EP1692398B1 - Stabilisationsmittel zur schwingungstabilisierung einer langen welle - Google Patents
Stabilisationsmittel zur schwingungstabilisierung einer langen welle Download PDFInfo
- Publication number
- EP1692398B1 EP1692398B1 EP04797438A EP04797438A EP1692398B1 EP 1692398 B1 EP1692398 B1 EP 1692398B1 EP 04797438 A EP04797438 A EP 04797438A EP 04797438 A EP04797438 A EP 04797438A EP 1692398 B1 EP1692398 B1 EP 1692398B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plate parts
- long shaft
- stabilising
- stabilising means
- support element
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Not-in-force
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D13/00—Pumping installations or systems
- F04D13/02—Units comprising pumps and their driving means
- F04D13/06—Units comprising pumps and their driving means the pump being electrically driven
- F04D13/08—Units comprising pumps and their driving means the pump being electrically driven for submerged use
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/007—Details, component parts, or accessories especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/043—Shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/04—Shafts or bearings, or assemblies thereof
- F04D29/043—Shafts
- F04D29/044—Arrangements for joining or assembling shafts
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/66—Combating cavitation, whirls, noise, vibration or the like; Balancing
- F04D29/669—Combating cavitation, whirls, noise, vibration or the like; Balancing especially adapted for liquid pumps
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2210/00—Working fluids
- F05D2210/10—Kind or type
- F05D2210/11—Kind or type liquid, i.e. incompressible
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/30—Retaining components in desired mutual position
- F05D2260/31—Retaining bolts or nuts
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S415/00—Rotary kinetic fluid motors or pumps
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S417/00—Pumps
Definitions
- the present invention relates to stabilising means for vibrationally stabilising a long shaft, preferably the long shaft comprises a rotating shaft driving a submerged pump.
- the invention also relates to a method for manufacturing such a stabilising means.
- Storing explosive media, e.g. gas or oil, in ships' tank is regulated by safety regulations such as those of the International Maritime Organisation (IMO) in order to minimise the risk of explosion during operation.
- IMO International Maritime Organisation
- Hydraulic motors have the drawback that accidental leaks will contaminate the content of the tank. Hydraulic systems also require a complicated supply of high pressure oil.
- a common solution for driving a pump within the tank is to apply an electrical motor on top of the tank and mounting a long rotating shaft between the electrical motor and the pump inside the tank.
- Such pumps are known as deep well pumps.
- the rotating shafts can be up to 30 m long and require special considerations with regard to support and stabilisation.
- the rotating shaft will be surrounded and supported by a concentric long support shaft.
- the support shaft is in turn fixed by intermediate support means, e.g. a pipe holder or clamp, to a parallel gas/oil pipe and/or a support tube surrounding both the support shaft and gas/oil pipe.
- intermediate support means e.g. a pipe holder or clamp
- the support shaft can also be fixed to the walls of the tank.
- the support shaft needs to be fixed due to the vibrations induced by the rotating shaft. Movement of fluids in the tank known as sloshing may also generate forces that require the shaft to be fixed.
- Another solution for fixing the intermediate support means on the support shaft is to use flanges of the support shaft.
- the support shaft typically consists of smaller tube pieces joined by flanges.
- the flanges may additionally comprise means for fixing the intermediate support means. This solution limits the available fixation positions of the intermediate support means to the flanges and complicates design of the system.
- US 5017104 discloses a stabilizer for vertically driven pumps in which a bearing is supported on the drive shaft approximately half way between the pump and the motor.
- the stabilizer bearing prevents bowing of the drive shaft which would cause considerable wear on the pump packing resulting in leaks.
- the bearing of the invention is then slipped over the shaft to a point as near halfway between the pump and motor as possible.
- the arms should be extended and secured well enough to determine the location to drill holes in the legs of the frame to accommodate bolts to secure the end of all four arms.
- US 2002/085776 discloses an improved flexible support for a steady bearing in rotational contact with the surface of a shaft allows the bearing and housing to substantially track the contact surface of an impeller shaft when the shaft is subject to elastic deflection during operation.
- the flexible support employs a flexible disc pack, which is comprised of a plurality of thin, flexible disc elements in a stacked arrangement.
- the disc pack is mounted to a support ring and is also mounted to the bearing housing such that the bearing housing and other bearing elements are capable of deflection to substantially align with the axis of the impeller shaft when the shaft deflects.
- a stabilising means for vibrationally stabilising a long shaft comprising:
- stabilising means that are easily dlsplaceable in the longitudinal direction of the long shaft. This is due to the fact that the optimal vertical positions for the stabilising means to dampen vibrations of the long shaft often may vary from estimates made beforehand. Thus, the possibility to easily displacing the stabilising means will increase the potential for damping the vibrations of the long shaft.
- the stabilising means may be applied in off-shore and maritime applications, as well as in on-shore applications.
- the stabilising means may be applied in off-shore and maritime applications such as liquid gas tankers, chemical tankers, fuel production and storage off-shore facilities (FPSO) etc.
- FPSO fuel production and storage off-shore facilities
- the stabilising means further comprises at least one support element being mounted on at least one of the plate parts, the at least one support element being adapted to establish contact between the at least two plate parts and the long shaft.
- the support elements can under practical conditions of operation be considered to be in contact with the long shaft.
- the force of the support elements on the long shaft will be considerable, e.g. assembling forces of 12 kN may be present.
- the assembling forces may be 2, preferably 5, possibly 10, times larger than the weight of the long shaft.
- the magnitude of the vibration forces may be around half the weight of the long shaft during typical operation with a submerged pump driven by a rotation shaft surrounded by a corresponding long shaft.
- the stabilising means may be provided with dedicated vibration damping means, either active_or passive damping means, Possibly, the stabilising means further comprises releasable fastening means, e.g. mounts with bolts and corresponding nuts, for releasably fitting the at least two plate parts around the long shaft for further joining the plate parts together.
- releasable fastening means e.g. mounts with bolts and corresponding nuts, for releasably fitting the at least two plate parts around the long shaft for further joining the plate parts together.
- the stabilising means comprises at least one support element being mounted on at least one of the plate parts, the at least one support element being adapted to establish contact between the at least two plate parts and the long shaft, each of the at least one support element(s) defining a second plane, wherein, for each of the support element(s), said second plane is least substantially perpendicular to the primary plane defined by the at least two plate parts.
- the second plane of each support element substantially comprises the longitudinal symmetry axis of the long shaft for reasons of stability.
- At least one of the stabilising member(s) is a pipe extending in a direction being parallel to the longitudinal direction of the long shaft.
- the pipe is adapted to convey a fluid, e.g. gas or oil.
- This pipe is also known as the pressure pipe.
- the at least two plate parts are further adapted to fit at least substantially annularly around the pipe, thereby defining a minimum distance between the at least two plate parts and the pipe, the stabilising means further comprising adjusting means for adjusting the minimum distance between the at least two plate parts and the pipe.
- At least one of the stabilising member(s) is a pipe which at least substantially surrounds the long shaft.
- the surrounding pipe may comprise both the stabilising means, at least part of the long shaft and at least part of said pressure pipe, the stabilising means connecting the surrounding pipe with the long shaft and the pressure pipe.
- at least one of the stabilising member(s) may be the inside walls of the tank, the walls having mounts adapted to fix the stabilising means.
- the stabilising means is in the form of a guide ring.
- a long shaft may be stabilised by more than one guide ring depending on the vibrations of the long shaft.
- the one or more guide rings may be coupled together, preferably in a direction parallel to the long shaft. In such a configuration, the coupled guide-rings may mutually stabilise one another.
- the stabilising means function as a support whereas with a plurality of guide-rings the stabilising means may function as a fixing device.
- the long shaft comprises a rotating shaft adapted to mechanically transfer power from a drive means to a pump, the pump being submerged in a tank.
- the long shaft may support the rotating shaft by having bearings at appropriate intervals of the longitudinal length of the support shaft.
- Another advantage of the stabilising means is that the long shaft can be freed from the stabilising means, whereby the long shaft may be used for pulling up the submerged pump connected to the bottom end of the long shaft.
- pump service and repair is in turn also simplified by the more flexible stabilising means of the present invention.
- a problem encountered with a long shaft comprising a rotating shaft is that the rotating shaft may significantly raise the temperature of the long shaft over time.
- the stabilising means may also be exposed to a significant temperature raise over time during operation of the rotating shaft. This temperature problem may be at least partly solved by designing the plate parts to absorb and/or compensate for the raising temperature and/or by providing cooling as necessary.
- the plate parts may be manufactured in stainless steel, typically a stainless and/or acid resistant steel e.g. AISI 316L, AISI 304, W. Nr. 1.4462 or similar, as the harsh environment of the tank will often necessitate a chemical inert material.
- the plate parts may be manufactured in aluminium or an alloy comprising aluminium.
- the plate parts may be manufactured in a material capable of withstanding prolonged exposure to vibrations and the associated wear, e.g. fretting wear.
- a stabilising means for vibrationally stabilising a long shaft comprising the steps of:
- the present invention facilitates a simple and fast manufacturing process for the stabilising means. Often, the stabilising means are manufactured in relative few numbers, thus costly manufacturing preparation are avoided due to the simplicity of the method for manufacturing the stabilising means.
- the method further comprises the steps of: a) providing at least one support element being adapted to establish contact between the at least two plate parts and the long shaft, and b) mounting the at least one support element on at least one of the plate parts.
- the at least two plate parts define a primary plane and each of the at least one support element(s) define a second plane, and wherein the step of mounting the support element(s) on at least one of the plate parts is performed In such a way that, for each support element, said second plane is at least substantially perpendicular to the primary plane.
- the at least two plate parts may be provided by means of a laser cutting method.
- the at least two plate parts each has a thickness in the range of 2 mm to 20 mm, more preferably in the range of 4 mm to 16 mm, even more preferably in the range of 6 mm to 8 mm. All of these ranges are accessible to the present stage of commercially available laser cutting technology, e.g. Nitrogen lasers.
- the method of manufacturing the stabilising means is particularly beneficial in that the manufacturing can be performed in just two steps; the aforementioned laser cutting step and a step of bending the plate parts into a predetermined shape. In that way welding can be completely avoided, which is advantageous because welding of stainless steel and aluminium alloys requires special care and/or special preparations.
- the first and second aspect of the present invention may each be combined with the other aspect.
- the two second minor plates 284 fit substantially annularly around the pipe 120 and comprise four support elements 300 similar to the support elements 292 of the first minor plates 291.
- the axis D intersects the axis B in a symmetry axis of the pipe 120.
- the two second minor plates 284 can change position with each other, i.e. they have a rotational symmetry around the symmetry axis of the pipe 120.
- the two second minor plates 284 have two sets of adjusting means, i.e. respectively a nut 281 and a corresponding bolt 283, the bolt 283 being mounted in the abutting second minor plates 284 in a manner to be described in more detail below.
- the support elements 300 (which are similar to the support elements 292) will reduce the distance to the pipe 120.
- a minimum distance between the pipe 120 and the support element 300 being closest to the pipe 120 can be defined. In the limit the minimum distance will be zero and the stabilising means 200 will be fixed onto the pipe 120.
- the two first minor plates 291 similarly comprise two sets of adjusting means 310 for adjusting and establishing contact between the support elements 292 and the long shaft 130.
- the minor plates 284 and 291 may not comprise support elements 292 and 300. Instead, the inner periphery part of the minor plates 291 and 282 have a substantially half-circular shape with a radius of curvature approximately equal to the radius of long shaft 130 and the pipe 120, respectively.
- the minor plates 291 and 284 will be engaged with the long shaft 130 and the pipe 120, respectively, along at least a part of their said inner periphery.
- the thickness of the minor plates 284 and 291 may be enhanced for improving the contact between the plates 284 and 291 and the long shaft 130.
- Fig. 4 shows a side view of the stabilising means 200 showing how the plates 280, 284 and 291 are interconnected. It is to be noted how the plates 280, 284 and 291 define a primary plane substantially normal to the long shaft 130 and the pipe 120. It is also visible how the first minor plate 291 and the second plate 284 have a bent part substantially normal to said primary plane so as to engage their corresponding plate at the adjusting means 281, 283 and 310 with a substantially flat section seen from a side view. At the far left and right mount 293, bolt 294 and nut 295 are shown for joining the two main plates 280. Furthermore, one of the bolts 286 for joining the minor plate 284 and the main plate 280 are shown in a cut out section behind the pipe 120.
- Fig. 5 shows a top view of a main plate 280 of the stabilising means 200 comprising appropriate holes 530 for joining the main plate 280 with another corresponding main plate 280 as shown in Fig. 3 . Also shown are holes 520 for mounting of the first minor plates (not shown) and holes 510 for mounting of the second minor plates (not shown).
- the main plate 280 also comprises additional holes 540 prepared for reducing material consumption without jeopardising strength and stability of the stabilising means 200. Furthermore, the holes 540 facilitate cleaning of the tank by automatic tank washing machines.
- Fig. 6 shows three different views of the second minor plate 284; from the top A, and two side views, B and C respectively, B and C having a viewing angle normal to each other.
- the second minor plate 284 comprises holes 610 for joining the second minor plate 284 with appropriate fastening means, e.g. bolts and nuts or similar, to the main plates 280.
- the bolt 286 shown in Fig. 3 may thus penetrate a hole 510 shown in Fig. 5 and a hole 610 for joining the two said plates together.
- the second minor plate 284 comprises receiving sections 620 for mounting of the support elements shown in Figs. 3 and 4 with reference numeral 292.
- the support elements 292 may be designed so that after insertion at the receiving sections 620 no dedicated fastening means are necessary during operation.
- the second minor plate 284 comprises a first part 284b, the first part 284b comprises four projections 284d for fixation of the adjusting means (not shown) when the second minor plate 284 is assembled as a part of the stabilising means 200. Furthermore, the second minor plate 284 comprises two holes 284c that function as receiving holes for bolts (not shown) of the adjusting means. As it is apparent from especially Fig. 6 , view B and C, that the second minor plate 284 also comprises a bent part 284a, the bent part 284a being substantially normal to remaining part of the second minor plate 284. The bent part 284a also comprises holes as seen in view C of Fig.
- the first minor plates 291 will have a similar design to that shown in Fig. 6 , but the first minor plate 291 is adapted to fit at least substantially annularly in combination with another corresponding minor plate 291 around the long shaft 130.
- Fig. 7 shows a partial top view of the adjusting means 281 and 283 of the invention when two second minor plates 284 are in abutting engagement as shown in Fig. 3 .
- the bolts 283 are received in the holes 284c of the first part 284b of the second minor plate 284.
- the projections 284d have also entered the corresponding holes of the bent part 284a.
- the nuts 281 are not in engagement with the bolts 283. It is an advantage of the invention that the receiving holes 284c can be dimensioned so that the bolts 283 do not fall out of the second minor plate 284 even though the corresponding nuts 281 are not engaged with the bolts 283. This is preferably done by manufacturing the holes 284c substantially equal to the size of the bolts 283 so that the bolts 283 after being pressed into the holes 284c will remain there also during remounting and service of the stabilising means 200.
- Fig. 8 shows a support element 292 of the invention.
- the support element 292 has an Alike shape with an open section 855 at the top in order to engage with the minor plates 280.
- the distance 820 is preferably slightly larger than the distance 810 in order to allow the minor plates to fit in when considering the given tolerances of the manufacturing process in question.
- the parts 830 of the support element 292 will be engaged with the pipe (not shown) before the centre part 840 due to the small distance 850 of approximately 0,5 mm.
- the support element 292 (being manufactured in a relatively flexible material like stainless steel) will bend slightly upwards and the distance 810 will decrease, thus as the pressure tension is increased the support element 292 will press more and more onto the minor plate (not shown) positioned at 855. Therefore, the support element 292 needs no special fastening means as the above mentioned design inherently provides fastening during operation.
- the above remarks relating to the support elements 292 would apply equally to a similar description of the support elements 300 shown in Fig. 3 .
- Fig. 9 shows a side view of stabilising means 700 according to an alternative embodiment.
- the stabilising means 700 comprises two plate parts 600 that fit substantially annularly around the long shaft 130.
- the stabilising means 700 is mechanically connected to a stabilising member (not shown), e.g. a wall, a pipe parallel to the long shaft 130 etc.
- Support elements 292 similar to the previous embodiment are mounted on the plate parts 600 for establishing contact between the long shaft 130 and the plate parts 600.
- the support elements 292 are designed so as to provide self-fastening during operation no special fastening means are necessary resulting in a relatively simple design which is fast and cost-effective to manufacture and mount.
- the two plate parts 600 are joined by adjusting means, i.e.
- Fig. 9 there is also shown in broken lines the mount 140 and the wall 150 similar to the Figs. 1 and 2 .
- Fig. 10 shows a more detailed view of the stabilising means 700.
- the two plate parts 600 are seen to have a rotational symmetry around the centre of the long shaft 130, said centre being coincident with the centre of the rotating shaft 135 as viewed in Fig. 10 .
- the two plate parts 600 may be identical resulting in simple manufacturing process.
- the two plate parts 600 are joined by adjusting means, i.e. 601 and 603.
- Fig. 10 it is seen that the support elements 292 are positioned relative to the long shaft 130 and the plates 600 so that there is little or no direct contact between the plate parts 600 and the long shaft 130 as illustrated by the tiny gap. This makes it easier to displace the stabilising means 700 in the longitudinal direction of the long shaft 130 when the adjusting means are slacken.
- the plate parts 600 comprise holes 540 to facilitate easy cleaning of the stabilising means 700 and the environment wherein the stabilising means 700 is positioned.
- Each of the plates 600 comprises two incisions or indents 620 in order to provide access for one or more auxiliary pipe(s) 800 within the abutting interface of the stabilising means 700 and the mount 140 (the latter not shown in Fig. 10 ).
- the auxiliary pipe 800 has a longitudinal extension substantially parallel to the long shaft 130, and the pipe 800 may contain cooling liquids, lubrication liquids, control wires, etc. for the lower lying pump 110 (not shown in Fig. 10 ).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
- Vibration Prevention Devices (AREA)
- Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)
Claims (21)
- Stabilisierungsmittel (200) zur Vibrationsstabilisierung einer langen Welle (130), wobei das Stabilisierungsmittel umfasst:- mindestens zwei Plattenteile (291, 284), die gemeinsam dazu beschaffen sind, mindestens im Wesentlichen kreisförmig um die lange Welle (130) zu passen und die lange Welle (130) im Wesentlichen in Bezug auf mindestens ein Stabilisierungselement (120) zu fixieren, wodurch ein Mindestabstand zwischen den mindestens zwei Plattenteilen (291, 284) und der langen Welle (130) festgelegt wird, und- Justiermittel (281, 283, 310) zum Justieren des Mindestabstands zwischen den mindestens zwei Plattenteilen (291, 284) und der langen Welle (130),
wobei die mindestens zwei Plattenteile (291, 284) eine Primärebene festlegen und wobei sich die Längsrichtung der langen Welle (130) im Wesentlichen lotrecht zu der ersten Ebene erstreckt, wenn das Stabilisierungsmittel (200) an der langen Welle (130) angebracht ist, und
wobei das Justiermittel (281, 283, 310) dazu beschaffen ist, mindestens zwei Positionen einzunehmen, wobei eine erste der Positionen das Stabilisierungsmittel (200) in einer Längsrichtung der langen Welle (130) fixiert und eine zweite der Positionen eine Gleitbewegung des Stabilisierungsmittels entlang der Längsrichtung der langen Welle (130) zulässt. - Stabilisierungsmittel (200) nach Anspruch 1, weiterhin umfassend mindestens ein Trägerelement (292, 300), das an mindestens einem der Plattenteile (291, 284) angebracht ist, wobei das mindestens eine Trägerelement (292, 300) dazu beschaffen ist, einen Kontakt zwischen den mindestens zwei Plattenteilen (291, 284) und der langen Welle (130) herzustellen.
- Stabilisierungsmittel (200) nach einem der Ansprüche 1-2, wobei das Stabilisierungsmittel (200) weiterhin lösbare Befestigungsmittel für die lösbare Anpassung der mindestens zwei Plattenteile (291, 284) um die lange Welle (130) umfasst.
- Stabilisierungsmittel (200) nach Anspruch 1, wobei das Stabilisierungsmittel (200) mindestens ein Trägerelement (292, 300) umfasst, das an mindestens einem der Plattenteile (291, 284) angebracht ist, wobei das mindestens eine Trägerelement (292, 300) dazu beschaffen ist, einen Kontakt zwischen den mindestens zwei Plattenteilen (291, 284) und der langen Welle (130) herzustellen, wobei jedes des mindestens einen Trägerelements (292, 300) eine zweite Ebene festlegt, wobei die zweite Ebene für jedes der Trägerelemente (292, 300) mindestens im Wesentlichen senkrecht zu der von den mindestens zwei Plattenteilen (291, 284) festgelegten ersten Ebene ist.
- Stabilisierungsmittel (200) nach einem der Ansprüche 1-4, wobei mindestens eines der Stabilisierungselemente ein Rohr (120) ist, das sich in einer Richtung parallel zu der Längsrichtung der langen Welle (130) erstreckt.
- Stabilisierungsmittel (200) nach Anspruch 5, wobei die mindestens zwei Plattenteile (291, 284) weiterhin dazu beschaffen sind, mindestens im Wesentlichen kreisförmig um das Rohr (120) zu passen, wodurch ein Mindestabstand zwischen den mindestens zwei Plattenteilen (291, 284) und dem Rohr (120) festgelegt wird, wobei das Stabilisierungsmittel weiterhin Justiermittel (281, 183, 310) zum Justieren des Mindestabstands zwischen den mindestens zwei Plattenteilen (291, 284) und dem Rohr (120) umfasst.
- Stabilisierungsmittel (200) nach Anspruch 6, wobei das Rohr (120) dazu beschaffen ist, ein Fluid zu transportieren.
- Stabilisierungsmittel (200) nach einem der Ansprüche 1-7, wobei mindestens eines der Stabilisierungselemente ein Rohr ist, das die lange Welle mindestens im Wesentlichen umgibt.
- Stabilisierungsmittel (200) nach einem der Ansprüche 1-8, wobei das Stabilisierungsmittel (200) in Form eines Führungsrings vorliegt.
- Stabilisierungsmittel (200) nach einem der Ansprüche 1-9, wobei die lange Welle (130) eine rotierende Welle (135) umfasst, die dazu beschaffen ist, mechanisch Kraft von einem Antriebsmittel (100) auf eine Pumpe (110) zu übertragen.
- Stabilisierungsmittel (200) nach einem der Ansprüche 1-10, wobei die mindestens zwei Plattenteile (291, 284) mithilfe eines Laserstrahlschneidverfahrens bereitgestellt wurden.
- Stabilisierungsmittel (200) nach einem der Ansprüche 1-11, wobei die mindestens zwei Plattenteile (291, 284) jeweils eine Dicke im Bereich von 2 mm bis 20 mm, mehr bevorzugt im Bereich von 4 mm bis 16 mm, noch mehr bevorzugt im Bereich von 6 mm bis 8 mm aufweisen.
- Stabilisierungsmittel (200) nach Anspruch 1, wobei mindestens eines der Plattenteile (291, 284) aus Edelstahl gefertigt ist.
- Stabilisierungsmittel (200) nach Anspruch 1, wobei mindestens eines der Plattenteile (291, 284) aus Aluminium oder einer Aluminium enthaltenden Legierung gefertigt ist.
- Verfahren zur Herstellung eines Stabilisierungsmittels (200) zur Vibrationsstabilisierung einer langen Welle, wobei das Verfahren die folgenden Schritte umfasst:- Bereitstellen von mindestens zwei Plattenteilen (291, 284) mit einer vorbestimmten Form, die dazu beschaffen ist, die mindestens zwei Plattenteile (291, 284) mindestens im Wesentlichen kreisförmig und lösbar um die lange Welle (130) zu passen und die lange Welle (130) im Wesentlichen in Bezug auf mindestens ein Stabilisierungselement (120) zu fixieren, und- Bereitstellen von Justiermitteln (281, 283, 310) die dazu beschaffen sind, den Mindestabstand zwischen den mindestens zwei Plattenteilen (291, 284) und der langen Welle (130) zu justieren,
wobei die mindestens zwei Plattenteile (291, 284) eine Primärebene festlegen und wobei sich die Längsrichtung der langen Welle (130) im Wesentlichen lotrecht zu der ersten Ebene erstreckt, wenn das Stabilisierungsmittel (200) an der langen Welle (130) angebracht ist, und
wobei das Justiermittel (281, 283, 310) dazu beschaffen ist, mindestens zwei Positionen einzunehmen, wobei eine erste der Positionen das Stabilisierungsmittel (200) in einer Längsrichtung der langen Welle (130) fixiert und eine zweite der Positionen eine Gleitbewegung des Stabilisierungsmittels entlang der Längsrichtung der langen Welle (130) zulässt. - Verfahren nach Anspruch 15, ferner umfassend die folgenden Schritte:- Bereitstellen mindestens eines Trägerelements (292, 300), das dazu beschaffen ist, einen Kontakt zwischen den mindestens zwei Plattenteilen (291, 284) und der langen Welle (130) herzustellen,- Anbringen des mindestens einen Trägerelements (292, 300) an mindestens einem der Plattenteile (291, 284).
- Verfahren nach Anspruch 16, wobei die mindestens zwei Plattenteile (291, 284) eine Primärebene festlegen und wobei jedes des mindestens einen Trägerelements (292, 300) eine zweite Ebene festgelegt und wobei der Schritt des Anbringens des Trägerelements bzw. der Trägerelemente (292, 300) an mindestens einem der Plattenteile (291, 284) derart durchgeführt wird, dass die zweite Ebene für jedes der Trägerelemente (292, 300) mindestens im Wesentlichen senkrecht zu der von den mindestens zwei Plattenteilen (291, 284) festgelegten ersten Ebene ist.
- Verfahren nach einem der Ansprüche 15-17, wobei der Schritt des Bereitstellens von mindestens zwei Plattenteilen (291, 284) das Laserstrahlschneiden der Plattenteile aus einem Blech umfasst.
- Verfahren nach einem der Ansprüche 15-18, wobei der Schritt des Bereitstellens von mindestens zwei Plattenteilen (291, 284) das Bereitstellen von mindestens zwei Plattenteilen (291, 284) mit einer Dicke im Bereich von 2 mm bis 20 mm, mehr bevorzugt im Bereich von 4 mm bis 16 mm, noch mehr bevorzugt im Bereich von 6 mm bis 8 mm umfasst.
- Verfahren nach einem der Ansprüche 15-19, weiterhin umfassend den Schritt des Biegens mindestens eines der Plattenteile (291, 284) in eine vorbestimmte Form.
- Verfahren nach einem der Ansprüche 15-20, wobei der Schritt des Bereitstellens der mindestens zwei Plattenteile (291, 284) mit einer vorbestimmten Form, die dazu beschaffen ist, die mindestens zwei Plattenteile (291, 284) mindestens im Wesentlichen kreisförmig und lösbar um die lange Welle (130) zu passen kein Schweißen der mindestens zwei Plattenteile (291, 284) umfasst.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DKPA200301673 | 2003-11-10 | ||
PCT/DK2004/000776 WO2005045253A1 (en) | 2003-11-10 | 2004-11-09 | Stabilising means for vibrationally stabilising a long shaft |
Publications (2)
Publication Number | Publication Date |
---|---|
EP1692398A1 EP1692398A1 (de) | 2006-08-23 |
EP1692398B1 true EP1692398B1 (de) | 2012-08-15 |
Family
ID=34560120
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP04797438A Not-in-force EP1692398B1 (de) | 2003-11-10 | 2004-11-09 | Stabilisationsmittel zur schwingungstabilisierung einer langen welle |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP1692398B1 (de) |
JP (1) | JP4713489B2 (de) |
KR (1) | KR100847908B1 (de) |
NO (1) | NO339267B1 (de) |
WO (1) | WO2005045253A1 (de) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103133351B (zh) * | 2013-03-07 | 2015-04-22 | 湖南耐普泵业有限公司 | 一种可抽芯立式长轴海水泵 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2112386A (en) * | 1937-06-22 | 1938-03-29 | Steele Charley | Pump |
DE1214199B (de) * | 1963-10-08 | 1966-04-14 | Metallgesellschaft Ag | Vorrichtung zur Befestigung vertikal angeordneter Wellen, auf denen rotierende Fluessigkeitsverteiler befestigt sind |
JPS53129719A (en) * | 1977-04-18 | 1978-11-13 | Mowaru Oogiyusuto | Apparatus for keeping combustion pressure of internal combustion engine constant during one cycle |
US4579596A (en) * | 1984-11-01 | 1986-04-01 | Union Carbide Corporation | In-situ removal of oily deposits from the interior surfaces of conduits |
JPS61180083A (ja) * | 1985-02-06 | 1986-08-12 | 株式会社日立製作所 | 配管支持装置 |
US5017104A (en) * | 1988-12-12 | 1991-05-21 | Baker Marvin B | Stabilizer for vertically driven pumps |
JPH072168A (ja) * | 1993-03-24 | 1995-01-06 | Takatori Seisakusho:Kk | 油圧制御弁 |
JP4208282B2 (ja) * | 1998-03-06 | 2009-01-14 | 株式会社小坂研究所 | 振動騒音を低減したサブマージドカーゴポンプ装置 |
JP3851730B2 (ja) * | 1998-10-16 | 2006-11-29 | 株式会社クボタ | 立軸ポンプ揚水管の中間部保持装置 |
JP2001317081A (ja) * | 2000-05-10 | 2001-11-16 | Hitachi Constr Mach Co Ltd | 旋回式建設機械 |
JP2002130535A (ja) * | 2000-10-17 | 2002-05-09 | Nichiei Intec Co Ltd | 配管支持金具及びこれを用いた配管支持構造 |
US6517246B2 (en) * | 2000-12-29 | 2003-02-11 | Spx Corporation | Flexible support and method for a steady bearing |
-
2004
- 2004-11-09 EP EP04797438A patent/EP1692398B1/de not_active Not-in-force
- 2004-11-09 JP JP2006538655A patent/JP4713489B2/ja active Active
- 2004-11-09 KR KR1020067011433A patent/KR100847908B1/ko active IP Right Grant
- 2004-11-09 WO PCT/DK2004/000776 patent/WO2005045253A1/en active Application Filing
-
2006
- 2006-05-12 NO NO20062165A patent/NO339267B1/no not_active IP Right Cessation
Also Published As
Publication number | Publication date |
---|---|
NO339267B1 (no) | 2016-11-21 |
KR100847908B1 (ko) | 2008-07-23 |
WO2005045253A1 (en) | 2005-05-19 |
KR20060111564A (ko) | 2006-10-27 |
EP1692398A1 (de) | 2006-08-23 |
JP4713489B2 (ja) | 2011-06-29 |
JP2007510851A (ja) | 2007-04-26 |
NO20062165L (no) | 2006-06-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US7552903B2 (en) | Machine mounting system | |
US9046041B2 (en) | Gearbox positioning device | |
JP2766627B2 (ja) | 電動水没式ポンプ | |
EP1431566A1 (de) | Schwingungsisolierende Kraftstoffpumpeneinheit | |
EP3320187A1 (de) | Trägerstruktur für rotierende maschinen | |
JP2004245410A (ja) | 管状部材の支持体 | |
JP2000179358A (ja) | ギアボックス用ロケ―タ― | |
US9672968B2 (en) | Rupture resistant system | |
EP1692398B1 (de) | Stabilisationsmittel zur schwingungstabilisierung einer langen welle | |
WO2013058952A2 (en) | Sub-frame integration of motor-compressor systems | |
US11460019B2 (en) | Compressor module | |
WO2006060713A1 (en) | Cryogenic pumping systems, rotors, and methods for pumping cryogenic fluids | |
CA2963495C (en) | Dual plate motor support for horizontal pumping system | |
JP5743854B2 (ja) | 船舶用の減速装置およびモータ付き減速装置 | |
JP2023536941A (ja) | 電動オイルポンプのための組立構造体 | |
JP6617992B2 (ja) | 圧縮機モジュール | |
JP6714413B2 (ja) | 水中ポンプ | |
JP2006177327A (ja) | モータポンプ | |
JP7368301B2 (ja) | サクションパッキンおよびこれを備えるポンプ | |
JP2005162010A (ja) | 自動車用燃料タンク | |
JP2006070916A (ja) | 自動変速機におけるオイルポンプの支持構造 | |
EP3088296A1 (de) | Trennplatte für ein azimuttriebwerk | |
KR20160115323A (ko) | 아지무스 추진기용 리셉터클 | |
KR200459365Y1 (ko) | 지지 베어링 정렬용 지그 | |
JP2007171090A (ja) | 炉心シュラウド支持装置および炉心シュラウドの据付方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 20060608 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR |
|
DAX | Request for extension of the european patent (deleted) | ||
GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
RIN1 | Information on inventor provided before grant (corrected) |
Inventor name: HALKJAER, LAU |
|
GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: FG4D Ref country code: CH Ref legal event code: EP Ref country code: AT Ref legal event code: REF Ref document number: 570990 Country of ref document: AT Kind code of ref document: T Effective date: 20120815 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: FG4D |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R096 Ref document number: 602004038959 Country of ref document: DE Effective date: 20121018 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: T3 |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MK05 Ref document number: 570990 Country of ref document: AT Kind code of ref document: T Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IS Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121215 Ref country code: CY Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: FI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: AT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: GR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121116 Ref country code: BE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: PT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121217 Ref country code: SI Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: DK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: EE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: ES Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121126 Ref country code: RO Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SK Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
26N | No opposition filed |
Effective date: 20130516 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20121115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: BG Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20121115 |
|
REG | Reference to a national code |
Ref country code: IE Ref legal event code: MM4A |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20130731 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 602004038959 Country of ref document: DE Effective date: 20130516 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 602004038959 Country of ref document: DE Effective date: 20130601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121109 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121115 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: MC Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121130 Ref country code: TR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20120815 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LU Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20121109 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: HU Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20041109 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: NL Payment date: 20191120 Year of fee payment: 16 |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: MM Effective date: 20201201 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20201201 |