dazu ist ganz besonders bevorzugt vorgesehen, dass zur Einstellung der Neigungen eine die Betriebsparameter des Syntheseofens berücksichtigende Steuerung vorgesehen ist.
Die Erfindung ist nachstehend anhand der Zeichnung beispielhaft näher erläutert. Diese zeigt in:
Fig. 1 eine Prinzipdarstellung eines Syntheseofens,
Fig. 2a die Temperaturverteilung in einem Syntheseofen nach dem Stand der Technik,
Fig. 2b die Temperaturverteilung in einem erfindungsgemäßen Syntheseofen,
Fig. 3a Strömungslinien in einem Syntheseofen nach dem Stand der Technik,
Fig. 3b Strömungslinien in einem erfindungsgemäßen Syntheseofen und Fig. 4 ein Diagramm, in dem die Wärmestromdichte für die äußerste Rohrreihe über der Rohrlänge für einen Syntheseofen nach dem Stand der Technik und einem erfindungsgemäßen Syntheseofen dargestellt ist.
Ein Syntheseofen ist in Figur 1 allgemein mit 1 bezeichnet. Dieser Syntheseofen ist kästen- bzw. quaderförmig ausgebildet und weist einen von einer umlaufenden Ofenwand 2 umschlossenen Ofenraum 3 auf.
Innerhalb dieses Ofenraumes 3 sind eine Vielzahl von im Wesentlichen vertikal und parallel zueinander angeordneten Reaktionsröhren 4 angeordnet, durch welche von oben Prozess- gas eingeleitet wird, was nicht näher dargestellt ist. Dieses Prozessgas strömt von oben nach unten durch die Reaktionsrohre 4 und wird im unteren Bereich des Ofens bzw. außerhalb desselben in nicht dargestellten Austrittskollektoren gesammelt .
Im Bereich zwischen den Reaktionsrohren 4 bzw. aus diesen gebildeten Rohrreihen sind im oberen Bereich des Ofenraumes 3 im Wesentlichen in einer Ebene eine Vielzahl von Brennern 5 angeordnet. Diese Brenner 5 weisen jeweils eine nach unten gerichtete Brenneraustrittsrichtung auf, in Figur 1 ist für jeden Brenner 5 eine vertikale Brennerachse 6 strichpunktiert eingezeichnet . Wesentlich ist nun, dass wenigstens die äußeren im Bereich der Ofenwand 2 angeordneten Brenner 5 eine Brenneraustritts- richtung R aufweisen, welche vom Zentrum des Syntheseofens 1 wegführend gegenüber der Vertikalen geneigt ist. Dieser Neigungswinkel ist in Figur 1 mit α bezeichnet und gegenüber der zugehörigen vertikalen Brennerachse 6 definiert . Es versteht sich von selbst, dass, anders als in der zweidimen- sionalen Darstellung gemäß Figur 1, sich diese Neigung auch oder zusätzlich, je nach Anordnung der Brenner, gegenüber dem Zentrum des Ofenraumes 3 , in der quer zur dargestellten Zeichenebene erstreckten Ebene erstrecken kann. Das Zentrum des Ofenraumes 3 befindet sich dabei im Bereich der die mittleren Reaktionsrohre 4m aufnehmenden Ebene.
Besonders zweckmäßig ist es, wenn nicht nur die Brenneraustrittsrichtungen R der äußeren Brenner 5 geneigt sind, sondern auch der mittleren und inneren Brenner, wobei die Anordnung dann so getroffen ist, dass die Neigung ausgehend von den inneren Brennern zur Ofenwand 2 hin zunimmt, erkennbar ist die Neigung γ der inneren Brenner kleiner als die Neigung ß der mittleren Brenner und diese wiederum kleiner als die Neigung a der äußeren Brenner.
Der Neigungswinkel a. der äußeren Brenner liegt etwa maximal bei 10°, vorzugsweise bei 5°, die Neigungswinkel ß und γ sind geeignet kleiner gewählt. Die Neigung der Brenner 5 kann auf unterschiedliche Weise realisiert werden, es kann einerseits vorgesehen sein, dass die Brenner insgesamt geneigt eingebaut sind oder nur ihre Brenneröffnung bzw. Brennerdüse.
Besonders zweckmäßig ist es, wenn die Neigung der Brenner 5 verstellbar, insbesondere auch während des Betriebes, ausgebildet ist, in diesem Falle kann eine nicht dargestellte Steuerung für den Syntheseofen 1 vorgesehen sein, die eine Einstellung der Neigungen unter Berücksichtigung der Betriebsparameter des Syntheseofens 1 vornimmt .
Durch diese Ausgestaltung der Brenner 5 wird die Flammenablenkung der äußeren Brennerreihen zur Mitte deutlich reduziert, es entsteht eine gleichmäßige oder gleichmäßigere Abströmung des Rauchgases entlang der Reaktionsröhre, der Wärmeübergang wird verbessert und die erhöhte Materialbelastung durch "not spots" deutlich reduziert.
Diese Vorteile gegenüber dem Stand der Technik sind deutlich aus den Figuren 2a, 2b einerseits und 3a, 3b andererseits zu erkennen.
Figur 2a zeigt eine sehr ungleichmäßige Temperaturverteilung bei einem herkömmlichen Syntheseofen ohne Brennerneigung. Demgegenüber ist in Figur 2b eine erfindungsgemäße Ausge- staltung zu erkennen, bei der die äußeren Brenner bzw. deren Brenneraustrittsrichtung um 5° geneigt ist, es zeigt sich eine wesentlich homogenere Temperaturverteilung.
Ähnlich verhält es sich auch mit den Strömungsverhältnissen, die in den Figuren 3a und 3b dargestellt sind. Figur 3a zeigt die Strömungsverhältnisse bei einem herkömmlichen Syntheseofen ohne Brennerneigung und Figur 3b mit Brennerneigung, und zwar um 5° bei den äußeren Brennern. Die unerwünschten Totzonen (weiße leere Flächen) sind bei der erfindungsgemäßen Gestaltung deutlich reduziert.
In Figur 4 ist die Wärmestromdichte für die äußerste Rohrreihe über der Rohrlänge aufgetragen, und zwar in gestrichelter Darstellung für einen Syntheseofen nach dem Stand der Technik und in durchgezogener Linie für einen erfindungsgemäßen Syntheseofen mit um 5° geneigten äußeren Brennern. Erkennbar ist die Wärmestromdichte über der Rohrlänge beim einem erfindungsgemäßen Syntheseofen wesentlich gleichmäßiger verteilt.

Claims

Patentansprüche :
1. Syntheseofen mit einem von einer umlaufenden Ofenwand umschlossenen Ofenraum, in dem eine Vielzahl von im Wesentlichen in einer Ebene angeordneten Brennern mit nach unten gerichteter Brenneraustrittsrichtung und eine Vielzahl von im Wesentlichen vertikal und parallel zueinander angeordneten Reaktionsrohren angeordnet sind, wobei die Reaktions- röhre von außen durch die feuernden Brenner beheizt werden, dadurch gekennzeichnet, dass wenigstens die äußeren im Bereich der Ofenwand (2) angeordneten Brenner (5) eine Brenneraustrittsrichtung (R) aufweisen, welche vom Zentrum des Ofens wegführend gegenüber der Vertikalen geneigt ist.
2. Syntheseofen nach Anspruch 1, dadurch gekennzeichnet, dass die Neigung der Brenneraustrittsrichtungen (R) der einzelnen Brenner (5) unterschiedlich ist.
3. Syntheseofen nach Anspruch 2 , dadurch gekennzeichnet, dass die Neigung der Brenneraustrittsrichtungen (R) der Brenner (5) , ausgehend vom Zentrum des Ofens, nach außen zur Ofenwand (2) hin zunimmt.
4. Syntheseofen nach Anspruch 1 oder einem der folgenden, dadurch gekennzeichnet, dass der Neigungswinkel, ausgehend vom Zentrum, zwischen 0 bis 10°, vorzugsweise zwischen 0 bis 5°, liegt.
5. Syntheseofen nach Anspruch 1 oder einem der folgenden, dadurch gekennezichnet, dass die Brenner (5) mit geneigter Brenneraustrittsrichtung (R) insgesamt geneigt eingebaut sind und/oder ihre Brenneröffnung geneigt angeordnet ist.
6. Syntheseofen nach Anspruch 5 , dadurch gekennzeichnet, dass die Neigung der Brenneraustrittsrichtungen (R) einstellbar ist.
7. Syntheseofen nach Anspruch 6 , dadurch gekennzeichnet, dass zur Einstellung der Neigungen eine die Betriebsparameter des Syntheseofens berücksichtigende Steuerung vorgesehen ist.
EP04790323A 2003-12-04 2004-10-13 Syntheseofen Withdrawn EP1697036A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10357064A DE10357064A1 (de) 2003-12-04 2003-12-04 Syntheseofen
PCT/EP2004/011442 WO2005053834A1 (de) 2003-12-04 2004-10-13 Syntheseofen

Publications (1)

Publication Number Publication Date
EP1697036A1 true EP1697036A1 (de) 2006-09-06

Family

ID=34638433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04790323A Withdrawn EP1697036A1 (de) 2003-12-04 2004-10-13 Syntheseofen

Country Status (8)

Country Link
US (1) US7531146B2 (de)
EP (1) EP1697036A1 (de)
JP (1) JP4546971B2 (de)
CN (1) CN1890020A (de)
CA (1) CA2547232A1 (de)
DE (1) DE10357064A1 (de)
RU (1) RU2347607C2 (de)
WO (1) WO2005053834A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070104641A1 (en) * 2005-11-08 2007-05-10 Ahmed M M Method of controlling oxygen addition to a steam methane reformer
US8197250B2 (en) * 2009-03-31 2012-06-12 Uop Llc Adjustable burners for heaters
US8219247B2 (en) * 2009-11-19 2012-07-10 Air Products And Chemicals, Inc. Method of operating a furnace
US8545213B2 (en) * 2010-03-09 2013-10-01 Air Products And Chemicals, Inc. Reformer and method of operating the reformer
DE102010055453A1 (de) * 2010-12-21 2012-06-21 Linde Aktiengesellschaft Brennerbefeuerter Reaktor
PL2708812T3 (pl) 2012-09-13 2017-12-29 L'Air Liquide, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Proces i urządzenie do reakcji endotermicznych
DE102012108817A1 (de) 2012-09-19 2014-03-20 Thyssenkrupp Uhde Gmbh Verfahren zur Beeinflussung der Wärmestromdichte an den Wänden der Reaktionsrohre in einem Reformer
ES2877374T3 (es) 2015-12-15 2021-11-16 Air Liquide Aparato para procesos endotérmicos con disposición mejorada de los quemadores
EP3638951A1 (de) 2017-06-14 2020-04-22 L'Air Liquide Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Vorrichtung für endothermisches verfahren mit verbesserter aussenbrenneranordnung

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2338295A (en) * 1941-04-25 1944-01-04 Universal Oil Prod Co Heating of fluids
US2598879A (en) * 1949-03-29 1952-06-03 Universal Oil Prod Co Heating apparatus
NL295809A (de) 1962-07-30
FR88937E (fr) * 1965-10-19 1967-04-14 Soc D Const D App Pour Gaz A L Perfectionnements aux appareils de production de gaz combustibles
JPS494159B1 (de) * 1968-08-28 1974-01-30
GB1367453A (en) * 1970-09-25 1974-09-18 Topsoe H F A Furnace design
DE3145292C2 (de) * 1981-11-14 1986-09-04 Uhde Gmbh, 4600 Dortmund Röhrenspaltofen zur indirekten Erhitzung von spaltbaren Medien

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005053834A1 *

Also Published As

Publication number Publication date
US20070128091A1 (en) 2007-06-07
RU2347607C2 (ru) 2009-02-27
CN1890020A (zh) 2007-01-03
RU2006123545A (ru) 2008-01-20
JP4546971B2 (ja) 2010-09-22
US7531146B2 (en) 2009-05-12
JP2007534461A (ja) 2007-11-29
WO2005053834A1 (de) 2005-06-16
DE10357064A1 (de) 2005-07-07
CA2547232A1 (en) 2005-06-16

Similar Documents

Publication Publication Date Title
DE2513499C2 (de)
EP2202460B1 (de) Flachflammenbrenner und Verfahren zum Betreiben eines Flachflammenbrenners
DE69815755T2 (de) Reduktion von NOx-Emissionen bei Glasschmelzöfen
DE60011425T2 (de) Sekundär reformierungsverfahren und brenner
EP1697036A1 (de) Syntheseofen
DE4128423A1 (de) Vorrichtung zur durchfuehrung einer katalytischen reaktion
DE2740537A1 (de) Brenner fuer regenerativ-winderhitzer
DE19629216C2 (de) Verfahren zur Verbrennung von thermisch zu behandelnden Stoffen
DE3031419C2 (de)
DE60211888T2 (de) Verbrennungsluftsystem für rückgewinnungskessel, verbrennung verbrauchter laugen aus kochprozess
DE1803984A1 (de) Kermaischer Brenner
DE2754643C2 (de)
DE1803985A1 (de) Waermegenerator,insbesondere Winderhitzer fuer Hochoefen
DE20321360U1 (de) Syntheseofen
EP3423769B1 (de) Ofen und verfahren zum betreiben eines ofens
DE3131200A1 (de) Metallheizofen
DD296619A5 (de) Verfahren und vorrichtung zur reduzierung des co-gehaltes in abgasen von verbrennungsanlagen
DE827990C (de) Zweitluftzufuehrung in Generatorgasfeuerungen
EP3821973B1 (de) Reformerofen zur durchführung eines endothermen prozesses
DE102010055453A1 (de) Brennerbefeuerter Reaktor
AT153761B (de) Flammofen.
DE4427104A1 (de) Gasbrenner mit geringem Anteil von NOX-Gasen bei der Verbrennung von Brenngasen oder Brenngasgemischen
DE3931580C2 (de)
DE2751621C2 (de) Winderhitzer
DE331488C (de) Regenerativofen zur Verbrennung von Stickstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060511

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20080509

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20111026