EP1685323B1 - Vorrichtung zum dämpfen von druckstössen - Google Patents

Vorrichtung zum dämpfen von druckstössen Download PDF

Info

Publication number
EP1685323B1
EP1685323B1 EP04790081A EP04790081A EP1685323B1 EP 1685323 B1 EP1685323 B1 EP 1685323B1 EP 04790081 A EP04790081 A EP 04790081A EP 04790081 A EP04790081 A EP 04790081A EP 1685323 B1 EP1685323 B1 EP 1685323B1
Authority
EP
European Patent Office
Prior art keywords
piston
housing
further piston
connecting piece
fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04790081A
Other languages
English (en)
French (fr)
Other versions
EP1685323A1 (de
Inventor
Norbert Weber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hydac Technology GmbH
Original Assignee
Hydac Technology GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hydac Technology GmbH filed Critical Hydac Technology GmbH
Publication of EP1685323A1 publication Critical patent/EP1685323A1/de
Application granted granted Critical
Publication of EP1685323B1 publication Critical patent/EP1685323B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M37/00Apparatus or systems for feeding liquid fuel from storage containers to carburettors or fuel-injection apparatus; Arrangements for purifying liquid fuel specially adapted for, or arranged on, internal-combustion engines
    • F02M37/0011Constructional details; Manufacturing or assembly of elements of fuel systems; Materials therefor
    • F02M37/0041Means for damping pressure pulsations
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M55/00Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
    • F02M55/04Means for damping vibrations or pressure fluctuations in injection pump inlets or outlets
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M2200/00Details of fuel-injection apparatus, not otherwise provided for
    • F02M2200/31Fuel-injection apparatus having hydraulic pressure fluctuations damping elements
    • F02M2200/315Fuel-injection apparatus having hydraulic pressure fluctuations damping elements for damping fuel pressure fluctuations

Definitions

  • the invention relates to a device for damping pressure surges in a fluid with a housing and a longitudinally movable against the biasing force of a spring accumulator in the housing piston according to the feature configuration of the preamble of claim 1.
  • the devices in question include the so-called hydraulic accumulators, one of the main tasks of hydraulic accumulators being to take up certain volumes of pressurized fluid from a hydraulic system and, if necessary, to return them to the system. Since the fluid is under pressure, the hydraulic accumulators are treated as pressure vessels and must be designed for the maximum operating pressure, taking into account the acceptance standards. For volume compensation in the hydraulic accumulator and the associated energy storage, the hydraulic fluid in the hydraulic accumulator is weighted or spring loaded or charged with gas. There is always a balance between the pressure of the pressure fluid and the weight of the spring or the back pressure generated by the gas. In most hydro plants hydropneumatic, so gas-loaded memory are used with separating element, which differs depending on the design of the separating element between bladder, piston and diaphragm accumulators.
  • the hydropneumatic accumulator mentioned have to fulfill a variety of tasks in a hydraulic system and, for example, in addition to the aforementioned energy storage for damping of mechanical shocks and pressure shock absorption in the hydraulic system to be involved.
  • hydraulic pumps such as positive displacement pumps
  • pulsations occur in the volume flow, these pulsations cause not only noise but also vibrations, which can lead to damage to the entire hydraulic system.
  • the aforementioned hydraulic, in particular positive displacement pumps are also used in the so-called.
  • Common rail technology in the field of diesel engines.
  • Newer developments of the third generation rely on the piezo technology for the injection systems for the diesel fuel.
  • the newly developed piezo inline injectors for the third common-rail generation (see VDI - News No. 33 of August 15, 2003) use piezo actuator modules that use coupler modules on switching valves and these in turn on a nozzle module of the fuel Injection system act, wherein the outstanding hydraulic speed of the system results from the high degree of integration of the inline injector, ie from the vicinity of the piezo package to the nozzle needle in the tip of the injector.
  • the moving masses of the new systems were reduced from 16g to 4g, whereby moving mass means the mass of the nozzle needle and the fuel filling the control chamber.
  • very high system pressures are necessary, which reach up to the order of 2200 bar.
  • the pertinent system pressure is from the said hydraulic pump, in particular positive displacement pump to build up with the described disadvantage of the occurring pressure and Pulsationsstête. If these pressure surges are passed on to the injector system, this can be too critical System conditions lead to failure of the piezo-injector system and injection system. If one knows what is known (cf.
  • a further device for damping pressure pulsations in a fluid system in particular in a fuel system of an internal combustion engine, wherein the known device comprises a housing in which at least one working space is present. This is connected to the fluid system and is partially limited by at least one movable wall element in the form of a metal membrane, which is set stationary in the housing at the edge. This wall element is operatively connected to a first spring means and to be able to smooth pressure pulsations even with variable pressure in the fluid system, it is provided that the device comprises at least a second movable wall element, which limits a second working space and also consists of an edge fixed in the housing metal membrane.
  • the first spring device is arranged between the two wall elements in the form of the membranes and operatively connected to both. Further, a throttle device is provided, via which the second working space is connected to the fluid system.
  • a generic device for damping pressure surges in a fluid comprising a housing and a longitudinally movable piston against the biasing force of a spring accumulator in the housing, one piston cooperating with another piston, which is guided longitudinally displaceable in a connecting piece of the housing, wherein in operation of the device, the piston in each displacement position of the other piston exerts on this a compressive force and wherein the further piston is formed in the manner of a punch.
  • the two pistons are mechanically connected to each other, that is, a piston is an integral part of the other piston, to induce the damping of the guided in the housing first piston is permanently supported on the compression spring assembly. Due to the one-piece construction of the two mentioned pistons it is sufficient that for a captive for the other piston, the first piston can be supported on the front side of the fitting and insofar outside the continuous housing opening in case of need.
  • a comparable arrangement in the form of a single-piston solution with different piston diameters on opposite sides of the single piston arrangement is also due to the US 2003/183197 A1 demonstrated. As far as the damping of pressure surges at very high system pressures, these known solutions leave nothing to be desired.
  • the present invention seeks to provide a device for damping pressure surges available, with which it is possible, even at very high system pressures to 2200 bar occurring pressure surges, caused by a hydraulic pump, in particular diesel fuel pump, so To dampen and / or smooth out any harmful force discharges into a piezo injector system the common rail technology takes place.
  • This object is achieved by a device having the features of claim 1 in its entirety.
  • the one piston is larger in diameter by a multiple than the diameter of the other piston and it has been shown that an inhibiting driving operation with the piston can be achieved by the pertinent arrangement. Especially Verkantungsvortician the other piston in the connecting piece of the housing are avoided by its separate, independent guidance so.
  • the further piston is machined, in particular lapped, on the outer peripheral side such that a metallically dense gap is achieved at least between parts of the outer circumference and the further piston on the inner wall of the housing opening.
  • the further piston may be provided on the outer peripheral side with ring or lubrication grooves.
  • a leakage opening arranged in the housing opens into the fluid space between the pistons, then the diesel medium, which nevertheless penetrates the interior of the housing, can, in the form of a return bore for leak oil depressurized in the block towards the tank or leakage side.
  • At least one helical spring designed as a compression spring and / or a compressed gas as a spring accumulator.
  • the use of a pure compressed gas may entail the disadvantage that in view of the very high pressures under the influence of the compression of the first-mentioned piston, a liquefaction process of the gas in the housing region occurs. Accordingly, however, can be alternatively or additionally by using a compression spring as a spring memory, the system pressures safely dominate.
  • FIGURE shows in longitudinal section the device according to the invention for damping pressure surges with two different embodiments of cover parts.
  • the device shown in the figure is used to dampen pressure surges in a fluid, in particular in the form of diesel fuel, wherein the device has a cylindrical housing 10. Furthermore, the device has a against the biasing force of a spring accumulator 12 in the housing 10 longitudinally movable piston 14.
  • the pertinent piston 14 is formed in the manner of a cylindrical contact plate and along its outer periphery via a sliding and / or sealing ring 16 along the cylindrical Inner circumference 18 of the housing 10 out.
  • the piston 14 accordingly has on its opposite sides two substantially planar abutment surfaces 20,22 and the end-side guide of the spring accumulator 12, the piston 14 is provided on its side facing thereto with a cylindrical guide surface 22, the outer circumference also on the inner circumference 18 of Housing 10 is supported.
  • the piston 14 cooperates with a further piston 24, wherein the further piston 24 is guided in a connecting piece 26 of the housing 10 so as to be longitudinally movable. Further, as the illustration of the figure shows, the piston 14 acts in the housing with a compressive force on the further piston 24 in each operating travel position, also in its shown foremost end stop position during operation or use of the device.
  • the fitting 26 tapers towards the free end of the housing 10 and is provided on the outer peripheral side with a connecting thread 28, with which the housing 10 can be connected in the arrangement shown to a fluid system, for example to the diesel supply line for an injector system according to the common -Rail technology.
  • the housing 10 is located in a connecting line, which leads to a hydraulic pump, in particular positive displacement pump, for example in the form of a diesel fuel pump or the like.
  • a hydraulic pump in particular positive displacement pump, for example in the form of a diesel fuel pump or the like.
  • the pressure surges created during operation of the diesel fuel pump which can be considerable at system pressures of up to 2200 bar and more, are to be damped and smoothed with the device according to the invention, with high-frequency fluid pulses also being compensated.
  • the damping device according to the invention should be effective even at very high pressure amplitudes independently thereof in predeterminable limits.
  • Said connecting piece 26 merges into a length-reinforced base 30 of the housing 10 and said pistons 14, 24 and the spring accumulator 12 are oriented in their longitudinal direction on the longitudinal axis 32 of the housing 10 and connecting piece 26. Further, the piston 14 in diameter by a multiple larger than the diameter of the further piston 24, so that in view of the change in the diameter ratio, a very good impact force is introduced between further piston 24 and the first piston sixteenth
  • the further piston 24 is thus formed in the manner of a punch or plunger and guided over at least one captive 34 in the form of a locking ring in the through-housing opening 36 of the connecting piece 26.
  • the captive 34 may consist in particular of a retaining ring which closes the housing opening 36 to the outside at the front end and abuts the front end of the further piston 24 in its front boundary position at the supernatant thereof.
  • the length of the further piston 24 is dimensioned such that it maintains an axial distance from the captive 34 with a small clearance.
  • the piston 14 then exerts a pressure force on it in each displacement position of the further piston 24.
  • the further piston 24 on the outer circumference side is so finely worked, in particular lapped, that a metallically tight gap 38 is achieved at least between parts of the outer periphery of the further piston 24 and the inner wall of the housing opening 36.
  • the further piston 24 on the outer peripheral side ring or lubrication grooves 40 Such a labyrinth seal is achieved, which makes it more difficult for the diesel fuel the housing opening 36 into the space 42 within the housing 10 between the contact surface 20 and the bottom surface 44 facing the bottom 30 to penetrate.
  • a sealing system 48 is provided in the front, frontal region of the bottom 30, for example in the form of a conventional ring seal.
  • a compression spring in the form of a coil spring wherein the housing interior may also be additionally acted upon by a pressurized gas, for example in the form of a nitrogen gas.
  • the pertinent compression spring 12 extends between the piston 14 and a cover part 50, wherein the cover part 50 may be formed from a holding plate 52 which is held in the housing 10 via a securing means, in particular a securing ring 54.
  • a cover part 50 consists of a screw 56, the outer peripheral side via an external thread 58 of the housing 10 can be screwed onto this.
  • the device according to the invention it is ensured that any occurring leakage flows are safely controlled and due to the separate piston arrangement of the pistons 14 and 24 it is ensured that there is no tilting.
  • very high-frequency pressure surges acting on the punch-like further piston 24 can be in the same frequency impulsively pass on to the piston 16, which under the influence of the spring accumulator 12 and in response to the other piston 24 then performs the pulsation damping or Pulsationsglättung .
  • the system shown can be realized in particular on the housing side 10 of conventional steel materials in a cost effective manner and manufacturing technology.
  • the device according to the invention can generally be used where low volumes have to be level-regulated or displaced at high pressure. Due to the area ratios of the piston, the spring to be used can build smaller, since the required force is reduced accordingly.

Description

  • Die Erfindung betrifft eine Vorrichtung zum Dämpfen von Druckstößen in einem Fluid mit einem Gehäuse und einem gegen die Vorspannkraft eines Federspeichers in dem Gehäuse längsverfahrbaren Kolben gemäß der Merkmalsausgestaltung des Oberbegriffes des Patentanspruches 1.
  • Zu den dahingehenden Vorrichtungen zählen die sog. Hydrospeicher, wobei eine der Hauptaufgaben von Hydrospeichern es ist, bestimmte Volumen unter Druck stehender Flüssigkeit einer Hydroanlage aufzunehmen und diese bei Bedarf wieder an die Anlage zurück zu geben. Da sich die Flüssigkeit unter Druck befindet, werden die Hydrospeicher wie Druckbehälter behandelt und müssen für den maximalen Betriebsüberdruck unter Berücksichtigung der Abnahmestandards ausgelegt sein. Zum Volumenausgleich im Hydrospeicher und der damit verbundenen Energiespeicherung wird die Druckflüssigkeit im Hydrospeicher gewichts- oder federbelastet oder mit Gas beaufschlagt. Dabei herrscht zwischen dem Druck der Druckflüssigkeit und dem vom Gewicht der Feder oder dem vom Gas erzeugten Gegendruck stets ein Gleichgewicht. In den meisten Hydroanlagen werden hydropneumatische, also gasbeaufschlagte Speicher mit Trennelement eingesetzt, wobei man je nach Ausbildung des Trennelementes unterscheidet zwischen Blasen-, Kolben- und Membranspeichern.
  • Die genannten hydropneumatischen Speicher haben in einer Hydroanlage verschiedenste Aufgaben zu erfüllen und können beispielsweise neben der genannten Energiespeicherung auch zur Dämpfung mechanischer Stöße sowie zur Druckstoßdämpfung im hydraulischen System mit beigezogen werden. Insbesondere bei Einsatz von hydraulischen Pumpen, wie Verdrängerpumpen, entstehen Pulsationen im Volumenstrom, wobei diese Pulsationen neben Lärm auch Vibrationen verursachen, was zu einer Schädigung der gesamten Hydroanlage führen kann.
  • Die genannten Hydro-, insbesondere Verdrängerpumpen finden auch Anwendung in der sog. Common-Rail-Technik im Bereich von Dieselmotoren. Neuere Entwicklungen der dritten Generation setzen dabei für die Einspritzsysteme für den Dieselkraftstoff auf die Piezotechnik. Die dabei neu entwickelten Piezo-Inline-Injektoren für die dritte Common-Rail-Generation (vgl. VDI - Nachrichten Nr. 33 vom 15. August 2003) verwenden Piezo-Aktormodule, die über Kopplermodule auf Schaltventile und diese wiederum auf ein Düsenmodul des Kraftstoff-Einspritzsystems einwirken, wobei sich die herausragende hydraulische Schnelligkeit des Systems aus dem hohen Integrationsgrad des Inline-Injektors ergibt, d.h. aus der Nähe des Piezo-Paketes zur Düsennadel in der Spitze des Injektors. Im Vergleich zur vorangegangenen Generation wurde dabei bei den neuen Systemen die bewegte Masse von 16g auf 4g reduziert, wobei man unter bewegter Masse die Masse der Düsennadel und des Kraftstoffes versteht, der den Steuerraum füllt. Für die dahingehende technische Auslegung sind sehr hohe Systemdrücke notwendig, die bis in die Größenordnung von 2200 bar heranreichen. Der dahingehende Systemdruck ist von der genannten Hydropumpe, insbesondere Verdrängerpumpe, aufzubauen mit dem beschriebenen Nachteil der auftretenden Druck- und Pulsationsstöße. Werden die dahingehenden Druckstöße an das Injektorsystem weitergegeben, kann dies zu kritischen Systemzuständen führen und zu einem Ausfall der Piezo-lnjektoranlage nebst Einspritzsystem. Sofern man, was bekannt ist (vgl. DE 195 39 885 A1 ), im oben skizzierten Sinne übliche Hydrospeicher mit Trennelement (Kolben) zur Pulsations- und Druckstoßdämpfung in das Diesel-Fluidsystem mit einbezieht, finden diese jedoch regelmäßig ihre Grenzen im Hinblick auf die genannten hohen Systemdrücke bis 2200 bar.
  • Durch die DE 101 48 220 A1 ist eine weitere Vorrichtung zum Dämpfen von Druckpulsationen in einem Fluidsystem bekannt, insbesondere in einem Kraftstoffsystem einer Brennkraftmaschine, wobei die bekannte Vorrichtung ein Gehäuse umfaßt, in dem mindestens ein Arbeitsraum vorhanden ist. Dieser ist mit dem Fluidsystem verbunden und wird bereichsweise von mindestens einem beweglichen Wandelement in Form einer Metallmembran begrenzt, die randseitig im Gehäuse stationär festgelegt ist. Dieses Wandelement ist mit einer ersten Federeinrichtung wirkverbunden und um Druckpulsationen auch bei variablem Druck im Fluidsystem glätten zu können, ist vorgesehen, dass die Vorrichtung mindestens ein zweites bewegliches Wandelement umfaßt, welches einen zweiten Arbeitsraum begrenzt und gleichfalls aus einer randseitig im Gehäuse festgelegen Metallmembran besteht. Die erste Federeinrichtung ist zwischen den beiden Wandelementen in Form der Membranen angeordnet und mit beiden wirkverbunden. Ferner ist eine Drosseleinrichtung vorgesehen, über welche der zweite Arbeitsraum mit dem Fluidsystem verbunden ist. Mit der bekannten Lösung lassen sich zwar Druckpulsationen in einem Fluidsystem bei unterschiedlichen Druckniveaus zuverlässig und gut glätten. Aufgrund der festen Einspannung der Wandelemente (Membrane) ist aber deren Bewegbarkeit eingeschränkt, so dass bei hohen Drücken und entsprechend großen Pulsations- und Druckstößen ein funktionssicherer Betrieb gefährdet sein kann. Durch die US 5 456 233 A ist bei einem Kraftstoff-Einspritzsystem mit einer Hochdruckpumpe für eine Brennkraftmaschine eine gattungsgemäße Vorrichtung zum Dämpfen von Druckstößen in einem Fluid bekannt, mit einem Gehäuse und einem gegen die Vorspannkraft eines Federspeichers in dem Gehäuse längsverfahrbaren Kolben, wobei der eine Kolben mit einem weiteren Kolben zusammenwirkt, der in einem Anschlußstück des Gehäuses längsverfahrbar geführt ist, wobei beim Betrieb der Vorrichtung der Kolben in jeder Verfahrstellung des weiteren Kolbens auf diesen eine Druckkraft ausübt und wobei der weitere Kolben in der Art eines Stempels ausgebildet ist. Bei der bekannten Lösung sind die beiden Kolben mechanisch miteinander verbunden, d.h. der eine Kolben ist einstückiger Bestandteil des weiteren Kolbens, wobei zum Herbeiführen der Dämpfung der im Gehäuse geführte erste Kolben sich an der Druckfederanordnung permanent abstützt. Aufgrund der einstückigen Ausbildung der beiden genannten Kolben genügt es, dass für eine Verliersicherung für den weiteren Kolben der erste Kolben sich an der Stirnseite des Anschlußstückes und insoweit außerhalb der durchgehenden Gehäuseöffnung im Bedarfsfall abstützen kann. Eine vergleichbare Anordnung in Form einer Einkolbenlösung mit unterschiedlichen Kolbendurchmessern auf gegenüberliegenden Seiten der Einkolbenanordnung ist auch durch die US 2003/183197 A1 aufgezeigt. Was das Dämpfen von Druckstößen bei sehr hohen Systemdrücken anbelangt, lassen diese bekannten Lösungen noch Wünsche offen.
  • Ausgehend von diesem Stand der Technik liegt der Erfindung die Aufgabe zugrunde, eine Vorrichtung zum Dämpfen von Druckstößen zur Verfügung zu stellen, mit der es möglich ist, auch bei sehr hohen Systemdrücken bis 2200 bar auftretende Druckstöße, hervorgerufen durch eine Hydropumpe, insbesondere Dieselkraftstoffpumpe, derart zu dämpfen und/oder zu glätten, dass keine schädlichen Krafteinleitungen in ein Piezo-Injektorsystem der Common-Rail-Technik erfolgt. Eine dahingehende Aufgabe löst eine Vorrichtung mit den Merkmalen des Patentanspruches 1 in seiner Gesamtheit.
  • Dadurch, dass gemäß dem kennzeichnenden Teil des Patentanspruches 1 die beiden genannten Kolben mechanisch voneinander entkoppelt sind und dass die durchgehende Gehäuseöffnung des Anschlußstückes die Verliersicherung aufweist, lassen sich in funktionssicherer Weise auch sehr hochfrequente Druckstöße im Dieselkraftstoffsystem sicher beherrschen, auch wenn bedingt durch die Hydropumpe in Form der Dieselkraftstoffpumpe sehr hohe Systemdrücke von bis zu 2200 bar und mehr erzeugt sind. Durch die mechanische Entkopplung der beiden genannten Kolben und die permanente Druckkrafteinleitung des einen Kolbens auf den weiteren Kolben ist sichergestellt, dass die eingeleiteten Druckstöße sicher aufgefangen und beherrscht werden können und insbesondere ist durch die Entkopplung der Kolben sichergestellt, dass etwaige Undichtigkeiten mit einhergehenden Leckageströmen gering gehalten sind oder dergestalt beherrscht werden, dass Funktionsausfälle im Gesamtsystem vermieden sind, wozu auch mit beiträgt, dass für den weiteren Kolben eine eigenständige Verliersicherung in der durchgehenden Gehäuseöffnung des Anschlußstückes vorgesehen ist. Auf diese Art und Weise ist die freie Verfahrbarkeit der jeweiligen Kolben zwischen vorgebbaren Verfahrschranken in der Gehäuseanordnung erreicht.
  • Vorzugsweise ist dabei vorgesehen, dass der eine Kolben im Durchmesser um ein Mehrfaches größer ist als der Durchmesser des weiteren Kolbens und es hat sich gezeigt, dass durch die dahingehende Anordnung ein hemmfreier Ansteuervorgang mit den Kolben erreichbar ist. Insbesondere Verkantungsvorgänge des weiteren Kolbens im Anschlußstück des Gehäuses sind durch seine getrennte, eigenständige Führung derart vermieden.
  • Bei einer weiteren bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung ist der weitere Kolben außenumfangsseitig derart feinstbearbeitet, insbesondere geläppt, dass ein metallisch dichter Spalt zumindest zwischen Teilen des Außenumfanges und des weiteren Kolbens an der Innenwandung der Gehäuseöffnung erreicht ist. In weiterer Ausgestaltung des genannten Dichtsystems kann der weitere Kolben außenumfangsseitig mit Ring- oder Schmiernuten versehen sein. Hierdurch wird trotz der hohen Drücke von bis zu 2200 bar und mehr im Diesel-Fluidsystem eine sichere Abdichtung des weiteren Kolbens gegenüber dem Gehäuseinneren mit dem ersten Kolben erreicht und insbesondere bei Einsatz der Ring- oder Schmiernuten am Außenumfang des weiteren Kolbens kann sich dergestalt eine Fluiddichtung aufbauen, die dem Fluideintritt in den metallischen Spalt entgegenwirkt.
  • Sofern bei einer bevorzugten Ausführungsform der erfindungsgemäßen Vorrichtung in den Fluidraum zwischen den Kolben eine im Gehäuse angeordnete Leckageöffnung mündet, kann dergestalt in der Art einer Rücklaufbohrung für Lecköl das dennoch in das Gehäuseinnere eindringende Dieselmedium drucklos im Block in Richtung auf die Tank- oder Leckageseite abgegeben werden.
  • Im Hinblick auf die angesprochenen sehr hohen Drücke hat es sich als vorteilhaft erwiesen, als Federspeicher mindestens eine als Druckfeder ausgebildete Schraubenfeder und/oder ein Druckgas vorzusehen. Der Einsatz eines reinen Druckgases bringt gegebenenfalls den Nachteil mit sich, dass im Hinblick auf die sehr hohen Drücke es unter dem Einfluß der Kompression des erstgenannten Kolbens zu einem Verflüssigungsvorgang des Gases in dem Gehäusebereich kommt. Demgemäß lassen sich aber alternativ oder zusätzlich durch Einsatz einer Druckfeder als Federspeicher die genannten Systemdrücke sicher beherrschen.
  • Weitere vorteilhafte Ausführungsformen der erfindungsgemäßen Vorrichtung sind Gegenstand der sonstigen Unteransprüche.
  • Im folgenden wird die erfindungsgemäße Vorrichtung anhand eines Ausführungsbeispiels nach der Zeichnung näher erläutert. Dabei zeigt in prinzipieller und nicht maßstäblicher Darstellung die einzige Figur im Längsschnitt die erfindungsgemäße Vorrichtung zum Dämpfen von Druckstößen mit zwei verschiedenen Ausführungsformen an Deckelteilen.
  • Die in der Figur gezeigte Vorrichtung dient dem Dämpfen von Druckstößen in einem Fluid, insbesondere in Form von Dieselkraftstoff, wobei die Vorrichtung ein zylindrisches Gehäuse 10 aufweist. Ferner weist die Vorrichtung einen gegen die Vorspannkraft eines Federspeichers 12 in dem Gehäuse 10 längsverfahrbaren Kolben 14 auf. Der dahingehende Kolben 14 ist in der Art einer zylindrischen Anlageplatte ausgebildet und entlang seines Außenumfanges über einen Gleit- und/oder Dichtring 16 längs des zylindrischen Innenumfanges 18 des Gehäuses 10 geführt. Der Kolben 14 weist demgemäß an seinen einander gegenüberliegenden Seiten zwei im wesentlichen plane Anlageflächen 20,22 auf und zur endseitigen Führung des Federspeichers 12 ist der Kolben 14 an seiner dahingehend gerichteten Seite mit einer zylindrischen Führungsfläche 22 versehen, die sich außenumfangsseitig gleichfalls am Innenumfang 18 des Gehäuses 10 abstützt.
  • Der Kolben 14 wirkt mit einem weiteren Kolben 24 zusammen, wobei der dahingehend weitere Kolben 24 in einem Anschlußstück 26 des Gehäuses 10 längsverfahrbar geführt ist. Ferner wirkt, wie die Darstellung nach der Figur zeigt, der Kolben 14 in jeder Betriebs-Verfahrstellung, auch in seiner gezeigten vordersten Endanschlagstellung beim Betrieb oder Gebrauch der Vorrichtung, im Gehäuse mit einer Druckkraft auf den weiteren Kolben 24 ein. Das Anschlußstück 26 verjüngt sich zum freien Ende des Gehäuse 10 hin absatzartig und ist außenumfangsseitig mit einem Anschlußgewinde 28 versehen, mit dem sich das Gehäuse 10 in der gezeigten Anordnung an ein Fluidsystem anschließen läßt, beispielsweise an die Diesel-Versorgungsleitung für ein Injektorsystem nach der Common-Rail-Technik. Das Gehäuse 10 befindet sich dabei in einer Anschlußleitung, die zu einer Hydropumpe, insbesondere Verdrängerpumpe, führt, beispielsweise in Form einer Dieselkraftstoffpumpe oder dergleichen. Die beim Betrieb der Dieselkraftstoffpumpe entstehenden Druckstöße, die bei Systemdrücken von bis zu 2200 bar und mehr erheblich sein können, sollen mit der erfindungsgemäßen Vorrichtung gedämpft und geglättet werden, wobei auch hochfrequente Fluidstöße ausgeglichen werden sollen. Ferner soll die erfindungsgemäße Dämpfungsvorrichtung auch bei sehr hohen Druckamplituden unabhängig hiervon in vorgebbaren Grenzbereichen wirksam sein.
  • Das genannte Anschlußstück 26 geht in einen in der Länge verstärkten Boden 30 des Gehäuses 10 über und die genannten Kolben 14,24 sowie der Federspeicher 12 orientieren sich in ihrer Längsausrichtung an der Längsachse 32 von Gehäuse 10 und Anschlußstück 26. Des weiteren ist der Kolben 14 im Durchmesser um ein Mehrfaches größer als der Durchmesser des weiteren Kolbens 24, so dass im Hinblick auf die Änderung des Durchmesserverhältnisses eine sehr gute Stoßkrafteinleitung erfolgt zwischen weiterem Kolben 24 und erstem Kolben 16.
  • Der weitere Kolben 24 ist mithin in der Art eines Stempels oder Stößels ausgebildet und über mindestens eine Verliersicherung 34 in Form eines Sicherungsringes in der durchgehenden Gehäuseöffnung 36 des Anschlußstückes 26 geführt. Die Verliersicherung 34 kann dabei insbesondere aus einem Sicherungsring bestehen, der am vorderen Ende die Gehäuseöffnung 36 nach außen hin abschließt und an dessen Überstand das vordere Ende des weiteren Kolbens 24 in seiner vorderen Begrenzungslage anstößt. Im unbetätigten Zustand ist die Länge des weiteren Kolbens 24 derart bemessen, dass dieser mit einem geringen Spiel einen axialen Abstand zu der Verliersicherung 34 einhält. Sobald jedoch über den Kraftstoff ein vorgebbares Druckniveau aufgebaut ist, ist das Spiel beseitigt und im dahingehenden Betriebs- oder Gebrauchszustand der Vorrichtung übt dann der Kolben 14 in jeder Verfahrstellung des weiteren Kolbens 24 auf diesen eine Druckkraft aus. Um eine gute Abdichtung zu erreichen, ist der weitere Kolben 24 außenumfangsseitig derart feinstbearbeitet, insbesondere geläppt, dass ein metallisch dichter Spalt 38 zumindest zwischen Teilen des Außenumfanges des weiteren Kolbens 24 und der Innenwandung der Gehäuseöffnung 36 erreicht ist. Zur weiteren Verbesserung des Dichtsystems weist der weitere Kolben 24 außenumfangsseitig Ring- oder Schmiernuten 40 auf. Derartig ist eine Labyrinthdichtung erreicht, die es dem Dieselkraftstoff erschwert, über die Gehäuseöffnung 36 in den Zwischenraum 42 innerhalb des Gehäuses 10 zwischen Anlagefläche 20 und der ihr zugewandten Bodenfläche 44 des Bodens 30 einzudringen.
  • In den genannten Fluid- oder Zwischenraum 42 zwischen den Kolben 14,24 mündet eine im Gehäuse 10 angeordnete Leckageöffnung 46 in der Art einer Bohrung und dergestalt kann ein bewußt vorgesehener Spalt- oder Leckagestrom über das Dichtsystem in Form der Ring- oder Schmiernuten 40, den metallischen Spalt 38 sowie den Zwischenraum 42 über die Leckageöffnung 46 auf die drucklose Leck- oder Tankseite des Gesamtsystems abgeführt werden. Als weiteres Dichtsystem ist im vorderen, stirnseitigen Bereich des Bodens 30 ein Dichtsystem 48 vorgesehen, beispielsweise in Form einer üblichen Ringdichtung. Bei eingeschraubtem Gehäuse 10 über das Anschlußstück 26 mit seinem Anschlußgewinde 28 läßt sich dergestalt eine Abdichtung, insbesondere in Form der Leckageöffnung 46, gegenüber dem gesamt hydraulischen- oder Fluidsystem (Dieselleitungsnetz) erreichen.
  • Als Federspeicher 12 dient im vorliegenden Fall eine Druckfeder in Form einer Schraubenfeder, wobei das Gehäuseinnere auch zusätzlich noch mit einem Druckgas, beispielsweise in Form eines Stickstoffgases, beaufschlagt sein kann. Die dahingehende Druckfeder 12 erstreckt sich zwischen dem Kolben 14 und einem Deckelteil 50, wobei das Deckelteil 50 aus einer Halteplatte 52 gebildet sein kann, die über ein Sicherungsmittel, insbesondere einen Sicherungsring 54, im Gehäuse 10 gehalten ist. Eine alternative Ausführungsform ist in der Figur in einer quadratischen Umrahmung wiedergegeben und im dahingehenden Fall besteht das Deckelteil 50 aus einem Schraubdeckel 56, der außenumfangsseitig über ein Außengewinde 58 des Gehäuses 10 auf dieses aufschraubbar ist.
  • Mit der erfindungsgemäßen Vorrichtung ist sichergestellt, dass etwaig auftretende Leckageströme sicher beherrscht werden und aufgrund der getrennten Kolbenanordnung der Kolben 14 und 24 ist sichergestellt, dass es nicht zu Verkantungen kommt. Insbesondere sehr hochfrequente Druckstöße, die auf den stempelartigen weiteren Kolben 24 einwirken, lassen sich dergestalt in derselben Frequenz stoßartig an den Kolben 16 weitergeben, der unter dem Einfluß des Federspeichers 12 und unter Rückwirkung auf den weiteren Kolben 24 dann derart die Pulsationsdämpfung bzw. Pulsationsglättung vornimmt. Das gezeigte System läßt sich insbesondere auf der Gehäuseseite 10 aus üblichen Stahlwerkstoffen in kostengünstiger Weise und fertigungstechnisch einfach realisieren. Die erfindungsgemäße Vorrichtung kann generell dort eingesetzt werden, wo geringe Volumen bei hohem Druck niveaugedämpft bzw. verschoben werden müssen. Durch die Flächenverhältnisse der Kolben kann die einzusetzende Feder kleiner aufbauen, da die erforderliche Kraft entsprechend reduziert wird.

Claims (9)

  1. Vorrichtung zum Dämpfen von Druckstößen in einem Fluid mit einem Gehäuse (10) und einem gegen die Vorspannkraft eines Federspeichers (12) in dem Gehäuse (10) längsverfahrbaren Kolben (14), wobei der Kolben (14) mit einem weiteren Kolben (24) zusammenwirkt, der in einem Anschlußstück (26) des Gehäuses (10) längsverfahrbar geführt ist, wobei beim Betrieb der Vorrichtung der Kolben (14) in jeder Verfahrstellung des weiteren Kolbens (24) auf diesen eine Druckkraft ausübt, der mit einer Verliersicherung (34) zusammenwirkt, wobei der weitere Kolben (24) in der Art eines Stempels ausgebildet ist und wobei der weitere Kolben in einer durchgehenden Gehäuseöffnung (36) des Anschlußstückes (26) geführt ist, dadurch gekennzeichnet, dass die beiden genannten Kolben (14,24) mechanisch voneinander entkoppelt sind und dass die durchgehende Gehäuseöffnung (36) des Anschlußstückes (26) die Verliersicherung (34) aufweist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, dass der Kolben (14) im Durchmesser um ein Mehrfaches größer ist als der Durchmesser des weiteren Kolbens (24).
  3. Vorrichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass der weitere Kolben (24) außenumfangsseitig derart feinstbearbeitet, insbesondere geläppt ist, dass ein metallisch dichter Spalt (38) zumindest zwischen Teilen des Außenumfanges des weiteren Kolbens (24) und der Innenwandung der Gehäuseöffnung (36) erreicht ist.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass der weitere Kolben (24) außenumfangsseitig mit Ring- oder Schmiernuten (40) versehen ist.
  5. Vorrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass in den Fluidraum (42) zwischen den Kolben (14,24) eine im Gehäuse (10) angeordnete Leckageöffnung (46) mündet.
  6. Vorrichtung nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass als Federspeicher (12) mindestens eine als Druckfeder ausgebildete Schraubenfeder und/oder ein Druckgas dient.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, dass die Druckfeder (12) sich zwischen dem Kolben (14) und einem Deckelteil (50) innerhalb des Gehäuses erstreckt.
  8. Vorrichtung nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass das Deckelteil (50) aus einer Halteplatte (52) gebildet ist, die über ein Sicherungsmittel, insbesondere Sicherungsring (54), im Gehäuse (10) gehalten ist oder dass das Deckelteil (50) aus einem Schraubdeckel (56) besteht, der außenumfangsseitig über ein Außengewinde (58) des Gehäuses (10) auf dieses aufschraubbar ist.
  9. Vorrichtung nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Anschlußstück (26) des Gehäuses (10), in dem der weitere Kolben (24) geführt ist, im Außendurchmesser gegenüber dem Außendurchmesser des Gehäuses (10) reduziert ist.
EP04790081A 2003-10-31 2004-10-01 Vorrichtung zum dämpfen von druckstössen Active EP1685323B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10350941A DE10350941A1 (de) 2003-10-31 2003-10-31 Vorrichtung zum Dämpfen von Druckstößen
PCT/EP2004/010971 WO2005052348A1 (de) 2003-10-31 2004-10-01 Vorrichtung zum dämpfen von druckstössen

Publications (2)

Publication Number Publication Date
EP1685323A1 EP1685323A1 (de) 2006-08-02
EP1685323B1 true EP1685323B1 (de) 2010-06-23

Family

ID=34529988

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04790081A Active EP1685323B1 (de) 2003-10-31 2004-10-01 Vorrichtung zum dämpfen von druckstössen

Country Status (6)

Country Link
US (1) US7308910B2 (de)
EP (1) EP1685323B1 (de)
JP (1) JP2007511695A (de)
AT (1) ATE472053T1 (de)
DE (2) DE10350941A1 (de)
WO (1) WO2005052348A1 (de)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI120214B (fi) * 2005-12-22 2009-07-31 Waertsilae Finland Oy Järjestely mäntämoottorin polttoaineen syöttöjärjestelmän paineen värähtelyn vaimentamiseksi
US20090191068A1 (en) * 2008-01-29 2009-07-30 Clark Equipment Company Variable volume reservoir
CA2758737A1 (en) * 2009-04-20 2010-10-28 Dgc Industries Pty Ltd A dual fuel supply system for an indirect-injection system of a diesel engine
DE102009032212A1 (de) * 2009-07-03 2011-01-05 Dr. Ing. H.C. F. Porsche Aktiengesellschaft Hydraulischer Schwenkmotor
US8387665B2 (en) * 2009-12-10 2013-03-05 GM Global Technology Operations LLC Combination spring and gas filled accumulator
US8464742B2 (en) * 2010-02-11 2013-06-18 Honeywell International Inc. Injection or other system with anti-thermal lockdown mechanism and related method
DE102010064169A1 (de) * 2010-12-27 2012-06-28 Robert Bosch Gmbh Druckspeichervorrichtung für ein Kraftstoffeinspritzsystem
US8794108B2 (en) * 2011-06-13 2014-08-05 Sonnax Industries, Inc. Automatic transmission fluid accumulator replacement assembly
US8656959B2 (en) * 2011-09-23 2014-02-25 GM Global Technology Operations LLC Hydraulic accumulator
US9677519B2 (en) * 2013-08-27 2017-06-13 Kia Motors Corporation Device for decreasing fuel pulsation of LPG vehicle
CN110939614B (zh) * 2019-12-14 2021-06-25 哈尔滨工业大学 宽频带弹簧振子液压脉动衰减器

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2871995A (en) * 1956-01-24 1959-02-03 John E Cline Brake locking mechanism
US3174505A (en) * 1960-05-12 1965-03-23 Howard M Bauer Pressure regulator valve having damping means
US3288166A (en) * 1964-02-26 1966-11-29 Laval Turbine Accumulator system
US4068684A (en) * 1975-08-11 1978-01-17 Greer Edward M Locking ring assembly for the liquid port of a pressure accumulator
US4450870A (en) * 1982-03-15 1984-05-29 The Bendix Corporation Liquid spring accumulator with self-charging means
US4461322A (en) * 1983-05-06 1984-07-24 Mills Carl R Accumulator with piston-poppet seal assembly
DE3510910A1 (de) * 1984-09-27 1986-05-15 Robert Bosch Gmbh, 7000 Stuttgart Verfahren zum betreiben einer fahrzeugbremsanlage und fahrzeugbremsanlage
US4799048A (en) * 1984-09-28 1989-01-17 Nippondenso Co., Ltd. Accumulator
GB2169975B (en) * 1985-01-23 1988-08-03 Teves Gmbh Alfred Hydraulic brake system with hydraulic brake force boosting
US4861805A (en) * 1986-12-05 1989-08-29 The Dow Chemical Company Antistatic polyurethane shoe sole compositions
DE3941241C2 (de) * 1989-12-14 2002-03-21 Continental Teves Ag & Co Ohg Kolbendruckspeicher, insbesondere für antriebsschlupfgeregelte Bremsanlagen, sowie Schaltanordnung dazu
DE4100071A1 (de) * 1991-01-04 1992-07-09 Fluidtech Gmbh Leckoelfreies speicherladeventil
US5219000A (en) * 1992-05-29 1993-06-15 General Motors Corporation Fluid pressure accumulator
DE4313852B4 (de) * 1993-04-28 2004-11-25 Robert Bosch Gmbh Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen
US5471959A (en) * 1994-08-31 1995-12-05 Sturman; Oded E. Pump control module
US5620028A (en) * 1995-03-20 1997-04-15 General Motors Corporation Brake Module with integrated accumulator
DE19539885A1 (de) 1995-05-26 1996-11-28 Bosch Gmbh Robert Kraftstoffversorgungsanlage und Verfahren zum Betreiben einer Brennkraftmaschine
US5971027A (en) * 1996-07-01 1999-10-26 Wisconsin Alumni Research Foundation Accumulator for energy storage and delivery at multiple pressures
US5701869A (en) * 1996-12-13 1997-12-30 Ford Motor Company Fuel delivery system
WO2000031420A1 (de) * 1998-11-25 2000-06-02 Continental Teves Ag & Co. Ohg Druckmittelspeicher
US6390133B1 (en) * 2000-05-17 2002-05-21 Robert Bosch Corporation Hydraulic accumulator vent and method for making the same
DE10051580A1 (de) * 2000-10-18 2002-05-08 Hydac Technology Gmbh Hydrospeicher, insbesondere Blasenspeicher
ES1047694Y (es) * 2000-11-23 2001-09-16 Aguirre Juan Fierro Dispositivo para reducir componentes contaminantes en los gases de escape de motores de combustion.
US6604508B2 (en) * 2001-09-04 2003-08-12 Caterpillar Inc Volume reducer for pressurizing engine hydraulic system
DE10148220A1 (de) * 2001-09-28 2003-04-17 Bosch Gmbh Robert Vorrichtung zum Dämpfen von Druckpulsationen in einem Fluidsystem, insbesondere in einem Kraftstoffsystem einer Brennkraftmaschine, sowie Kraftstoffsystem
US6681743B2 (en) * 2002-04-02 2004-01-27 International Engine Intellectual Property Company, Llc Pressure control valve with flow recovery

Also Published As

Publication number Publication date
JP2007511695A (ja) 2007-05-10
US20060225800A1 (en) 2006-10-12
EP1685323A1 (de) 2006-08-02
US7308910B2 (en) 2007-12-18
ATE472053T1 (de) 2010-07-15
WO2005052348A1 (de) 2005-06-09
DE10350941A1 (de) 2005-06-02
DE502004011318D1 (de) 2010-08-05

Similar Documents

Publication Publication Date Title
EP1485609B1 (de) Vorrichtung zum einspritzen von kraftstoff an stationären verbrennungskraftmaschinen
EP3059439B1 (de) Pumpeneinheit für eine hochdruckpumpe
EP1342005B1 (de) Kraftstoffeinspritzsystem für brennkraftmaschinen
DE102007001363A1 (de) Injektor zum Einspritzen von Kraftstoff in Brennräume von Brennkraftmaschinen
EP1129285B1 (de) Kraftstoffhochdruckspeicher
DE19706591A1 (de) Druckventil
EP0277939B1 (de) Kraftstoffeinspritzeinrichtung
EP1685323B1 (de) Vorrichtung zum dämpfen von druckstössen
WO2002046601A1 (de) Kraftstoffeinspritzsystem für brennkraftmaschinen
EP1918570B1 (de) Kraftstoffinjektor mit Speichervolumensegment
DE102004015744A1 (de) Common-Rail-Injektor
EP1144842B1 (de) Injektor für ein kraftstoffeinspritzsystem für brennkraftmaschinen mit in den ventilsteuerraum ragender düsennadel
EP1382838A2 (de) Brennstoffeinspritzventil
DE19936667A1 (de) Common-Rail-Injektor
DE10352736A1 (de) Kraftstoffinjektor mit direkter Nadeleinspritzung
EP2836696B1 (de) Injektor eines modularen common-rail-kraftstoffeinspritzsystems mit durchflussbegrenzer
WO2017157554A1 (de) Hochdruckpumpe mit einem fluiddämpfer
EP1483499A1 (de) Einrichtung zur druckmodulierten formung des einspritzverlaufes
DE10307002A1 (de) Kraftstoffeinspritzdüse und Pumpe-Düse-Einheit
EP1589218A1 (de) Schwingungsdämpfer für ein Hydrauliksystem
DE10261417A1 (de) Hydraulikhochdruckspeicher
WO2008107220A1 (de) Kraftstoffeinspritzsystem sowie druckverstärkungseinrichtung für ein kraftstoffeinspritzsystem
EP2655850B1 (de) Kraftstoffeinspritzventil für brennkraftmaschinen
DE102010029123A1 (de) Kraftstoffinjektor mit hydraulischer Kopplereinheit
DE102007001365A1 (de) Injektor mit Steuer- und Schaltkammer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070628

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004011318

Country of ref document: DE

Date of ref document: 20100805

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101025

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: HYDAC TECHNOLOGY G.M.B.H.

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20110324

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004011318

Country of ref document: DE

Effective date: 20110323

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101031

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 472053

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101001

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100623

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100923

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101004

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130814

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20131008

Year of fee payment: 10

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20150630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141001

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20231031

Year of fee payment: 20