EP1687455B1 - Kühlprozess und -vorrichtung für eine stahlplatte - Google Patents

Kühlprozess und -vorrichtung für eine stahlplatte Download PDF

Info

Publication number
EP1687455B1
EP1687455B1 EP04797129A EP04797129A EP1687455B1 EP 1687455 B1 EP1687455 B1 EP 1687455B1 EP 04797129 A EP04797129 A EP 04797129A EP 04797129 A EP04797129 A EP 04797129A EP 1687455 B1 EP1687455 B1 EP 1687455B1
Authority
EP
European Patent Office
Prior art keywords
strip
tubes
cooling
loss
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04797129A
Other languages
English (en)
French (fr)
Other versions
EP1687455A1 (de
Inventor
Stéphane Lecomte
André Fouarge
Denis Bouquegneau
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ArcelorMittal France SA
Original Assignee
Arcelor France SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arcelor France SA filed Critical Arcelor France SA
Priority to EP04797129A priority Critical patent/EP1687455B1/de
Priority to PL04797129T priority patent/PL1687455T3/pl
Publication of EP1687455A1 publication Critical patent/EP1687455A1/de
Application granted granted Critical
Publication of EP1687455B1 publication Critical patent/EP1687455B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/54Furnaces for treating strips or wire
    • C21D9/56Continuous furnaces for strip or wire
    • C21D9/573Continuous furnaces for strip or wire with cooling
    • C21D9/5735Details
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/63Quenching devices for bath quenching
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/62Quenching devices
    • C21D1/667Quenching devices for spray quenching

Definitions

  • the present invention relates to a device for the implementation of the cooling of a steel strip, in the context of a continuous annealing process.
  • this cooling is achieved by means of immersed water jets.
  • This cooling operation can be carried out consecutively to a first cooling operation in a boiling water bath.
  • Continuous annealing is a thermochemical treatment that is applied to steel strips after cold rolling.
  • the "strip" of steel is the steel product which, when cut, will produce sheets used in particular for the manufacture of automobile bodies, carcasses of household appliances, etc.
  • the continuous annealing process involves scrolling the steel strip through an oven where it is exposed to controlled heating and cooling.
  • the steel strip travels vertically along a series of successive strands, up and down, and thus scrolls sequentially through the various processing steps.
  • the cooling phase plays a particularly crucial role since it makes it possible, in certain cases, to reduce the concentration of expensive alloying elements necessary for the production of particular microscopic structures, for example of the "dual phase” type. , multiphase, "HLE” (High Limit Elastic), etc.
  • the cooling process therefore corresponds to a significant metallurgical and economic challenge.
  • the achievable cooling rates are relatively low, namely about 50 ° C / sec for a 1mm thick steel strip.
  • This limitation stems from the fact that when a steel strip is immersed at high temperature in a boiling water bath, a stable vapor film is formed in the vicinity of its surface, in a so-called “caulking" regime, which considerably limits heat exchange.
  • the term “calefaction” is understood to mean the presence of a vapor film, generated by high boiling, between a hot wall and a fluid which is either a liquid or a two-phase mixture of liquid and vapor, this presence resulting in a poor transfer of heat between the wall and the fluid.
  • the temperature of the steel strip at the outlet of the boiling water bath must remain above 300 ° C.
  • the temperature of the strip becomes lower than this temperature, the vapor film becomes unstable and it goes into so-called nucleate boiling regime. In the latter regime, regions adjacent to the band are subjected to different heat fluxes, which creates significant temperature differences. These temperature gradients induce in the steel mechanical stresses, which risk creating plastic deformations, therefore permanent and lead to flatness defects.
  • the strip is first cooled in a water bath whose temperature is higher than 60 ° C., up to a temperature of between 200 and 500 ° C. temperature range in which the transition between film boiling and nucleate boiling occurs. It is then recommended to cool the strip just before or just after the transition by means of immersed water jets until the strip reaches the temperature of the bath.
  • JP-A-60 009834 uses a set of cooling ramps, disposed on either side of the steel strip, and immersed in a tank of water whose temperature is between 60 and 75. % of the boiling temperature. For a given configuration of the spray booms, a laminar flow is generated, which prevents the formation of a vapor film in the vicinity of the steel strip.
  • Another document proposes to use the jets impact pressure in order to eliminate the deformations of the band during quenching (see JP-A-11 193418).
  • the applicant recommends applying on both sides of the steel strip a pressure of at least 500 N / cm 2 .
  • the present invention aims at carrying out a so-called quenching operation, typically at a speed greater than 1000 ° C./s, applicable to products flat metallurgical materials, preferably of steel, in the form of cold-rolled strips.
  • This quenching operation must be carried out by means of jets of cold water, the temperature of which is preferably between 0 ° C. and 50 ° C., said jets being immersed.
  • the invention aims to ensure cooling conditions at high power levels as homogeneous as possible over the entire width of the steel strip, by controlling the flows within the device.
  • the temperature of the strip at the inlet of the device must be between 750 ° C. and 350 ° C. and the temperature at the outlet should preferably be between 0 ° C. and 150 ° C.
  • a first object of the present invention relates to a basic cooling device, for carrying out a quenching operation during the continuous annealing treatment of a flat product in the form of a metallurgical strip, preferably a steel strip, said device being located in a vertical strand ascending or descending, comprising a weir in which is completely immersed a plurality of tubes stacked substantially vertically and symmetrically on either side of the strip along the latter and which eject each, in form turbulent jets substantially horizontally, cooling fluid to the web through a slot or a plurality of holes.
  • the device is further provided in its lower part with sealing means.
  • any two successive tubes, arranged on the same side of the strip are separated by an identical interval for all the tubes in question. view of the evacuation of the cooling fluid. Said interval is then chosen, at a given value of the specific flow rate of the cooling fluid, expressed in cubic meters per hour and per square meter of one face of the strip, to minimize the pressure drop in the evacuation channels corresponding to said interval (the pressure drop for each interval and the total pressure drop are identical).
  • the wall of the weir located at the rear of the tubes, has a width at least equal to that of the tubes and the horizontal distance of this wall relative to the rear face of the tubes is chosen such that the loss of load caused by the presence of the weir is less than 5% of the pressure loss caused by the intervals between two successive tubes, which is considered negligible.
  • the flow is then two-dimensional.
  • the invention advantageously makes it possible to avoid local boiling phenomena by choosing a specific flow rate of the cooling fluid on one side of the strip of between 250 and 1000 m 3 per hour and per m 2 .
  • the maximum specific flow per face was about 580 m 3 per hour per m 2 .
  • the pressure drop caused by the intervals is less than 150 mm of water column.
  • the distance between the end of each tube and the band is identical for all the tubes and is between 50 mm and 200 mm.
  • the cooling fluid is liquid water maintained at a temperature below 50 ° C.
  • the device is located in substantially vertical strand amount (angular deviation from the vertical less than 30 °) while being directly preceded by a tank of water essentially brought to the boiling temperature.
  • the invention will advantageously be implemented in an installation where the metallurgical product to be treated has a running speed of between 0.25 m / s and 20 m / s, and a thickness of between 0.1 mm and 10 mm.
  • cooling tubes are dimensioned such that the ejection velocity of the cooling fluid is homogeneous over the entire bandwidth.
  • the tubes are dimensioned so that the velocity distribution is such that there is a relative difference between the maximum speed (V max ) and the minimum speed (V min ) of ejection according to the width of the tube less than 5. % or V max - V min V max ⁇ 0 , 05.
  • the ratio between the passage section of a tube and the free section of this tube is greater than 1 .
  • said tubes have a rectangular section.
  • the ratio of one side to an adjacent side of the rectangular section is 0.1 to 10 and the thickness of the tubes is 0.25 to 10 times the hole diameter or the thickness of the tube.
  • the slot in order to control the coherence of the jet, the ratio between the thickness of the tubes and the diameter of the holes being, if appropriate, still preferably equal to 2/3.
  • the aforementioned sealing means comprise a double pair of roll locks, allowing both the passage of the band and the creation of a pressure drop limiting to a minimum value leaks. down weir.
  • these sealing means also comprise injection means a fluid between the rollers, whose pressure and / or temperature can be controlled.
  • the upper tube is equipped with a dam whose height is at least equal to the sum of the thickness of the water plate at the weir and the height of the water column corresponding to the pressure drop between the maximum flow tubes.
  • a second object of the present invention relates to a quenching process during the continuous annealing treatment of a flat product in the form of a metallurgical strip, preferably a steel strip, using the device described under one of the embodiments above, to achieve a specific cooling power of between 1000 kW / m 2 and 10000 kW / m 2 per face of metallurgical product.
  • the temperature of the strip at the inlet of the device is between 350 ° C. and 750 ° C. and the temperature at the outlet is between 50 ° C. and 450 ° C., preferably between 50 ° C. and 450 ° C. ° C and 100 ° C or between 350 and 450 ° C.
  • Figure 1 schematically shows a sectional view of the cooling device according to the present invention.
  • Figure 2 schematically shows an arrangement of the holes for splashing water on the steel strip in the device of the present invention.
  • FIG. 3 graphically illustrates the thermal performance of the cooling device according to the invention.
  • Figure 4 illustrates the performance of said device in terms of flatness of the steel strip.
  • Figures 5 and 6 illustrate the impact of the uniformity of cooling on the homogeneity of the mechanical properties of the steel strip.
  • Figure 5 relates to a steel of the "dual phase" family
  • Figure 6 relates to a steel of the family of multiphase steels.
  • FIG. 7 schematically gives the different positions of the specimens taken as a function of the width of the sheet, for carrying out the tests relating to FIGS. 5 and 6.
  • Figure 8 shows the parameters for calculating the index of flatness, these parameters characterizing the sinusoid to which is assimilated the longitudinal profile of the strip at the edge.
  • the cooling device consists of a set of tubes 1, called “ramps” or “cooling ramps”, arranged symmetrically on either side of the steel strip to be cooled. These ramps are submerged and fed laterally with cooling fluid. Their section is preferably rectangular. In the following description of the invention, the terms “tubes” and “ramps” will be used indistinctly.
  • this sealing system located in the lower part of the device, which allows both the passage of the steel strip 2 and the creation of a maximum pressure drop of in such a way as to minimize the leakage rate of the coolant towards the bottom of the box.
  • this sealing system consists of a double pair of rollers 3, applied against the steel strip and positioned symmetrically with respect thereto. Between the rollers, a fluid is injected whose pressure and / or temperature can be controlled.
  • the cooling fluid is preferably water.
  • the cooling ramps are located at a distance A from the pass line of the strip 2. For reasons of space, on the one hand, and in order to limit the total flow in the system, for equivalent performance, on the other hand, the maximum distance between the belt and the cooling ramps is 200mm.
  • a space B is left between two successive ramps so that the water injected by the ramps can be evacuated between them. This ensures a flow as homogeneous as possible along the width of the steel strip.
  • the choice of the distance B results from a compromise between a maximum specific cooling power P, the specific power being defined as the cooling power per unit area and per band face to be cooled, and a minimum pressure drop across the evacuation channels, to ensure a sufficiently rapid renewal of the cooling fluid in the vicinity of the sheet, and thus prevent the formation of local boiling zones in the vicinity of the strip.
  • the distance B is chosen to be identical between two successive ramps for all the ramps, in order to ensure identical flow conditions in front of all the spray bars. This therefore makes it possible to obtain a vertical homogeneity of the flow. In this way, the cooling fluid injected by a given ramp is discharged by means of the channels directly adjacent to this ramp. This avoids creating preferential paths and minimizes the passage time of the cooling fluid in the vicinity of the band, always to avoid the local formation of boiling zones.
  • Each cooling ramp 1 is provided, on the face exposed to the strip, of at least one slot or a set of holes, as shown in Figure 2, for the projection of the cooling fluid to the strip.
  • the distance between two successive holes must be such that the flow in the near vicinity of the band can be likened to that of a slot.
  • the ejection velocity of the fluid must be sufficient to avoid forming boiling zones in the vicinity of the strip.
  • This ejection speed V is chosen as a function of the distance A with respect to the band and is typically between 0 and 10 m / s.
  • the device or cooling box Downstream of the evacuation channels, the device or cooling box comprises a spillway 4, over the entire width of the box and whose height corresponds to the level of the jet of the last ramp, which ensures that under all operating conditions, the last ramp is immersed in the same way as the others.
  • the cooling performances of the device were measured under industrial conditions by thermal balance on the basis of the following quantities: temperatures of the steel strip at the inlet and the outlet of the device, length of the section cooling and scrolling speed of the steel strip through the device.
  • Figure 3 shows that the specific cooling power, expressed in kW per square meter and per strip face, is a linear function of the specific flow rate, itself expressed in cubic meters per hour and per square meter for the two cumulative faces. Under the conditions envisaged here, the specific power is between 4000 and 6000kW / m 2 and per product face.
  • Figure 4 illustrates the performance of the device with respect to the flatness of the steel strip. They are the image of the homogeneity of the cooling and consequently of the control of the flows in the device. The characterization of flatness concerns here long banks.
  • Each point in the figure represents an operating point of the device - defined by the associated specific cooling power - at a given time during the industrial test campaign.
  • a flatness index expressed in "I" units, is associated.
  • a unit “I” corresponds to a relative elongation of 1mm per 100m of steel strip.
  • the longitudinal profile of the strip at the edge can be likened to a sinusoid, of wavelength L and of amplitude X.
  • FIG. 4 shows two reference thresholds, 120 and 240 "I" units, which correspond to the acceptable flatness tolerances for two electrogalvanizing lines. The figure shows that the majority of operating points are below the threshold of the most demanding line.
  • Figures 5 and 6 show the breaking load, yield point (Fig. 6) and elongation at 80% of the breaking load, respectively. It can be concluded from these observations that there is a good homogeneity of the mechanical properties according to the width of the band.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Strip Materials And Filament Materials (AREA)
  • Heat Treatments In General, Especially Conveying And Cooling (AREA)
  • Coating With Molten Metal (AREA)

Claims (10)

  1. Kühlvorrichtung für die Durchführung eines Abschreckvorgangs bei einer Durchlauf-Glühbehandlung eines Flachprodukts in Form eines Metallbandes (2), vorzugsweise eines Stahlbandes, wobei die besagte Vorrichtung:
    - sich an einem im Wesentlichen senkrecht nach oben oder unten laufenden Abschnitt befindet,
    - eine Ablaufvorrichtung (4) umfasst, in die eine Mehrzahl von Rohren (1) vollständig eintauchen, die im Wesentlichen senkrecht und symmetrisch auf beiden Seiten des Bandes (2) und entlang desselben angeordnet sind und die jeweils eine Kühlflüssigkeit in einem im Wesentlichen horizontalen, turbulenten Strahl durch einen Schlitz oder eine Vielzahl von Öffnungen auf das Band spritzen,
    - in ihrem unteren Bereich mit Mitteln zur Abdichtung (3) ausgestattet ist,
    dadurch gekennzeichnet, dass zwei beliebige, aufeinander folgende Rohre (1), die sich auf der gleichen Seite des Bandes (2) befinden, durch einen Zwischenraum (B) getrennt sind, der für alle Rohre (1) gleich ist und für einen gegebenen spezifischen Durchflusswert des Kühlmittels in Kubikmetern pro Stunde pro Quadratmeter einer Seite des Bandes gewählt wird, um den Druckhöhenverlust in den Auslaufkanälen, die dem besagten Zwischenraum (B) entsprechen, zu minimieren.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass die Wand der Ablaufvorrichtung (4), die sich hinter den Rohren (1) befindet, eine Breite aufweist, die mindestens der der Rohre (1) entspricht, und der horizontale Abstand dieser Wand von der Rückwand der Rohre (1) wird so gewählt, dass der durch die Ablaufvorrichtung (4) verursachte Druckhöhenverlust weniger als 5% des von den Zwischenräumen (B) zwischen zwei aufeinander folgenden Rohren (1) verursachten Druckhöhenverlusts ausmacht.
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der spezifische Durchfluss der Kühlflüssigkeit zwischen 250 und 1000 m3 pro Stunde pro m2 und pro Seite des Bandes entspricht.
  4. Vorrichtung nach Anspruch 1, 2 oder 3, dadurch gekennzeichnet, dass der von den Zwischenräumen (B) verursachte Druckhöhenverlust weniger als 150 mm Wassersäule beträgt.
  5. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass der Abstand (A) zwischen dem Ende jedes Rohres (1) und dem Band (2) bei allen Rohren gleich ist und zwischen 20 mm und 200 mm beträgt.
  6. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die besagten Rohre (1) einen rechteckigen Querschnitt aufweisen.
  7. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass die Abdichtungsmittel (3) eine Schleuse mit Rollenpaaren umfassen, die gleichzeitig das Durchlaufen des Bandes (2) und die Erzeugung eines Druckhöhenverlusts ermöglichen, der die Lecks der Ablaufvorrichtung (4) nach unten auf ein Minimum begrenzt, und Mittel zum Einspritzen eines Mediums zwischen die besagten Rollenpaare, mit Druck- und/oder Temperaturkontrolle.
  8. Vorrichtung nach einem der vorstehenden Ansprüche, dadurch gekennzeichnet, dass das obere Rohr (1) mit einem Damm (5) ausgestattet ist, dessen Höhe mindestens der Summe der Dicke des Wasserstreifens (H) und der Höhe der Wassersäule (ΔH) entsprechend dem Druckhöhenverlust zwischen den Rohren bei maximalem Durchfluss entspricht.
  9. Abschreckverfahren bei einer Durchlauf-Glühbehandlung eines Flachprodukts in Form eines Metallbandes, vorzugsweise eines Stahlbandes, bei der eine Vorrichtung nach einem der vorstehenden Ansprüche eingesetzt wird, um eine spezifische Kühlleistung zwischen 1000 kW/m2 und 10000 kW/m2 pro Seite des Metallprodukts zu erreichen.
  10. Verfahren nach Anspruch 9, dadurch gekennzeichnet, dass die Temperatur des Bandes am Einlauf der Vorrichtung zwischen 350 °C und 750 °C beträgt und die Temperatur am Auslauf zwischen 50°C und 450°C, vorzugsweise zwischen 50°C und 100 °C oder zwischen 350°C und 450 °C.
EP04797129A 2003-12-01 2004-11-25 Kühlprozess und -vorrichtung für eine stahlplatte Active EP1687455B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP04797129A EP1687455B1 (de) 2003-12-01 2004-11-25 Kühlprozess und -vorrichtung für eine stahlplatte
PL04797129T PL1687455T3 (pl) 2003-12-01 2004-11-25 Sposób i urządzenie do chłodzenia taśmy stalowej

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03447278A EP1538228A1 (de) 2003-12-01 2003-12-01 Verfahren und Vorrichtung zum Kühlen einer Stahlband
PCT/BE2004/000167 WO2005054524A1 (fr) 2003-12-01 2004-11-25 Procede et dispositif de refroidissement d'une bande d'acier
EP04797129A EP1687455B1 (de) 2003-12-01 2004-11-25 Kühlprozess und -vorrichtung für eine stahlplatte

Publications (2)

Publication Number Publication Date
EP1687455A1 EP1687455A1 (de) 2006-08-09
EP1687455B1 true EP1687455B1 (de) 2007-03-14

Family

ID=34443178

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03447278A Withdrawn EP1538228A1 (de) 2003-12-01 2003-12-01 Verfahren und Vorrichtung zum Kühlen einer Stahlband
EP04797129A Active EP1687455B1 (de) 2003-12-01 2004-11-25 Kühlprozess und -vorrichtung für eine stahlplatte

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03447278A Withdrawn EP1538228A1 (de) 2003-12-01 2003-12-01 Verfahren und Vorrichtung zum Kühlen einer Stahlband

Country Status (16)

Country Link
US (1) US7645417B2 (de)
EP (2) EP1538228A1 (de)
JP (1) JP2007512431A (de)
KR (1) KR101089082B1 (de)
CN (1) CN100465303C (de)
AT (1) ATE356891T1 (de)
AU (1) AU2004294469B2 (de)
BR (1) BRPI0416333B1 (de)
CA (1) CA2544269C (de)
DE (1) DE602004005362T2 (de)
DK (1) DK1687455T3 (de)
ES (1) ES2282918T3 (de)
PL (1) PL1687455T3 (de)
PT (1) PT1687455E (de)
RU (1) RU2356949C2 (de)
WO (1) WO2005054524A1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2940978B1 (fr) * 2009-01-09 2011-11-11 Fives Stein Procede et section de refroidissement d'une bande metallique en defilement par projection d'un liquide
CN103849734B (zh) * 2012-12-06 2015-08-26 宝山钢铁股份有限公司 基于板形的淬火装置流量控制方法及其检测与控制装置
KR101451814B1 (ko) * 2012-12-20 2014-10-16 주식회사 포스코 강판 열처리용 급냉 장치
TWI616537B (zh) * 2015-11-19 2018-03-01 財團法人金屬工業研究發展中心 金屬材熱處理方法
JP6813036B2 (ja) * 2017-10-31 2021-01-13 Jfeスチール株式会社 厚鋼板の製造設備及び製造方法
US20230193442A1 (en) * 2017-11-17 2023-06-22 Sms Group Gmbh Method for the preoxidation of strip steel in a reaction chamber arranged in a furnace chamber
CN107754148A (zh) * 2017-12-08 2018-03-06 中国空气动力研究与发展中心高速空气动力研究所 超声速射流灭火组件及灭火器
WO2021024021A1 (en) 2019-08-06 2021-02-11 Arcelormittal Device for cooling a steel strip

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4917131B1 (de) * 1970-07-03 1974-04-27
US4113523A (en) * 1973-07-25 1978-09-12 Nippon Kokan Kabushiki Kaisha Process of making high tension cold-reduced al-killed steel excellent in accelerated aging property
JPS5173911A (en) * 1974-12-24 1976-06-26 Nippon Kokan Kk Kosutoritsupuoteisankajotaidemizuyakiiresuruhoho oyobi sochi
LU71664A1 (de) * 1975-01-17 1976-12-31
JPS5253712A (en) * 1975-10-30 1977-04-30 Nippon Kokan Kk <Nkk> Equipment for continuous annealing containingoverage treatment
JPS5839210B2 (ja) * 1979-02-19 1983-08-29 日本鋼管株式会社 連続焼鈍における鋼帯の冷却方法
JPS5832219B2 (ja) * 1979-11-19 1983-07-12 新日本製鐵株式会社 連続焼鈍ラインにおける鋼帯の冷却方法
JPS5785923A (en) 1980-11-14 1982-05-28 Nippon Kokan Kk <Nkk> Coolant for metal
JPS58120748A (ja) * 1982-01-13 1983-07-18 Nippon Steel Corp 加工用冷延鋼帯および高張力冷延鋼帯の連続熱処理設備
JPS59153843A (ja) * 1983-02-18 1984-09-01 Nippon Kokan Kk <Nkk> ストリップの冷却装置
JPS59172759A (ja) * 1983-03-22 1984-09-29 Mitsubishi Electric Corp ゲ−トタ−ンオフサイリスタモジユ−ル
JPS609834A (ja) * 1983-06-28 1985-01-18 Nippon Steel Corp 鋼ストリツプの冷却方法及びその装置
JPS61194119A (ja) * 1985-02-21 1986-08-28 Nippon Steel Corp 連続焼鈍設備における鋼帯冷却方法
JPS61217531A (ja) * 1985-03-22 1986-09-27 Kawasaki Steel Corp 鋼帯の冷却方法
CA1266602A (en) 1985-07-25 1990-03-13 Kuniaki Sato Method and apparatus for cooling steel strips
JPS62238334A (ja) 1986-04-07 1987-10-19 Kawasaki Steel Corp 連続焼鈍炉における鋼帯の冷却方法
JPS63110555A (ja) * 1986-10-29 1988-05-16 Hitachi Ltd 燃料電池の積層体
JPS63145722A (ja) 1986-12-09 1988-06-17 Kawasaki Steel Corp 連続焼鈍ラインの冷却装置
KR100260016B1 (ko) * 1996-05-23 2000-06-15 아사무라 타카싯 연속식강대 열처리공정에 있어서 강대의 폭방향 균일 냉각장치
JPH11172401A (ja) * 1997-12-05 1999-06-29 Mitsubishi Heavy Ind Ltd 帯材の冷却方法及び装置
JPH11193418A (ja) * 1997-12-29 1999-07-21 Kobe Steel Ltd 平坦性に優れた高強度冷延鋼板の製造方法
CN2334511Y (zh) * 1998-06-16 1999-08-25 冶金工业部钢铁研究总院 一种用于中厚钢板或钢带热轧后的冷却装置
BE1014418A3 (fr) * 2001-10-05 2003-10-07 Cockerill Rech & Dev Procede et dispositif de refroidissement accelere en recuit continu.

Also Published As

Publication number Publication date
EP1687455A1 (de) 2006-08-09
KR101089082B1 (ko) 2011-12-07
PL1687455T3 (pl) 2007-08-31
RU2356949C2 (ru) 2009-05-27
WO2005054524A1 (fr) 2005-06-16
CN100465303C (zh) 2009-03-04
DE602004005362D1 (de) 2007-04-26
AU2004294469A1 (en) 2005-06-16
ATE356891T1 (de) 2007-04-15
PT1687455E (pt) 2007-05-31
AU2004294469B2 (en) 2009-07-16
ES2282918T3 (es) 2007-10-16
CA2544269A1 (en) 2005-06-16
DK1687455T3 (da) 2007-05-29
CA2544269C (en) 2012-03-13
US7645417B2 (en) 2010-01-12
BRPI0416333B1 (pt) 2017-05-16
RU2006124519A (ru) 2008-01-27
CN1886524A (zh) 2006-12-27
DE602004005362T2 (de) 2007-11-29
BRPI0416333A (pt) 2007-01-09
EP1538228A1 (de) 2005-06-08
JP2007512431A (ja) 2007-05-17
US20060243357A1 (en) 2006-11-02
KR20060128880A (ko) 2006-12-14

Similar Documents

Publication Publication Date Title
EP2100673B1 (de) Verfahren und Vorrichtung zum Blasen von Gas auf ein laufendes Band
EP1687455B1 (de) Kühlprozess und -vorrichtung für eine stahlplatte
EP1655383B1 (de) Vorrichtung und Verfahren zur Begrenzung der beim Kühlen von Aluminium- oder Stahlblechen unter Gasströmung auftretenden Bandvibrationen
EP0761829B1 (de) Vorrichtung zum Kühlen von Walzgut
CA2428485C (fr) Procede et installation de revetement au trempe d&#39;une bande metallique, notamment d&#39;une bande d&#39;acier
JP2012051013A (ja) 熱鋼板の水切り装置および水切り方法
EP3555324B1 (de) Verfahren und abschnitt zur schnellen kühlung einer kontinuierlichen strasse zur behandlung von metallbändern
EP1300478B1 (de) Verfahren und Vorrichtung zum beschleunigten Abkühlen im Durchlaufglühverfahren
FR2648807A1 (de)
FR2833871A1 (fr) Procede et installation de fabrication de bandes metalliques a partir de bandes coulees directement a partir de metal liquide
EP3397786B1 (de) Vorrichtung und verfahren zur ausführung einer kontrollierten oxidation von metallbändern in einem durchlaufofen
JP3277985B2 (ja) 高温鋼板の冷却装置
MXPA06006161A (en) Method and device for cooling a steel strip
EP2173918B1 (de) Ausrüstung zur beschichtung eines blechstreifens
WO2023285747A1 (fr) Refroidissement liquide d&#39;une bande en defilement dans une ligne continue
WO2005023720A1 (fr) Procede de controle du formage de verre plat
BE423985A (de)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060422

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ARCELOR FRANCE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 602004005362

Country of ref document: DE

Date of ref document: 20070426

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20070503

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 20070419

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070714

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20070314

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2282918

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20071217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070615

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20071130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070314

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070614

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20070915

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230525

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20231020

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: LU

Payment date: 20231019

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20231019

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20231201

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20231024

Year of fee payment: 20

Ref country code: SE

Payment date: 20231020

Year of fee payment: 20

Ref country code: PT

Payment date: 20231019

Year of fee payment: 20

Ref country code: IT

Payment date: 20231019

Year of fee payment: 20

Ref country code: IE

Payment date: 20231023

Year of fee payment: 20

Ref country code: FR

Payment date: 20231020

Year of fee payment: 20

Ref country code: DK

Payment date: 20231019

Year of fee payment: 20

Ref country code: DE

Payment date: 20231019

Year of fee payment: 20

Ref country code: AT

Payment date: 20231023

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20231020

Year of fee payment: 20

Ref country code: BE

Payment date: 20231019

Year of fee payment: 20