EP1684894A1 - Emulsion pour vehiculer une matiere active hydrophobe vers un substrat en milieu aqueux - Google Patents

Emulsion pour vehiculer une matiere active hydrophobe vers un substrat en milieu aqueux

Info

Publication number
EP1684894A1
EP1684894A1 EP04805319A EP04805319A EP1684894A1 EP 1684894 A1 EP1684894 A1 EP 1684894A1 EP 04805319 A EP04805319 A EP 04805319A EP 04805319 A EP04805319 A EP 04805319A EP 1684894 A1 EP1684894 A1 EP 1684894A1
Authority
EP
European Patent Office
Prior art keywords
emulsion
phase
water
hydrophobic
aqueous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP04805319A
Other languages
German (de)
English (en)
Inventor
Ian Harrison
Evelyne Prat
Hélène LANNIBOIS
Anne-Gaëlle DRENO
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rhodia Chimie SAS
Original Assignee
Rhodia Chimie SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR0313284A external-priority patent/FR2862234B1/fr
Application filed by Rhodia Chimie SAS filed Critical Rhodia Chimie SAS
Publication of EP1684894A1 publication Critical patent/EP1684894A1/fr
Ceased legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/01Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with natural macromolecular compounds or derivatives thereof
    • D06M15/03Polysaccharides or derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/02Cosmetics or similar toiletry preparations characterised by special physical form
    • A61K8/04Dispersions; Emulsions
    • A61K8/06Emulsions
    • A61K8/066Multiple emulsions, e.g. water-in-oil-in-water
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K8/00Cosmetics or similar toiletry preparations
    • A61K8/18Cosmetics or similar toiletry preparations characterised by the composition
    • A61K8/72Cosmetics or similar toiletry preparations characterised by the composition containing organic macromolecular compounds
    • A61K8/73Polysaccharides
    • A61K8/737Galactomannans, e.g. guar; Derivatives thereof
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K23/00Use of substances as emulsifying, wetting, dispersing, or foam-producing agents
    • C09K23/54Silicon compounds
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/0008Detergent materials or soaps characterised by their shape or physical properties aqueous liquid non soap compositions
    • C11D17/0017Multi-phase liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/20Organic compounds containing oxygen
    • C11D3/22Carbohydrates or derivatives thereof
    • C11D3/222Natural or synthetic polysaccharides, e.g. cellulose, starch, gum, alginic acid or cyclodextrin
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/373Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicones
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/643Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds containing silicon in the main chain
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q17/00Barrier preparations; Preparations brought into direct contact with the skin for affording protection against external influences, e.g. sunlight, X-rays or other harmful rays, corrosive materials, bacteria or insect stings
    • A61Q17/04Topical preparations for affording protection against sunlight or other radiation; Topical sun tanning preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q19/00Preparations for care of the skin
    • A61Q19/10Washing or bathing preparations
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/02Preparations for cleaning the hair
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61QSPECIFIC USE OF COSMETICS OR SIMILAR TOILETRY PREPARATIONS
    • A61Q5/00Preparations for care of the hair
    • A61Q5/12Preparations containing hair conditioners

Definitions

  • the present invention relates to an emulsion (E), in the form of a multiple emulsion (Em), the reverse internal emulsion of which comprises a hydrophobic active substance, or in the form of an emulsion (E).
  • This emulsion can be used to convey said hydrophobic active material to a substrate in an aqueous medium.
  • a detergent or rinsing composition or as a detergent or rinsing composition for washing or rinsing articles of textile fibers, with the aim of conveying and promoting the deposition of a hydrophobic active material such as a perfume, an agent hydrophobic care ..., on a textile article, in cotton in particular.
  • a hydrophobic active material such as a perfume, an agent hydrophobic care ...
  • W / OW water-in-oil-in-water
  • EP-930 933-A- claims a process for the controlled release of an active principle contained in a multiple emulsion of water-in-oil-in-water type, characterized in that: - said multiple emulsion comprises a reverse emulsion Ei with an aqueous phase A1 which contains at least one hydrophilic active principle, said emulsion Ei being dispersed in the form of droplets of direct emulsion Ed, in an aqueous continuous phase A2, with the two emulsions Ed and Ei stabilized by at least one surfactant, present at level of their respective continuous phases and in that said multiple emulsion is brought into contact with a sufficient amount of an agent, so as to transform it into a direct emulsion and to induce the release of the active principle, contained in the aqueous phase A1 of the emulsion Ei, in the aqueous phase A2.
  • the surfactant present in the aqueous continuous phase A2 of the Ed emulsion is preferably chosen from water-soluble lecithins, sucrose esters, esters of fatty acids, polyoxyethylenated alkylamides, triglyceride sulfates, alkyl sulfates, alkyl ether sulfates, alkyls sulfonates, alkylamine salts, fatty amines, lipoamino acids, alkylbetaines, alkylpolyglycol ethers, copolymers of alkylene oxides, modified polyesters, silicone polymeric surfactants.
  • the surfactant present in the continuous phase of the Ei emulsion is preferably chosen from liposoluble lecithins, esters of sorbitan and of fatty acids, polyalkylene dipolyhydroxystearates, fatty acids, monoglycerides, polyglycerol esters, polyglycerol polyricinoleate, lactic and tartaric acid esters.
  • the continuous phase of the Ei emulsion is an oily phase composed of at least one oil chosen from mineral, vegetable or animal oils.
  • the direct emulsion Ed preferably comprises by volume from 50 to 99% of an aqueous continuous phase A2 for i to 50% of reverse emulsion Ei
  • the reverse emulsion Ei is preferably composed by volume of 50 to 99% d '' a continuous phase for 1 to 50% of aqueous phase A1.
  • W / O / W oil in water
  • the reverse emulsion comprising an internal aqueous phase, comprising at least one hydrophilic active material, dispersed in an internal oily phase, said internal oily phase comprising at least one nonionic or cationic surfactant and / or at least nonionic amphiphilic polymer or cationic,
  • the external aqueous phase comprising: - at least one nonionic polyoxyalkylenated surfactant and / or at least one nonionic polyoxyalkylenated amphiphilic polymer, - and at least one water-soluble or water-dispersible compound chosen from (i) the polymers obtained by polymerization of at least one carboxylic acid monomer, and at least one ethylenically unsaturated monomer, and / or at least one polyoxyalkylenated ester of ethylenically unsaturated carboxylic acid; (ii) polymers resulting from the polymerization of at least one carboxylic acid monomer and optionally comprising at least one hydrophobic graft; (iii) polypeptides of natural or synthetic origin, optionally comprising at least one hydrophobic graft; (iv) highly depolymerized polysaccharides optionally comprising at least one hydrophobic graft.
  • the object of the invention is an emulsion in the form of a multiple emulsion or in a dry form redispersible in a multiple emulsion, the oil phase of which consists of or comprises a hydrophobic active material, emulsion which, after being used in an aqueous medium is capable of carrying said hydrophobic active material towards a substrate present in or in contact with said aqueous medium.
  • a first object of the invention consists of an emulsion (E) comprising a liquid or fusible hydrophobic phase (O) containing and / or consisting of at least one hydrophobic active material (A), said emulsion (E) having: in the form of a multiple emulsion (Em) comprising: - an internal inverse emulsion (Ei) comprising said continuous hydrophobic liquid or fusible phase (O), an aqueous dispersed phase (Wi) and, at the interface of the two phases, at least one water-soluble or water-dispersible stabilizing agent (Di) - an aqueous or water-miscible external phase (We), in which the internal emulsion (Ei) is dispersed, using at least one dispersing agent and / or stabilizer (De) • or in solid form (Es), water-dispersible in a multiple emulsion (Em) in which the external phase (We) is aqueous, comprising - the reverse e
  • the hydrophobic phase (O) contains and / or consists of at least one hydrophobic active material (A).
  • the hydrophobic phase (O) and / or the active material (A) are made of at least one organic or organosilicon material or a mixture of at least one organic material and at least one organosilicon, liquid or fusible material which is insoluble in a aqueous phase.
  • the active material (A) is contained in the hydrophobic phase (O), it can also be in at least one solid or liquid inorganic material insoluble in an aqueous phase or in a mixture of at least one inorganic material and at least one organic material and / or at least one organosilicon material.
  • the material constituting the hydrophobic phase (O) or the active material (A) is considered to be insoluble when less than 15%, preferably less than 10% of its weight, is soluble in the internal aqueous phase (Wi) and the external phase (We) if the latter is present, and this in a temperature range between 20 ° C. and the preparation temperature of the inverse emulsion (Ei) and of the multiple emulsion (Em) or of the emulsion in a solid form (Es).
  • Said hydrophobic phase (O) preferably has a melting point less than or equal to 100 ° C., more particularly less than or equal to 80 ° C.
  • Said material constituting the hydrophobic phase (O) may be made of an organosilicon material (01).
  • Said polyorganosiloxane preferably has a dynamic viscosity measured at 25 ° C. and at a shear rate of 0.01 Hz for a stress of 1500 Pa (carried out on a Carrimed® of the CSL2-500 type) of between 10 4 and 10 9 cP.
  • an amphoteric polyorganosiloxane having at least one cationic or potentially cationic function and at least one anionic or potentially anionic function
  • polyorganosiloxanes there may be mentioned: > linear, cyclic or crosslinked polyorganosiloxanes formed from nonionic organosiloxane units of general formula (R) a (X) bSKO) [4 - (a + b)] / 2 (0 formula in which • the symbols R are identical or different and represent an alkyl hydrocarbon radical, linear or branched, having from 1 to 4 carbon atoms, aryl, phenyl in particular;
  • X are identical or different and represent a hydroxyl group, an alkoxy radical, linear or branched, having from 1 to 12 carbon atoms, an OCOR 'function, where R' represents an alkyl group containing from 1 to 12 atoms carbon, preferably 1 carbon atom;
  • said polyorganosiloxane is at least substantially linear, and very preferably linear.
  • X are identical or different and represent a hydroxyl group, an alkoxy radical, linear or branched, having from 1 to 12 carbon atoms, an OCOR 1 function, where R ′ represents an alkyl group containing from 1 to 12 atoms carbon, preferably 1 carbon atom;
  • the symbols B are identical or different and represent an aliphatic and / or aromatic and / or cyclic hydrocarbon radical containing up to 30 carbon atoms, optionally interrupted by one or more heteroatoms of oxygen and / or nitrogen and / or sulfur, optionally carrying one or more ether, ester, thiol, hydroxyl, optionally quaternized amine, carboxylate functions, the symbol B being bonded to silicon preferably via an Si-C- bond; • a is 0, 1 or 2
  • R 1 represents an alkylene group containing 2 to 6 carbon atoms, optionally substituted or interrupted by one or more nitrogen atoms or oxygen atoms,
  • R 2 and R 3 represent. H,. an alkyl or hydroxyalkyl group containing from 1 to 12 carbon atoms, preferably from 1 to 6 carbon atoms,. an amino alkyl group, preferably primary, the alkyl group of which contains from 1 to 12 carbon atoms, preferably from 1 to 6 carbon atoms, optionally substituted and / or interrupted by at least one nitrogen atom and / or d oxygen, said amino group being optionally quaternized, for example by a hydrohalic acid or an alkyl or aryl halide.
  • the polyorganosiloxanes carrying amino functions present in their chain, per 100 total silicon atoms, from 0.1 to
  • OR * o R4 is a divalent hydrocarbon radical chosen from: * linear or branched alkylene radicals, having 2 to 18 carbon atoms; * alkylene-carbonyl radicals, the linear or branched alkylene part of which contains 2 to 20 carbon atoms; * alkylene-cyclohexylene radicals, the linear or branched alkylene part of which contains 2 to 12 carbon atoms and the cyclo-hexylene part comprises an OH group and optionally 1 or 2 alkyl radicals having 1 to 4 carbon atoms; * the radicals of formula -R 7 - O - R 7 in which the identical or different radicals R 7 represent alkylene radicals having 1 to 12 carbon atoms; * the radicals of formula -R 7 - O - R 7 in which the radicals R 7 have the meanings indicated above and one of them or both are substituted by one or two group (s) -OH; * the radicals of formula -R 7 - COO - R 7 in which the
  • R 4 has the meaning indicated above
  • R 5 and R 6 have the meanings indicated below and
  • R 11 represents a divalent alkylene radical, linear or branched, having from 1 to 12 carbon atoms, one of the valential bonds (that of R 11 ) being connected to the atom of -NR 10 -, the other (that of R 4 ) being connected to a atom of silicon;
  • the radicals R 5 are identical or different, chosen from linear or branched alkyl radicals having 1 to 3 carbon atoms and the phenyl radical;
  • the radical R 6 represents a hydrogen radical or the radical R 5 or Ov or the sterically hindered piperidinyl groups of formula IV
  • R ' 4 is chosen from a trivalent radical of formula: - (CH 2 ) CH 'm ⁇ co— O ⁇ m represents a number from 2 to 20, and a trivalent radical of formula: where p represents a number from 2 to 20; * U 'represents -O- or NR 12 " , R 12 being a radical chosen from a hydrogen atom, a linear or branched alkyl radical containing 1 to 6 carbon atoms; * R 5 and R 6 have the same meanings as those given above with regard to formula III.
  • said polyorganosiloxane with a sterically hindered amino function is a linear, cyclic or three-dimensional polyorganosiloxane of formula (V):
  • the symbols Z identical or different, represent R 1 below and or the symbol B below;
  • the symbols R 1 , R 2 and R 3 which are identical and / or different, represent a monovalent hydrocarbon radical chosen from linear or branched alkyl radicals having from 1 to 4 carbon atoms, linear or branched alkoxy radicals having from 1 to 4 carbon atoms, a phenyl radical and preferably a hydroxy radical, an ethoxy radical, a methoxy radical or a methyl radical;
  • the symbols B identical and / or different functional groups, represent a group with sterically hindered piperidinyl function (s) chosen from those mentioned above; and
  • the number of organosiloxy units without group B ranges from 10 to 450, preferably from 50 to 250;
  • the number of organosiloxy units with a group B ranges from 1 to 5, preferably from 1 to 3; - 0 ⁇ w ⁇ 10 and 8 ⁇ x ⁇ 448.
  • said polyorganosiloxane is linear.
  • hydrophobic phase (A) there may be mentioned in particular the oils RHODORSIL® 21645, RHODORSIL® Extrasoft marketed by Rhodia.
  • Said material constituting the hydrophobic phase (O) may be made of an organic material (02).
  • organic material such as vegetable oils (rapeseed, castor oil, sunflower oil, rapeseed oil erucic, linen ).
  • mineral oils such as naphthenic, paraffinic (petrolatum) oils, polybutenes
  • waxes comprising alkyl chains containing from 4 to 40 carbon atoms.
  • animal waxes beeswax, lanolin, whale oil
  • vegetable waxes carnauba, candellila, sugar cane wax, jojoba
  • fossil mineral waxes montane, ozokerite, Utah wax
  • hydrocarbon waxes comprising from 4 to 35 carbon atoms (mineral oils, paraffins, microcrystalline waxes)
  • synthetic waxes such as polyolefins (polyethylene, polypropylene), sterone, carbowax.
  • the active ingredient (A) can constitute the hydrophobic phase (O) or be contained in the hydrophobic phase (O); when it is contained in the hydrophobic phase (O), it can be soluble, partially soluble or insoluble in said hydrophobic phase (O). Mention may be made, as active materials (A) contained in the hydrophobic phase (O), of other hydrophobic materials such as in particular the perfume molecules, the organic or organosilicon anti-UV agents, the hydrophobic bactericidal agents, solid polyamide capsules, particles of silica or other oxides or inorganic compounds ...
  • the stabilizing agent (Di) is made of a material chosen from water-soluble or water-dispersible polysaccharides (PSA): - whose average degree of polymerization (DP) is at least 1.5, preferably at least 20, very particularly at least 100 - whose Brookfield viscosity at 25 ° C in solution at 1% by mass in water is less than 20,000 mPa.s., preferably less than 5,000 mPa.s., very particularly ranging from 30 at 4500 mPa.s., said polysaccharides (PSA) being also free of lipophilic polyorganosiloxane substituent groups.
  • PSA water-soluble or water-dispersible polysaccharides
  • water-soluble or water-dispersible means here that said polysaccharide (PSA) is not capable of forming a macroscopic two-phase solution at 25 ° C. in the internal aqueous phase (Wi).
  • lipophilic is used here as antonym of the term “hydrophilic”; that is, has no affinity for water; this means that the polyorganosiloxane groups, of which the polysaccharide (PSA) is free, would form, taken alone, at a concentration of 10% by weight, a macroscopic two-phase solution in distilled water at 25 ° C. According to the invention, the Brookfield viscosity at 25 ° C.
  • Said polysaccharide (PSA) is a homopolysaccharide or a heteropolysaccharide; it can be linear or branched, non-ionic or ionic; it can optionally be substituted and / or modified by nonionic or ionic groups, other than lipophilic polyorganosiloxane groups.
  • said polysaccharide (PSA), or its backbone comprises similar or different glycosyl units joined by ⁇ (1-4) bonds.
  • ⁇ (1-4) bonds it can also comprise other bonds, in particular ⁇ (1-3) and / or ⁇ (1-6).
  • Said glycosyl units, similar or different, can in particular be hexose and / or pentose units.
  • hexose units (similar or different), mention may in particular be made of D-glucose, D- or L-galactose, D-mannose, D- or L-fucose, L-rhamnose units
  • pentose units there may be mentioned in particular the D-xylose, L- or D-arabinose units, etc.
  • the hydroxyl functions or functions of the glycosyl units can be modified and / or substituted by nonionic groups. , ionic or ionizable.
  • non-ionic modifying groups when concerned, these can in particular be linked to the carbon atoms of the sugar skeleton either directly or via —O— bonds.
  • nonionic groups mention may be made of: • The alkyl groups comprising from 1 to 22 carbon atoms, optionally interrupted by one or more heteroatoms of oxygen and / or nitrogen,
  • Aryl or arylalkyl groups comprising from 6 to 12 carbon atoms • Hydroxyalkyl or cyanoalkyl groups comprising from 1 to 6 carbon atoms
  • esters obtained by replacing hydrogen with a hydroxyl function -OH of the polysaccharide skeleton by a group comprising at least one acid unit containing in particular carbon, sulfur or phosphorus, such as in particular the carbonyl groups R- (CO) -, sulfonyl R-SO 2 -, phosphorylated R 2 P (O) -, hydroxyphosphorylated R- P (O) (OH) -, acid groups forming "ester” units with the residual oxygen atoms of the skeleton polysaccharide.
  • alkyl, alkenyl, aryl can comprise from 1 to 20 carbon atoms; it can also comprise a heteroatom, of nitrogen for example, linked directly to a carbonyl, sulfonyl unit, etc., and thus form urethane type bonds, etc.
  • a heteroatom of nitrogen for example, linked directly to a carbonyl, sulfonyl unit, etc., and thus form urethane type bonds, etc.
  • esters chosen from the acetate, propanoate, trifluoroacetate, 2- (2-hydroxy-1-oxopropoxy) propanoate, lactate, glycolate, pyruvate, crotonate, isovalerate, cinnamate, formate, salicylate, carbamate groups methylcarbamate, benzoate, gluconate, methanesulfonate, toluenesulfonate; the hemiesters groups of fumaric, malonic, itaconic, oxalic, maleic, succinic, tartaric, aspartic, glutamic, malic acids; there may be mentioned more particularly the substituent groups acetate, hemiacetate and 2- (2-hydroxy-1-oxopropoxy) propanoate.
  • the rate of MS modification of a polysaccharide by a nonionic modifying group corresponds to the average number of moles of precursor of the nonionic modifying group which has reacted per glycosyl unit.
  • the rate of modification MS can vary according to the nature of the precursor of said modifying group.
  • the rate of modification by nonionic groups is less than 3 by definition. If said precursor is capable of forming new reactive hydroxyl groups (hydroxyalkylation precursor for example), the rate of modification MS is theoretically not limited; it can for example go up to 6, preferably up to 2. This rate is generally at least 0.001, preferably at least 0.01.
  • anionic or anionizable groups mention may be made of those containing one or more carboxylate, sulfonate, sulfate, phosphate, phosphonate functions, etc.
  • R is a hydrogen atom or an alkyl radical containing from 1 to 4 carbon atoms.
  • X is an integer ranging from 0 to 5.
  • y is an integer ranging from 0 to 5.
  • R ' is an alkylene radical containing from 1 to 12 carbon atoms, optionally bearing one or more OH substituents.
  • the radicals R " which are similar or different, represent a hydrogen atom, an alkyl radical containing from 1 to 18 carbon atoms.
  • the radicals R ' which are similar or different, represent an alkyl radical containing from 1 to 18 carbon atoms.
  • R" is a linear, branched or cyclic alkylene radical containing from 1 to 6 carbon atoms.
  • A represents O or NH.
  • Y is a heterocyclic aliphatic group comprising from 5 to 20 carbon atoms and a nitrogen heteroatom X 'is a counterion, preferably halide (chloride, bromide, iodide in particular), as well as the N-alkylpyridinium-yl groups whose alkyl radical contains from 1 to 18 carbon atoms, with a counterion, preferably halide (chloride, bromide, iodide in particular).
  • halide chloride, bromide, iodide in particular
  • cationic or potentially cationic groups there may be mentioned very particularly: - those of formula • -NH 2
  • hindered amino groups such as those derived from HALS amines, of general formula:
  • R represents CH3 or H.
  • the degree of substitution DS corresponds to the average number of hydroxyl functions of the glycosyl units substituted by the said ionic or ionizable group or groups, per glycosyl unit. It is generally less than 3, preferably less than 2.
  • PSA polysaccharides
  • PSA polysaccharides
  • Galactomannans especially guar gum depolymerized. in particular by an oxidative route, optionally modified or substituted by non-ionic groups (hydroxypropyl in particular), anionic (carboxymethyl in particular), cationic (hydroxypropyltrimethylammonium chloride for example), having a Brookfield viscosity (1% solution in water) which can range from 30 to 4500 mPa.s., preferably from 60 to 3500 mPa.s. We can cite in particular:
  • alkylpolvglvcosides having a C4-C20 alkyl group > preferably CS-C-JS. as well as an average number of glucose units of the order of 1.5 to 10, preferably of the order of 1.5 to 4, more generally of the order of 1.6 to 2.7 per mole of alkylpolyglycoside (APG), such as those mentioned in US 4,565,647.
  • the average size of the aqueous droplets (Wi) of the internal inverse emulsion (Ei) can range up to 10 ⁇ m, preferably from 0.05 ⁇ m to 5 ⁇ m, and more preferably from 0.1 to 1 ⁇ m.
  • the average size corresponds to the median diameter in volume (d50), which represents the diameter of the particle equal to 50% of the distribution cumulative; it can for example be measured with a Horiba granulometer or optical microscope.
  • the dispersed aqueous phase (Wi) has a pH which can range from 0 to 14, preferably from 2 to 11, more preferably from 5 to 11. It can contain additives making it possible to adjust the osmotic pressure, such as salts (chloride or sulfate sodium, calcium chloride %) or sugars (glucose) or polysaccharides (dextran ). It can also contain buffering agents, hydrophilic active materials, in particular antibacterial agents such as methyl chloro isothiazolinone and methyl isothiazolinone (KATHON® CG marketed by
  • the mass ratio of the dispersed aqueous phase (Wi) to the hydrophobic phase (O) can range from 5/95 to 95/5, preferably from 3070 to 80/20.
  • the ratio of the mass of stabilizer (Di) to the mass of hydrophobic phase (O) can range from 0.1 / 100 to 500/100, preferably from 0.5 / 100 to 100/100, very particularly from 0, 5/100 to 50/100.
  • the inverse emulsion (Ei) can be obtained in a conventional manner. For example, it can be obtained by dissolving and / or dispersing the polysaccharide (PSA) in water and then adding the aqueous solution and / or dispersion obtained to the hydrophobic phase (O), with stirring.
  • the stirring can advantageously be carried out by means of a frame blade, a planetary type mixer, a mixer having a scraping mobile and a blade rotating in opposite directions (counter-stirring).
  • the preparation of the reverse emulsion is generally carried out at a temperature higher than the melting temperature of the material used as the hydrophobic phase, but lower than that of degradation of the elements entering into the composition of the reverse emulsion. More particularly, this temperature is between 10 and 80 ° C.
  • the duration of the agitation can be determined without difficulty by those skilled in the art.
  • the multiple emulsion (Em) comprises the reverse emulsion above (Ei), as internal emulsion, dispersed in an external phase (We) aqueous or miscible with water, comprising at least one dispersing agent and / or stabilizer (De).
  • Said dispersing and / or stabilizing agent (De) has a hydrophilic tendency.
  • said dispersing and / or stabilizing agent (De) is chosen from hydrophilic surfactants and / or hydrophilic polymers and / or hydrophilic amphiphilic polymers.
  • the term "hydrophilic” is used in its usual sense of “who has an affinity for water”; this means that the dispersing and / or stabilizing agent (De) is not capable of forming a macroscopic two-phase solution in distilled water at 25 ° C.
  • the external phase (We) is an aqueous phase.
  • the surfactants and / or polymers (De) satisfy the Bancroft rule and are preferably chosen from compounds which satisfy both of the two conditions below: - when they are mixed with the external aqueous phase at a concentration between 0.1 and 10% by weight of said phase and between 20 and 30 ° C, they are in the form of a solution in all or part of the concentration range indicated.
  • said dispersing and / or stabilizing agent (De) can be formed (a) of at least one nonionic hydrophilic surfactant (b) of at least one anionic hydrophilic surfactant (c ) at least one cationic hydrophilic surfactant (d) at least one nonionic hydrophilic polymer (e) at least one nonionic hydrophilic amphiphilic polymer (f) at least one anionic hydrophilic polymer (g ) of at least one anionic hydrophilic amphiphilic polymer (h) of at least one cationic hydrophilic polymer (i) of at least one cationic hydrophilic amphiphilic polymer G) or of a mixture of at least two of said surfactants and / or polymers (a)
  • the total content of surfactant (s) and / or polymer (s) (De) present (s) in the external phase (We) can be between 0.01 and 50% by weight, preferably between 0.1 and 10%, more particularly between 0.5 and 5% by weight, relative to the inverse emulsion (Ei).
  • the nonionic hydrophilic surfactants have an HLB value at least equal to the required HLB of the hydrophobic phase (O); as an indication, this minimum value of HLB is most often at least 10. These are preferably polyalkoxylated.
  • the polyalkoxylated nonionic surfactant can be chosen from the following surfactants, alone or as a mixture:
  • Alkoxylated alkyl phenols more particularly ethoxylated and / or propoxylated.
  • the total number of ethoxylated and optionally propoxylated units is between 10 and 100.
  • anionic hydrophilic surfactants that may be mentioned:
  • - sulphate alkylamides as well as their polyalkoxylated derivatives (ethoxylated (OE), propoxylated (OP), or their combinations); - salts of saturated or unsaturated fatty acids, and
  • cationic hydrophilic surfactants which may also be present in the dispersing and / or stabilizing agent (De), it is possible to mention the quaternary ammonium salts of formula R 1 R 2 R 3 R 4 N + X " where the groups R are long or short hydrocarbon chains, alkyl, hydroalkyl or alkyl ethoxylated, X being a counterion (R 1 is a group C 8 -C 22 , preferably C ⁇ -C-10 or C12-C14 alkyl, R 2 is a methyl group, R 3 and R 4 being similar or different being a methyl or hydroxy methyl group); as well as Cationic esters, such as choline esters.
  • nonionic hydrophilic polymers which can be used, mention may be made of the water-soluble or water-dispersible nonionic polysaccharides (PSA)
  • nonionic hydrophilic amphiphilic polymers are preferably polyalkoxylated compounds, comprising at least two blocks, one of them being hydrophilic, the other hydrophobic, at least one of the blocks comprising polyalkoxylated, more particularly polyethoxylated and / or polypropoxylated patterns.
  • said nonionic polyalkoxylated hydrophilic amphiphilic polymers are chosen from polymers whose molar mass by weight is less than or equal to 100,000 g / mol (measured by GPC, polyethylene glycol standard), preferably between 1,000 and 50,000 g / mol, preferably between 1,000 and 20,000 g / mol.
  • polymers of this type mention may be made, inter alia, of polyethylene glycol / polypropylene glycol / polyethylene glycol triblock polymers.
  • Such polymers are well known and are in particular marketed under the brands Pluronic (marketed by BASF), Arlatone (marketed by ICI).
  • Said hydrophilic nonionic amphiphilic polymer can also be is a hydrophilic amphiphilic block polymer, obtained by polymerization of at least one hydrophilic nonionic monomer and at least one hydrophobic monomer, the proportion and nature of said monomers being such that the polymer resulting checks the conditions previously stated (Bancroft rule - two conditions). They comprise at least one hydrophobic block and at least one neutral (nonionic) hydrophilic block.
  • the polymer comprises at least three blocks, and more particularly three blocks, the polymer is advantageously linear.
  • the hydrophilic blocks are more particularly at the ends.
  • the polymers comprise more than three blocks, the latter are preferably in the form of grafted or combed polymers.
  • hydrophobic monomers from which the hydrophobic block (s) of the hydrophilic amphiphilic polymer may be mentioned, in particular:
  • esters of mono- or polycarboxylic acids linear, branched, cyclic or aromatic, comprising at least one ethylenic unsaturation
  • esters of saturated carboxylic acids comprising 8 to 30 carbon atoms, optionally carrying a hydroxyl group
  • esters of (meth) acrylic acid with an alcohol comprising 1 to 12 carbon atoms such as methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, (meth) n-butyl acrylate, t-butyl (meth) acrylate, isobutyl (meth) acrylate, 2-ethylhexyl acrylate;
  • the vinyl nitriles more particularly include those having 3 to 12 carbon atoms, such as in particular acrylonitrile and methacrylonitrile;
  • the preferred monomers are the esters of acrylic acid with linear or branched C ⁇ -C 4 alcohols such as methyl, ethyl, propyl acrylate and butyl, vinyl esters such as vinyl acetate, styrene, ⁇ -methylstyrene.
  • nonionic hydrophilic monomers from which the hydrophilic amphiphilic block polymers can be obtained mention may be made of ethylene oxide; amides of mono- or polycarboxylic acids, linear, branched, cyclic or aromatic, comprising at least one ethylenic unsaturation, or derivatives, such as (meth) acrylamide, N-methyloI (meth) acrylamide; hydrophilic esters derived from (meth) acrylic acid such as for example 2-hydroxyethyl (meth) acrylate; vinyl esters making it possible to obtain polyvinyl alcohol blocks after hydrolysis, such as vinyl acetate, vinyl Versatate®, vinyl propionate.
  • These monomers can be used alone, in combination, as well as in the form of macromonomers. It is recalled that the term macromonomer designates a macromolecule carrying one or more functions which can be polymerized by the method used.
  • the preferred hydrophilic monomers are acrylamide and methacrylamide, alone or as a mixture, or in the form of macromonomers.
  • the nonionic hydrophilic amphiphilic polymers have an HLB value at least equal to the required HLB of the hydrophobic phase (O); As an indication, this minimum value of HLB is most often at least 10.
  • the anionic hydrophilic polymers which may be used, mention may be made of the water-soluble or water-dispersible anionic polysaccharides (PSA) already mentioned above as stabilizing agent ( Di), such as
  • Oxidically depolymerized guars (with some COOH + functions resulting from depolymerization in an oxidizing medium), such as MEYPRO-GAT 7, MEYPRO-GAT 20, MEYPRO-GAT 30 sold by Rhodia • Depolymerized hydroxypropylated guars with a change in the order of 0.01 to 0.8, such as Rhodia's HMP-CON
  • Carboxymethylated depolymerized guars having a degree of substitution of the order of 0.05 to 1.6 such as MEYPRO-GUM R 600 sold by Rhodia.
  • anionic hydrophilic amphiphilic polymers which may be used, mention may be made particularly of block polymers, preferably diblocks or triblocks, obtained by polymerization of at least one anionic hydrophilic monomer, optionally at least one nonionic hydrophilic monomer, and at least one hydrophobic monomer. Again, the choice of monomers and their respective proportions are such that the resulting polymer satisfies the two conditions set out above (Bancroft rule).
  • anionic hydrophilic monomers from which the hydrophilic amphiphilic block polymers can be obtained mention may be made.
  • vinyl sulfonic acid vinylbenzene sulfonic acid, vinyl phosphonic acid, vinylidene phosphoric acid, vinyl benzoic acid, as well as alkali metal salts, such as sodium, potassium, or ammonium ;
  • nonionic hydrophilic monomers and hydrophobic monomers have already been mentioned above.
  • cationic hydrophilic polymers which can be used, mention may be made of water-soluble polysaccharides (PSA) or cationic water dispersants already mentioned above as stabilizing agent (Di), such as for example
  • the dispersing and / or stabilizing agent (De) is chosen from nonionic hydrophilic surfactants and / or nonionic hydrophilic (amphiphilic) polymers; more preferably, said nonionic hydrophilic surfactants and / or nonionic hydrophilic (amphiphilic) polymers have an HLB value at least equal to the required HLB of the hydrophobic phase (O); as an indication, this minimum value of HLB is most often at least 10.
  • the hydrophilic amphiphilic hydrophilic agent (De) is very particularly a non-ionic hydrophilic amphiphilic polymer.
  • the dispersing and / or stabilizing agent (De) is in a mixture of at least one nonionic hydrophilic surfactant and at least one anionic hydrophilic surfactant, optionally combined at least one nonionic hydrophilic (amphiphilic) polymer.
  • the dispersing and / or stabilizing agent (De) is chosen from cationic hydrophilic surfactants and / or cationic hydrophilic (amphiphilic) polymers, optionally mixed with at least one surfactant nonionic hydrophilic and / or at least one nonionic hydrophilic (amphiphilic) polymer.
  • a nonionic surfactant and / or a nonionic polymer is present, this can represent up to 50% of the weight of the cationic / nonionic mixture.
  • the dispersing and / or stabilizing agent (De) is chosen from stabilizing agents (Di) in at least one non-ionic, anionic or cationic water-soluble or water-dispersible polysaccharide (PSA), or their compatible mixtures . It may optionally be added with at least one other dispersing and / or stabilizing agent (De) other, compatible; preferably, the mass quantity of dispersing and / or stabilizing agent (De) other than water-soluble or water-dispersible polysaccharide (PSA), if any, is at most equal to the mass of water-soluble or water-dispersible polysaccharide (PSA) used as as a dispersing and / or stabilizing agent (De).
  • the amount of external phase (We) of the multiple emulsion (Em) is a function of the desired concentration for the multiple emulsion (Em).
  • the internal inverse emulsion mass ratio (external EiVphase (We) comprising the dispersing and / or stabilizing agent (De) can range from 50/50 to 99/1, preferably from 70/30 to 98/2, very particularly from 70 / 30 to 80/20.
  • the mass ratio, expressed in sec, of dispersing and / or stabilizing agent (De) / mass of the internal inverse emulsion (Ei), can range from 0.01 / 100 to 50/100, preferably 0.1 / 100 to 10/100, especially 0.5 / 100 to 5/100.
  • the concentration of the external phase (We) in dispersing and / or stabilizing agent (De) can range from 1 to 50%.
  • the emulsion (E) is a multiple emulsion (Em) comprising at least 70% by weight of internal emulsion (Ei).
  • the average size of the internal inverse emulsion globules (Ei) dispersed in the external phase (We) is preferably less than 200 ⁇ m; preferably it can range from 1 to 20 ⁇ m, more preferably from 5 to 15 ⁇ m.
  • the average size of the internal inverse emulsion globules (Ei) dispersed in the external phase (We) is at least twice, preferably at least 5 times, very particularly d '' at least 10 times that of the average size of the droplets of the internal aqueous phase (Wi) dispersed in the hydrophobic phase.
  • the external phase (We) can be aqueous or non-aqueous miscible with water.
  • miscible with water means is not likely to form a macroscopic diphasic solution at 25 ° C.
  • the external phase (We) is a non-aqueous phase miscible with water, it is in particular an alcoholic or hydroalcoholic phase, in particular a phase based on isopropyl alcohol, ethanol. .
  • the external phase (We) is an aqueous phase.
  • the pH of the external aqueous phase is not limiting; it depends on the intended application of the invention.
  • the pH can range from 0 to 14, preferably from 2 to 11, more preferably from 5 to 11.
  • the pH of the external aqueous phase (We) of the concentrated multiple emulsion (Em) can range from 5 to 11, preferably from 6 to 8.
  • the external phase (We), preferably aqueous, can also contain hydrophilic active materials, in particular antibacterial agents such as methyl chloro isothiazolinone and methyl isothiazolinone (KATHON® CG marketed by Rohm and Haas), as well as buffering agents for adjust the pH, additives to adjust the osmotic pressure, such as salts (sodium chloride or sulfate, calcium chloride %) or sugars (glucose) or polysaccharides (dextran ”).
  • hydrophilic active materials in particular antibacterial agents such as methyl chloro isothiazolinone and methyl isothiazolinone (KATHON® CG marketed by Rohm and Haas), as well as buffering agents for adjust the pH, additives to adjust the osmotic pressure, such as salts (sodium chloride or sulfate, calcium chloride %) or sugars (glucose) or polysaccharides (dextran ”).
  • the active material (A) contained in or constituting the hydrophobic phase (O) is a hydrophobic active material useful in the field of care or detergency of articles made of textile fibers
  • the external phase (We) an aqueous liquid detergent formulation containing the dispersing and / or stabilizing agent (De) formed from a mixture of at least one nonionic hydrophilic surfactant and at least one anionic hydrophilic surfactant , optionally combined with at least one non-ionic hydrophilic (amphiphilic) polymer.
  • the concentration of the aqueous external phase (We) in hydrophilic compound (De) can range from 10 to 60% by weight, preferably from 15 to 50% by weight; its pH can range from 6 to 8.
  • the mass ratio, expressed in sec, of nonionic surfactant / anionic surfactant can range from 3/1 to 1/1.
  • the active material (A) is a hydrophobic active material useful in the field of care or detergency of articles made of textile fibers
  • the external phase (We) a liquid detergent formulation non-aqueous miscible with water, containing the dispersing and / or stabilizing agent (De) formed from a mixture of at least one nonionic hydrophilic surfactant and at least one anionic hydrophilic surfactant, optionally combined with at least one nonionic hydrophilic (amphiphilic) polymer.
  • the concentration of the non-aqueous external phase (We) in hydrophilic compound (De) can range from 10 to 60% by weight, preferably from 15 to 50% by weight.
  • the active material (A) is a hydrophobic active material useful in the field of caring for articles made of textile fibers
  • the external phase (We) an aqueous liquid rinsing formulation, containing the dispersing and / or stabilizing agent (De) formed from at least one cationic hydrophilic surfactant and / or from at least one cationic hydrophilic (amphiphilic) polymer, optionally in admixture with at least one nonionic hydrophilic surfactant and / or at least one nonionic hydrophilic (amphiphilic) polymer.
  • the active material (A) is a hydrophobic active material useful in the field of paints, and the external phase (We) an aqueous formulation for paint.
  • the active material (A) is a hydrophobic active material useful in the field of paints, and the external phase (We) an aqueous formulation for paint.
  • the multiple emulsion (Em) according to the invention can be obtained by implementing techniques involving a single reactor or two reactors.
  • a technique in a single reactor can be carried out by implementing the following steps: (a) preparing the reverse emulsion (Ei) (b) preparing the external phase containing the agent and / or stabilizer (De) ( c) the external phase is introduced into the reverse emulsion (Ei) without stirring (d) the whole is stirred.
  • Step (a) of preparation of the reverse emulsion (Ei) can be carried out as described above.
  • Step (b) of preparation of the external phase (We) can be carried out by mixing the constituent of the external phase (We) (preferably water) and the dispersing and / or stabilizing agent (De ).
  • the external phase (We) can also include adjuvants such as preservatives and additives regulating the osmotic pressure.
  • the preparation of the external phase can be carried out at room temperature.
  • the external phase (We) is prepared at a temperature close to that at which the reverse emulsion (Ei) is prepared. Once the external phase (We) is obtained, it is added to the inverse emulsion
  • step (d) After having introduced all of the external phase (We) into the reverse emulsion (Ei), the whole is agitated (step (d).
  • the stirring is carried out by means of moderately shearing mixers, as are, for example, the agitators provided with a frame blade, the planetary type mixers, or those having a scraping mobile and a blade rotating in opposite directions. (cons-stirring).
  • This stirring operation preferably takes place at a temperature at which the hydrophobic phase (O) is in a liquid form, and more particularly is between 10 and 80 ° C.
  • the average size of the internal inverse emulsion (Ei) globules advantageously varies between 1 and 100 ⁇ m, more particularly between 1 and 20 ⁇ m, advantageously between 5 and 15 ⁇ m.
  • the average size of the globules corresponding to the median diameter in volume (d50) which represents the diameter of the globule equal to 50% of the cumulative distribution, is measured with a Horiba device and, or with an optical microscope.
  • the various constituents of the emulsion (Em) can be used according to the quantities mentioned above.
  • the inverse emulsion / external phase weight ratio (We) can range from 50/50 to 99/1, preferably 70 / 30 to 98/2, especially from
  • a technique in two reactors can be carried out by implementing the following steps: (a) preparing the external phase (We) containing the dispersing and / or stabilizing agent (De) as above (b) preparing l reverse emulsion (Ei) as above (c) gradually introducing the reverse emulsion (Ei) into the external phase (We), with stirring
  • Step (c) of preparation of the actual multiple emulsion is carried out with stirring; stirring can be done by means of a paddle frame.
  • the stirring speed is relatively slow, of the order of 400 revolutions / minute.
  • the multiple emulsion (Em) obtained is analogous to that obtained by the technique known as a single reactor.
  • Another technique in two reactors, making it possible to prepare a similar multiple emulsion (Em) implements the following steps: (a) the reverse emulsion (Ei) is prepared as above; the amount of reverse emulsion (Ei) prepared is divided into two parts (b) the external phase (We) is prepared containing the dispersing and / or stabilizing agent (De) (c) the external phase (We) is introduced into the first part of the reverse emulsion (Ei) without stirring (d ) the whole is stirred (e) little by little the remaining part of the inverse emulsion (Ei) is introduced into the multiple emulsion obtained in step (d), with stirring When the dispersing and / or stabilizing agent (De) is in at least water-soluble or water-dispersible polysaccharide (PSA) constituting the stabilizing agent (Di), the multiple emulsion (Em)
  • the emulsion in solid form (Es), according to the invention can be obtained by addition, to the external phase of the multiple emulsion (Em), of a matrix (M) - in a water-soluble or water-dispersible compound, capable of form, in the presence of the external phase of the multiple emulsion (Em), a solid shell, after drying and optionally crystallization - into a solid water-soluble or water-dispersible material capable of adsorbing and / or absorbing the multiple emulsion (Em) and / or to hydrate, while remaining in a solid form - or in an insoluble solid material, capable of adsorbing and / or absorbing the multiple emulsion (Em).
  • the external phase (We) of the multiple emulsion (Em) is aqueous.
  • the materials capable of forming the matrix (M) there may be mentioned: • the following water-soluble or water-dispersible organic and inorganic compounds: - polyethylene qlvcols (PEG) having a molecular weight of between 2,000 and 100,000 g / mole - co-polymers of ethylenically unsaturated carboxylic acid or anhydride and of non-ionic ethylenically unsaturated monomer - water-soluble or water-dispersible polypeptides (PP) of natural or synthetic origin - the polyelectrolytes (PE) in acid form, belonging to the family of weak polyacids, having a molecular mass of less than 20,000 g / mole, preferably between 1,000 and 5,000 g / mole - the polvvinylpyrrolidones (PVP) having a molecular weight less than 20,000 g / mole, preferably between 1,000 and 10,000 g / mole - polyvinyl alcohols (PEG
  • the water-soluble or water-dispersible salts of alkali metals like silicates (Sil). carbonates (Carb). phosphates (Phos). sulphates. phosphonates. acetates, citrates, salts of saturated or unsaturated fatty acids (stearates) of alkali metals, mixtures of sodium acetate and citric acid - or mixtures thereof.
  • copolymers of ethylenically unsaturated carboxylic acid or anhydride and of ethylenically unsaturated nonionic monomer mention may be made of copolymers of linear or branched aliphatic, cycloaliphatic or aromatic aliphatic or monocarboxylic or polycarboxylic acid and of monoolefinic ⁇ containing from 2 to 20 carbon atoms.
  • ⁇ monoolefin monomers mention may especially be made of ethylene, propylene, butene-1, isobutylene, n-pentene-1, 2-methyl butene-1, n-hexene-1, methyl -2 pentene-1, methyl-4 pentene-1, ethyl-2 butene-1, diisobutylene (or -trimethyl-2,4,4 pentene-1), methyl-2 dimethyl-3,3 pentene -1.
  • the molar ratio between the two types of monomers can range from 30/70 to 70/30.
  • the copolymer of formula (i) results from the polymerization of maleic anhydride and 2,4,4-trimethyl 1-pentene.
  • copolymer is well known to those skilled in the art. Mention may be made, as polymer of this type, of that marketed under the name Geropon® EGPM and T36 (maleic anhydride / diisobutylene), marketed by Rhodia Chimie, as well as Sokalan® CP9 (maleic anhydride / olefin) marketed by BASF.
  • Geropon® EGPM and T36 maleic anhydride / diisobutylene
  • Sokalan® CP9 maleic anhydride / olefin
  • BASF water-soluble or water-dispersible synthetic polymers
  • polymers can be homopolymers derived from aspartic or glutamic acid as well as copolymers derived from aspartic acid and glutamic acid in any proportions, or copolymers derived from aspartic and / or glutamic acid and d other amino acids.
  • copolymerizable amino acids there may be mentioned glycine, alanine, leucine, isoleucine, phenyl alanine, methionine, histidine, proline, lysine, serine, threonine, cysteine ...
  • proteins of plant origin are preferably hydrolyzed, with a degree of hydrolysis less than or equal to 40%, for example from 5 to less than 40%.
  • proteins of vegetable origin mention may be made, by way of indication, of the proteins originating from protein seeds, in particular those of peas, faba beans, lupins, beans, and lentils; proteins from cereal grains, especially those from wheat, barley, rye, corn, rice, oats, and millet; proteins from oil seeds, especially those from soybeans, peanuts, sunflowers, rapeseed, and coconuts; proteins from the leaves, especially alfalfa, and nettles; and proteins from plant organs from buried reserves, notably that of potatoes and beets.
  • proteins of animal origin mention may be made, for example, of muscle proteins, in particular stroma proteins, and gelatin; proteins originating from milk, in particular casein, lactoglobulin; and fish protein.
  • the protein is preferably of vegetable origin, and more particularly comes from soybeans or wheat.
  • a radical -R-COOH where R represents a hydrocarbon residue containing from 1 to 4 carbon atoms, preferably an alkylene residue containing 1 or 2 carbon atoms, methylene in particular.
  • R represents a hydrocarbon residue containing from 1 to 4 carbon atoms, preferably an alkylene residue containing 1 or 2 carbon atoms, methylene in particular.
  • R represents a hydrocarbon residue containing from 1 to 4 carbon atoms, preferably an alkylene residue containing 1 or 2 carbon atoms, methylene in particular.
  • copolymers obtained from the monomers corresponding to the preceding general formula and those obtained using these monomers and other monomers in particular vinyl derivatives such as vinyl alcohols and copolymerizable amides such as acrylamide or methacrylamide.
  • the preferred polyelectrolytes have a low degree of polymerization.
  • the molecular weight by weight of the polyelectrolytes is more particularly less than 20,000 g / mole. Preferably, it is between 1,000 and 5,000 g / mole.
  • An ampholyte polymer is a polymer which comprises anionic or potentially anionic charges depending on the pH and cationic or potentially cationic charges depending on the pH, the potentially anionic or potentially cationic charges being taken into account for the calculation of the ratio of total number of anionic charges to the total number of cationic charges.
  • the film-forming ampholytic polymer (PA) generally has a molecular mass of less than 500,000 g / mol, determined by aqueous gel permeation chromatography (GPC).
  • the film-forming ampholytic polymer (PA) can be obtained from anionic and cationic ethylenically unsaturated monomers. It can also be obtained from a mixture of monomers additionally containing neutral monomers.
  • the anionic ethylenically unsaturated monomers can be chosen from acrylic, methacrylic, fumaric, maleic, itaconic acids or anhydrides, N-methacroyl alanine, N-acryloyl-hydroxy-glycine ...
  • water-soluble, sulfonated or phosphonated ethylenically unsaturated monomers such as sulfopropyl acrylate or its water-soluble salts, water-soluble styrene sulfonates, vinylsulfonic acid and its water-soluble salts or vinylphosphonic acid and its water-soluble salts.
  • the cationic ethylenically unsaturated monomers can be chosen from
  • aminoacryloyl or acryloyloxy monomers such as trimethylaminopropylmethacrylate chloride, trimethylaminoethylacrylamide or methacrylamide chloride or bromide, trimethylaminobutylacrylamide or methacrylamide, trimethylaminopropylmethacrylamide () (3-acrylamidopropyl) trimethylammonium chloride (APTAC), methacryloyloxyethyl trimethylammonium chloride or methyl sulfate, acryloyloxyethyl trimethylammonium chloride;
  • N N-dialkyldiallylamine monomers such as N, N-dimethyldiallylammonium chloride (DADMAC);
  • polyquaternary monomers such as dimethylaminopropylmethacrylamide chloride, N- (3-chloro-2-hydroxypropyl) trimethylammonium (DIQUAT) ...
  • the neutral ethylenically unsaturated monomers can be chosen from acrylamide, N-isopropylacrylamide, N, N-dimethylacrylamide, dimethylaminoethylmethacrylate (DMAEMA), dimethylaminopropyl methacrylamide, vinyl alcohol, alkyl or hydroxyalkyl acrylates or methacrylates, polyoxyalkylene glycol acrylates or methacrylates ... Mention may very particularly be made, as ampholyte polymer ( PA), copolymers or terpolymers
  • MAPTAC acrylic or methacrylic acid
  • DIQUAT acrylic or methacrylic acid
  • DADMAC acrylic or methacrylic acid
  • MES acrylic or methacrylic acid / DMAEMA
  • Osides are compounds which result from the condensation, with elimination of water, of daring molecules between them or even of daring molecules with non-carbohydrate molecules.
  • the holosides which are formed by the combination of exclusively carbohydrate units are preferred, and more particularly the oligoholosides (or oligosaccharides) which contain only a limited number of these units, that is to say a number which is generally lower. or equal to 10.
  • oligoholosides mention may be made of sucrose, lactose, cellobiose, maltose, sucrose and trehalose.
  • the water-soluble or water-dispersible polyholosides are highly depolymerized; they are described for example in the work of P. ARNAUD entitled “organic chemistry course", Gaultier-Villars sky, 1987. More particularly, these polyholosides have a molecular mass by weight of less than 500,000 g / mole, preferably less at 20,000 g / mole.
  • polyholosides By way of nonlimiting example of polyholosides, mention may be made of celluloses and cellulose derivatives (carboxy methyl cellulose), carrageenans; among the highly depolymerized polyholosides, mention may be made of dextran, starch, xanthan gum and galactomannans such as guar or carob, these polysaccharides preferably having a melting point above 100 ° C. and a solubility in water between 5 and 500 g / l.
  • amino acids (AA) there may be mentioned monocarboxylated or dicarboxylated monoamine acids, monocarboxylated diamine acids and their water-soluble derivatives.
  • Amino acids preferably have a side chain with acid-base properties; they are chosen in particular from arginine, lysine, histidine, aspartic, glutamic and hydroxyglutamic acids; they can also be in the form of derivatives, preferably water-soluble; it can be, for example, sodium, potassium or ammonium salts, such as sodium glutamate, aspartate or hydroxyglutamate.
  • surfactants likely to constitute the matrix (M)
  • the description of the fluid isotropic phases and rigid liquid crystal of hexagonal or cubic type is given in the work of RG LAUGHLIN entitled "The AQUEOUS PHASE BEHAVIOR OF SURFACTANTS "- ACADEMIC PRESS - 1994.
  • phase rigid liquid crystal is stable up to a temperature at least equal to 55 ° C.
  • the fluid isotropic phase can be poured, while the rigid liquid crystal phase cannot.
  • ionic glycolipid surfactants in particular derivatives of uronic acids (galacturonic, glucuronic acids, D-mannuronic, L-iduronic, L-guluronic 10), having a substituted hydrocarbon chain or unsaturated or unsaturated comprising from 6 to 24 carbon atoms and preferably from 8 to 16 carbon atoms, or their salts.
  • uronic acids galacturonic, glucuronic acids, D-mannuronic, L-iduronic, L-guluronic
  • L-iduronic glucuronic acids
  • surfactant examples include amphoteric surfactants such as amphoteric derivatives of alkyl polyamines such as amphionic XL®, Mirataine H2C-HA® marketed by Rhône-Poulenc as well as Ampholac 7T / X® and Ampholac 7C / X® sold by Berol Nobel.
  • amphoteric surfactants such as amphoteric derivatives of alkyl polyamines such as amphionic XL®, Mirataine H2C-HA® marketed by Rhône-Poulenc as well as Ampholac 7T / X® and Ampholac 7C / X® sold by Berol Nobel.
  • alkali metal silicates mention may in particular be made of those having a SiO 2 / M 2 O molar ratio of 1.6 to 3.5 with M representing a sodium or potassium atom.
  • the amount of matrix (M) used is such that it represents from 20 to 80%, preferably from 30 to 70% of the weight of the emulsion in solid form (Es) expressed in dry form.
  • the solid emulsion (Es) of the multiple emulsion (Em) can be carried out in different ways, depending on the nature of the matrix. When it is a meltable matrix at a temperature below 80 ° C.
  • the solid emulsion of the multiple emulsion (Em) can be produced by adding to said multiple emulsion (Em) polyethylene glycol in the molten state at a temperature of the order of 60 to 80 ° C., or in solution aqueous, then crystallization by drying / cooling in thin film in a ventilated oven, and flaking.
  • a variant of this process consists in producing the multiple emulsion (Em) by dispersing the reverse emulsion (Ei) at a temperature of 60 to 80 ° C in molten polyethylene glycol added with (De) and then crystallization by drying. / thin film cooling in a ventilated oven, and flaking.
  • the solid form can be achieved by placing on a support on said material and optionally moderate drying.
  • the external aqueous phase of the multiple emulsion (Em) comprises at least one water-soluble or water-dispersible compound (M) which cannot be melted at a temperature below 100 ° C, as a drying additive for the multiple emulsion.
  • M water-soluble or water-dispersible compound
  • the multiple emulsion (Em) is diluted with water preferably comprising dispersing and / or stabilizing agent (De) and introduced into the matrix (M), then dried.
  • the drying operation (consisting in removing water from the external aqueous phase) can be carried out by any means known to those skilled in the art.
  • the drying is carried out so that at least 90% by weight of the external aqueous phase is eliminated.
  • Drying can be carried out in an oven, preferably in a thin layer.
  • the drying temperature is less than or equal to 100 ° C. More particularly, temperatures between 50 and 90 ° C are suitable for the implementation of this method.
  • Another method of drying the emulsion is a so-called rapid method.
  • spray drying drying by using Duprat® drums, or lyophilization (freezing-sublimation) are suitable.
  • Spray drying can be carried out in the usual manner in any known device such as for example an atomization tower associating a spraying carried out by a nozzle or a turbine with a stream of hot gas.
  • the inlet temperature of the gases is of the order of 100 ° C. to 200 ° C. and that of the outlet of the atomizing gases is preferably between 55 and 100 ° C. These temperatures are given for information only, and depend on the thermal stability of the various elements.
  • it is defined according to the desired final water content in the granule.
  • the desired average size of the granules (d50) is between 100 ⁇ m and a few millimeters (Sympatec), preferably between 100 and 800 ⁇ m.
  • Such granules can be obtained directly using a double-effect atomizer (drying / granulation). They can also be obtained using a single-effect atomizer (drying) associated with a granulation device (fluidized bed) with spraying of water, optionally additive with matrix material (M).
  • the average size of the granules (d50) obtained directly after drying is between 100 ⁇ m and a few millimeters (Sympatec), preferably between 100 and 800 ⁇ m.
  • a second object of the invention consists in the use of an emulsion (E) comprising a hydrophobic liquid or fusible phase (O) containing and / or consisting of at least one hydrophobic active material (A), said emulsion (E ) being: • in the form of a multiple emulsion (Em) comprising: - an internal inverse emulsion (Ei) comprising said continuous hydrophobic liquid or fusible phase (O), an aqueous dispersed phase (Wi) and, with interface of the two phases, at least one water-soluble or water-dispersible stabilizing agent (Di) - an aqueous or water-miscible external phase (We), in which the internal emulsion (Ei) is dispersed, using at
  • Said substrate (S) can be of any material, in particular a metal or any natural, artificial or synthetic material, or a mixture of these materials.
  • Said hydrophobic phase (O) is preferably made of an active material capable of bringing its intrinsic properties or the benefits which result therefrom, to said substrate.
  • the aqueous external phase (We) can itself constitute the aqueous medium (B), with release of the hydrophobic phase and of the hydrophobic active material by deposition or application and drying of the emulsion on the substrate (S).
  • the emulsion according to the invention can be used in paints, preferably aqueous, or itself constitute a preferably aqueous paint, and be used to transport in particular a hydrophobicizing agent on a surface of the building material, plaster, cement, wood ..., with release of the hydrophobicizing agent by depositing and drying the paint on the surface. It can also be used for the treatment of metals. Likewise, it can be used in cosmetic compositions or itself constitute an aqueous cosmetic composition (moisturizing creams, sun creams, make-up products, styling gels, etc.); the hydrophobic phase can be or contain any hydrophobic active care material (such as conditioning agents, detangling agents, etc.), anti-UV agents, pigments, dyes, etc.
  • any hydrophobic active care material such as conditioning agents, detangling agents, etc.
  • the second object of the invention consists in particular in use of an emulsion (E) comprising a liquid or fusible hydrophobic phase (O) containing and / or consisting of at least one hydrophobic active material (A), said emulsion (E) being: • in the form of a multiple emulsion (Em) comprising: - an internal inverse emulsion (Ei) comprising said continuous hydrophobic liquid or fusible phase (O), an aqueous dispersed phase (Wi) and, at the interface of the two phases, at least one water-soluble stabilizing agent or water-dispersible (Di) - an aqueous or water-miscible external phase (We), in which the internal emulsion (Ei) is dispersed, using at least one dispersing and / or stabilizing agent (De)
  • Brookfield viscosity at 25 ° C in solution at 1% by mass in water is less than 20,000 mPa.s., preferably less than 5,000 mPa .s., particularly ranging from 1 to 4500 mPa.s., to transport, in mili eu aqueous (B) brought into contact with a substrate (S), the hydrophobic phase (O) containing and / or consisting of at least one hydrophobic active material (A), towards said substrate (S), the volume of said aqueous medium being sufficient to cause destabilization and / or rupture of the emulsion
  • the emulsion (E) by dilution of said emulsion (E) and / or drying subsequent to dilution of said emulsion (E), and the provision and / or release of the material active (A) contained or constituent of the hydrophobic phase (O), on the substrate (S).
  • the emulsion (E) is a multiple emulsion
  • emulsion (Em) comprising at least 70% by weight of internal emulsion (Ei).
  • relative amounts of emulsion (Em) and aqueous medium (B) equivalent to a dilution of 2 to 100 times the volume of said emulsion (Em) can be used.
  • the emulsion according to the invention is particularly advantageous for conveying and depositing a hydrophobic active material on a hydroxyapatite surface (tooth), a keratin surface (skin, hair, leather) or a textile surface.
  • the hydrophobic phase can contain hydrophobic agents having refreshing properties, agents making it possible to fight against dental plaque, antiseptic agents, etc.
  • the emulsion (E) can be included or itself form a composition for dental or oral hygiene, composition intended to be rinsed or diluted. It may be toothpaste, mouthwash, etc.
  • Said substrate (S) may in particular be a keratinous surface, such as the skin and the hair.
  • the hydrophobic phase can be or contain any hydrophobic active care material (such as conditioning agents, detangling agents, etc.), anti-UV agents, pigments, dyes, etc .; the emulsion (E) can be included in or itself form a cosmetic composition intended to be rinsed or diluted; it may in particular be a shampoo, a conditioner, a shower gel, etc.
  • Said substrate (S) may be leather; the hydrophobic phase can be or contain any hydrophobic active material capable of providing the hydrophobic substrate, softness, flexibility, protection with respect to external agents, etc.
  • said substrate (S) is made of a textile material.
  • the textile substrate may be in the form of textile fibers or of articles made from natural textile fibers (cotton, linen or other natural cellulosic material, wool ...), artificial (viscose, rayon %) or synthetic ( polyamide, polyester ...) or mixtures thereof.
  • said substrate is a textile surface made of a cellulosic material, in particular cotton.
  • Said hydrophobic phase (O) is preferably made of a material for textile care ("textile care agent").
  • the particular examples of organosilicon (01) and organic (02) materials mentioned above are particularly well suited, very particularly organosilicon materials, especially amines.
  • the benefits brought by a hydrophobic lubricating phase (01) or (02) to a textile substrate are in particular the contribution of properties of softness (softness), anti-creasing (anti-wrinkling), ease of ironing (easy- ironing), abrasion resistance (especially protection against aging when wearing the garment or repeated washing operations), elasticity, color protection, retention of perfumes ...
  • perfumes preferably, these are dissolved in the hydrophobic phase (O), in particular in organosilicon (01) or organic (02) materials.
  • the aqueous bath (B) in which the textile substrate is present to acquire benefits can be very varied. It may be, without limitation, a soaking bath, washing, rinsing, padding ...
  • the emulsion (E) according to the invention can in particular be used as an additive in a detergent composition for washing or rinsing articles made of textile fibers, or as a detergent or rinsing composition for washing or rinsing articles made of textile fibers, with the aim of conveying a hydrophobic care agent ("textile care agent") and / or any other useful hydrophobic active material, and to promote the deposition thereof and / or thereof on an article made of textile fibers, in particular cotton, during the rinsing operation and / or during the subsequent drying (s) to the main washing operation in the case of a detergent composition for washing, or in the subsequent drying operation in the case of a rinsing composition.
  • textile care agent hydrophobic care agent
  • s subsequent drying
  • the use of the emulsion (E) in the form of a multiple emulsion (Em) or in the form of a water-dispersible solid (Es) containing a hydrophobic phase (O) of care, as composition of rinsing or in a composition for rinsing the laundry, made it possible to bring to the laundry, after drying, properties of softness, flexibility, anti-wrinkling (anti-wrinkling), ease of ironing (easy-ironing), abrasion resistance, elasticity, color protection, fragrance retention ...
  • the deposition of the hydrophobic phase (O) containing or consisting of the active material (A) on the substrate can be a deposition by adsorption , co-crystallization, trapping and / or adhesion.
  • the amount of emulsion (E) in the form of a multiple emulsion (Em) or in the form of a water-dispersible solid (Es) which may be present in a composition for washing textile fiber articles, according to the third object of the invention, corresponds to an amount of hydrophobic phase (O) representing from 0.0001% to 25%, preferably from 0.0001% to 5% of the total weight of the composition, with relative amounts of emulsion, expressed as an emulsion multiple (Em), and aqueous medium (B) equivalent to a dilution of 2 to 100 times the volume of said emulsion (Em).
  • the amount of emulsion (E) in the form of a multiple emulsion (Em) which may be present in a composition for rinsing articles of textile fibers, according to the third object of the invention, corresponds to an amount of hydrophobic phase (O ) representing from 0.0001% to 25%, preferably from 0.0001% to 5% of the total weight of the composition, with relative amounts of emulsion, expressed in multiple emulsion (Em), and of aqueous medium (B ) equivalent to a dilution of 2 to 100 times the volume of said emulsion (Em).
  • O hydrophobic phase
  • a washing composition, whether or not compacted or liquid powder, of articles made of textile fibers may contain at least one surfactant preferably chosen from anionic surfactants and nonionics or mixtures thereof.
  • anionic surfactants mention may be made of alkyl (C 8 -C ⁇ 5 ) benzene sulfonates (at a rate of 0-30%, preferably 1-25%, more preferably 2-15% by weight).
  • primary or secondary alkyl sulfates can be mentioned, in particular primary (C 8 -C ⁇ 5 ) alkyl sulfates; alkyl ether sulfates; olefin sulfonates; alkyl xylene sulfonates; dialkyl sulfosuccinates; fatty acid esters sulfonates; sodium salts are generally preferred.
  • nonionic surfactants there may be mentioned the ethoxylates of primary or secondary alcohols, in particular the ethoxylates of alcohols aliphatic C 8 -C 2 o having from 1 to 20 moles of ethylene oxide per mole of alcohol, and more particularly the ethoxylates of primary or secondary aliphatic alcohols C 1 0-C 15 having from 1 to 10 moles of ethylene oxide per mole of alcohol; may also be mentioned non-ionic non-ethoxylated surfactants such as alkylpolyglucosides, glycerol monoethers, and polyhydroxyamides (glucamides).
  • non-ionic non-ethoxylated surfactants such as alkylpolyglucosides, glycerol monoethers, and polyhydroxyamides (glucamides).
  • the level of nonionic surfactants is 0-30%, preferably 1-25%, more preferably 2-15% by weight.
  • the choice and amount of the surfactant depends on the desired use of the detergent composition.
  • the surfactant systems to be chosen for washing textiles by hand or in the machine are well known to formulators. Amounts of surfactants as high as 60% by weight may be present in the compositions for hand washing. Amounts of 5-40% by weight are generally suitable for washing textiles in the machine.
  • these compositions comprise at least 2% by weight, preferably from 2-60%, more preferably 15-40% and particularly 25-35% by weight.
  • cationic mono-alkyl surfactants Mention may be made of the quaternary ammonium salts of formula R 1 R 2 R 3 R 4 N + X " where the groups R are long or short, alkyl, hydroalkyl or alkyl ethoxylated chains, X being a counterion (R 1 is a C 8 -C 22 , preferably C 8 -C 10, or C1 2 -C 1 4 alkyl group, R 2 is a methyl group, R 3 and R 4 being similar or different being a methyl or hydroxymethyl group); as well as cationic esters, such as choline esters.
  • Detergent compositions for most washing machines generally contain an anionic surfactant other than soaps, or a nonionic surfactant, or mixtures thereof, and optionally a soap.
  • Detergent compositions for washing textiles generally contain at least one builder, the total amount of builder is typically 5-80%, preferably 10-60% by weight.
  • inorganic adjuvants such as sodium carbonate, crystalline or amorphous aluminosilicates (10-70%, preferably 25-50% dry), lamellar silicates, inorganic phosphates (Na orthophosphate, pyrophosphate and tripolyphosphate). Further details relating to particularly suitable aluminosilicates and zeolites are given in WO 03/020819.
  • organic detergency builders such as polymers of polyacrylate type, acrylic / maleic copolymers and acrylic phosphinates; polycarboxylate monomers such as citrates, gluconates, oxidisuccinates, mono-, di- and tri-succinates of glycerol, dipicolinates, hydroxyethyliminodiacetates, malonates or succinates of alkyl or alkenyl; fatty acid sulfonate salts ....
  • organic detergency builders such as polymers of polyacrylate type, acrylic / maleic copolymers and acrylic phosphinates; polycarboxylate monomers such as citrates, gluconates, oxidisuccinates, mono-, di- and tri-succinates of glycerol, dipicolinates, hydroxyethyliminodiacetates, malonates or succinates of alkyl or alkenyl; fatty acid sulfonate salts ....
  • the organic detergency builders are citrates (5-30%, preferably 10-25% by weight), acrylic polymers, more particularly acrylic / maleic copolymers (0.5-10%, preferably 1- 10% by weight).
  • the compositions may favorably contain a bleaching system, in particular peroxide compounds such as inorganic persalts (perborates, percarbonates, perphosphates, persilicates and persulfates, preferably sodium perborate monohydrate or tetrahydrate, and sodium percarbonate) or organic peroxyacids (urea peroxide), capable of releasing oxygen in solution.
  • the bleaching peroxide compound is favorably present at 0.1-35%, preferably 0.5-25% by weight.
  • the preferred activators are peroxycarboxylic acids, in particular peracetic and pernonanoic acids. Mention may very particularly be made of N, N, N ', N', - tetracetyl ethylenediamine (TAED) and sodium nonanoyloxybenzene sulfonate (SNOBS).
  • TAED peracetic and pernonanoic acids.
  • SNOBS sodium nonanoyloxybenzene sulfonate
  • compositions also generally comprise one or more enzymes, in particular proteases, amylases, cellulases , oxidases, peroxidases and lipases (0.1-3% by weight), perfumes, anti-redeposition agents, anti-fouling, anti-color transfer, non-ionic softening agents ...
  • Detergent compositions for washing textiles may also be in the form of nonaqueous liquid tablets in an envelope made of a material dispersing in the washing medium such as polyvinyl alcohol for example. They comprise at least one water-miscible alcohol, such as in particular isopropyl alcohol, in an amount which can range from 5 to 20% by weight. .
  • compositions for rinsing articles of textile fibers can contain cationic or non-ionic softening agents. They can represent from 0.5 to 35%, preferably from 1-30%, more preferably from 3 to 25% by weight of the rinsing composition.
  • Cationic softeners are substantially non-water-soluble quaternary ammonium compounds comprising a single alkyl or alkenyl chain containing at least 20 carbon atoms, or preferably compounds having two polar heads and two alkyl or alkenyl chains containing at least 14 carbon atoms .
  • the softening compounds have two alkyl or alkenyl chains containing at least 16 carbon atoms, and particularly at least 50% of the alkyl or alkenyl groups have 18 or more carbon atoms.
  • the linear alkyl or alkenyl chains are predominant.
  • quaternary ammonium compounds having two long aliphatic chains are very commonly used, such as distearyl dimethyl ammonium chlorides; ditallow alkyl dimethyl ammonium.
  • the rinse compositions may further include nonionic softeners such as lanolin; lecithins and other phospholipids are also suitable.
  • the rinsing compositions may also contain nonionic stabilizing agents such as linear C 8 -C 22 alkoxylated alcohols containing from 10 to 20 moles of alkylene oxide, C 10 -C 20 alcohols and their mixtures.
  • the amount of non-ionic stabilizing agent represents 0.1-10%, preferably 0.5-5%, very particularly 1-4% by weight of the composition.
  • the molar ratio of the quaternary ammonium compound and / or other softening cationic agent to the stabilizing agent is favorably 40 / 1-1 / 1, preferably 18 / 1-3 / 1.
  • the composition may also comprise fatty acids, in particular monocarboxylated (C 8 -C 2 ) alkyl or alkenyl acids or their polymers; preferably they are saturated and non-saponified, like oleic, lauric or tallow acids. They can be used in an amount of at least 0.1%, preferably at least 0.2% by weight. In concentrated compositions, they can be present in an amount of 0.5-20%, preferably 1-10% by weight.
  • the molar ratio of the quaternary ammonium compound and / or other fatty acid softening cationic agent is favorably 10 / 1-1 / 10.
  • a final object of the invention consists in a method for conveying, to a substrate (S) in contact with an aqueous medium (B), at least one active material contained in or constituting a hydrophobic phase (O) liquid or fusible of an emulsion (E), said emulsion being • in the form of a multiple emulsion (Em) comprising: - an internal inverse emulsion (Ei) comprising said continuous hydrophobic liquid or fusible phase (O), an aqueous dispersed phase (Wi) and, at the interface of the two phases, at least one water-soluble or water-dispersible stabilizing agent (Di) - an aqueous or water-miscible external phase (We), in which the internal emulsion (Ei) is dispersed , using at least one dispersing and / or stabilizing agent (De) • or in solid form (Es), water-dispersible in a multiple emulsion (Em), comprising - the reverse emul
  • the last object of the invention relates in particular to a method for conveying, to a substrate (S) in contact with an aqueous medium (B), at least one active material contained in or constituting a hydrophobic phase (O) liquid or fuse of an emulsion (E), said emulsion being in the form of a multiple emulsion (Em) comprising: an internal inverse emulsion (Ei) comprising said continuous hydrophobic liquid or fusible phase (O), an aqueous dispersed phase (Wi) and, at the interface of the two phases, at least one water-soluble or water-dispersible stabilizing agent (Di) - a aqueous or water-miscible external phase (We), in which the internal emulsion (Ei) is dispersed, using at least one dispersed, using at least one dis
  • Arlatone® F 127G of formula HO (CH 2 CH2 ⁇ ) ⁇ (CH (CH3) CH 2 ⁇ ) y (CH 2 CH 2 O) z H marketed by ICI -Uniquema
  • Example 1 Multiple emulsion Composition of the inverse emulsion (Ei):
  • Preparation of the internal aqueous phase Water is introduced into a 1 I reactor fitted with a paddle-type stirring.
  • the Meyprogat® 7 powder is then gradually introduced with stirring at room temperature.
  • the mixture is stirred for two hours at ambient temperature so as to disperse the gel particles of Meyprogat® 7 in a homogeneous manner.
  • the dispersion is sheared using a rotor-stator type tool
  • the pH of the internal aqueous solution / dispersion is 5 to 7.5
  • the internal aqueous phase is then introduced over 45 minutes at room temperature. Stirring is continued for 15 minutes to refine the emulsion.
  • An inverse emulsion (Ei) is obtained, the drops of dispersed aqueous phase (Wi) having a particle size of 1 ⁇ m (observation made under optical microscopy on a sample without and with prior dilution in Extrasoft oil).
  • composition of the multiple emulsion
  • a concentrated multiple emulsion (Em) is obtained, which is in the form of a viscous non-pourable cream; the average droplet size (d50) of internal reverse emulsion is close to 10 ⁇ m, with a low polydispersity index.
  • Example 2 multiple emulsion A multiple emulsion is prepared according to the procedure of Example 1, replacing the 10 parts by weight of Meyprogat® 7 with 10 parts of cellulose monoacetate.
  • EXAMPLE 3 Depositing Rhodorsil® Extrasoft Oil on Detergent Bath on Cotton
  • Test is carried out in a Tergotometer laboratory apparatus, well known to formulators of detergent compositions.
  • the device simulates the mechanical and thermal effects of washing machines of the American type with pulsator; thanks to the presence of 6 washing pots, it makes it possible to carry out series of simultaneous tests with appreciable time savings.
  • the pots are heated to 40 ° C.
  • Example 1 A quantity of double emulsion prepared in Example 1 or in Example 2 corresponding to 0.5 g of Rhodorsil® Extrasoft oil is introduced into each pot.
  • Rinsing cycle The tissue squares are then rinsed 3 times for 5 minutes (each time) with cold water.
  • the fabric squares are taken out and allowed to air dry. An assessment of softness performance is given by a jury of trained experts, in a blind test.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Veterinary Medicine (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Public Health (AREA)
  • Wood Science & Technology (AREA)
  • Birds (AREA)
  • Epidemiology (AREA)
  • Textile Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Molecular Biology (AREA)
  • Emergency Medicine (AREA)
  • Dermatology (AREA)
  • Materials Engineering (AREA)
  • Cosmetics (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Detergent Compositions (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)
  • Emulsifying, Dispersing, Foam-Producing Or Wetting Agents (AREA)

Abstract

Emulsion (E) comprenant une phase hydrophobe (O) contenant et/ou constituée d'une matière active hydrophobe (A), se présentant sous la forme d'une émulsion multiple (Em) comprenant : - une émulsion inverse interne (Ei) comprenant la phase (O) continue, une phase dispersée aqueuse (Wi) et, à l'interface des deux phases, un agent stabilisant (Di) en un polysaccharide hydrosoluble ou hydrodispersable dont le degré moyen de polymérisation est d'au moins 1,5 de préférence d'au moins 20, dont la viscosité Brookfield à 25°C en solution à 1% dans l'eau est inférieure à 20 000 mPa.s., et exempt de groupes substituants polyorganosiloxanes lipophiles, et - une phase externe (We) aqueuse ou miscible à l'eau, dans laquelle est dispersée l'émulsion interne (Ei) ou sous une forme solide (Es), hydrodispersable en une émulsion multiple (Em). L'émulsion (E), après mise en oeuvre dans un milieu aqueux (B) est susceptible de véhiculer la matière active hydrophobe vers un substrat présent dans ou en contact avec ledit milieu aqueux (B).

Description

EMULSION POUR VEHICULER UNE MATIERE ACTIVE HYDROPHOBE VERS UN SUBSTRAT EN MILIEU AQUEUX La présente invention a pour objet une emulsion (E), sous forme d'une emulsion multiple (Em) dont l'émulsion interne inverse comprend une matière active hydrophobe, ou sous forme solide (Es) hydrodispersable en une emulsion multiple de type eau dans huile dans eau (Em). Cette emulsion peut être mise en oeuvre pour véhiculer ladite matière active hydrophobe vers un substrat en milieu aqueux. Elle peut notamment être utilisée dans une composition détergente ou rinçante ou comme composition détergente ou rinçante pour le lavage ou le rinçage des articles en fibres textiles, dans le but de véhiculer et favoriser le dépôt d'une matière active hydrophobe comme un parfum, un agent de soin hydrophobe ..., sur un article textile, en coton notamment. Il a été proposé de mettre en œuvre une emulsion multiple de type eau dans huile dans eau (W/O W) pour véhiculer des matières actives hydrophiles. Ainsi, EP-930 933-A- revendique un procédé pour libérer de manière contrôlée un principe actif contenu dans une emulsion multiple de type eau dans huile dans eau caractérisé en ce que: - ladite emulsion multiple comprend une emulsion inverse Ei avec une phase aqueuse A1 qui contient au moins un principe actif hydrophile, ladite emulsion Ei étant dispersée sous forme de gouttelettes d'émulsion directe Ed, dans une phase continue aqueuse A2, avec les deux émulsions Ed et Ei stabilisées par au moins un agent de surface, présent au niveau de leurs phases continues respectives et en ce que ladite emulsion multiple est mise en présence d'une quantité suffisante d'un agent, de manière à la transformer en une emulsion directe et à induire la libération du principe actif, contenu dans la phase aqueuse Al de l'émulsion Ei, dans la phase aqueuse A2. L'agent de surface présent dans la phase continue aqueuse A2 de l'émulsion Ed est de préférence choisi parmi les lécithines hydrosolubles, esters de sucrose, esters d'acides gras, alkylamides polyoxyéthylénés, triglycérides sulfates, alkyles sulfates, alkyles éther sulfates, alkyles sulfonates, sels d'alkylamines, aminés grasses, lipoamino-acides, alkylbétaines, alkylpolyglycol éthers, copolymères d'oxydes d'alkylènes, polyesters modifiés, tensioactifs polymériques silicones. L'agent de surface présent dans la phase continue de l'émulsion Ei est de préférence choisi parmi les lécithines liposolubles, les esters de sorbitanne et d'acides gras, polyalkylènes dipolyhydroxystéarates, acides gras, monoglycérides, esters de polyglycérol, polyricinoléate de polyglycérol, esters d'acide lactique et tartrique.. La phase continue de l'émulsion Ei est une phase huileuse composée d'au moins une huile choisie parmi les huiles minérales, végétales ou animales. L'émulsion directe Ed, comprend de préférence en volume de 50 à 99 % d'une phase continue aqueuse A2 pour i à 50 % d'émulsion inverse Ei L'émulsion inverse Ei est de préférence composée en volume de 50 à 99 % d'une phase continue pour 1 à 50 % de phase aqueuse A1. Il est également connu de préparer des granulés obtenus par séchage d'une emulsion multiple de type eau dans huile dans eau (W/O/W) dont la phase aqueuse interne comprend une matière active hydrophile. Ainsi WO 02/32563 revendique des granulés susceptibles d'être obtenus par séchage d'une emulsion inverse, dispersée dans une phase aqueuse externe,
(a) l'émulsion inverse comprenant une phase aqueuse interne, comprenant au moins une matière active hydrophile, dispersée dans une phase huileuse interne, ladite phase huileuse interne comprenant au moins un tensioactif non ionique ou cationique et/ou au moins polymère amphiphile non ionique ou cationique,
(b) la phase aqueuse externe comprenant : - au moins un tensioactif polyoxyalkyléné non ionique et/ou au moins un polymère amphiphile polyoxyalkyléné non ionique, - et au moins un composé hydrosoluble ou hydrodispersable choisi parmi (i) les polymères obtenus par polymérisation d'au moins un monomère acide carboxylique, et d'au moins un monomère éthyléniquement insaturé, et/ou d'au moins un ester polyoxyalkyléné d'acide carboxylique éthyléniquement insaturé ; (ii) les polymères issus de la polymérisation d'au moins un monomère acide carboxylique et comprenant éventuellement au moins un greffon hydrophobe ; (iii) les polypeptides d'origine naturelle ou synthétique, comportant éventuellement au moins un greffon hydrophobe ; (iv) les polysaccharides fortement dépolymérisés comportant éventuellement au moins un greffon hydrophobe. Ces granulés sont redispersables en milieu aqueux en une emulsion multiple. Le but de l'invention est une emulsion sous la forme d'une emulsion multiple ou sous une forme sèche redispersable en une emulsion multiple, dont la phase huile est constituée par ou comprend une matière active hydrophobe, emulsion qui, après mise en œuvre dans un milieu aqueux soit susceptible de véhiculer ladite matière active hydrophobe vers un substrat présent dans ou en contact avec ledit milieu aqueux. Un premier objet de l'invention consiste en une emulsion (E) comprenant une phase hydrophobe liquide ou fusible (O) contenant et/ou constituée d'au moins une matière active hydrophobe (A), ladite emulsion (E) se présentant : • sous la forme d'une emulsion multiple (Em) comprenant : - une emulsion inverse interne (Ei) comprenant ladite phase hydrophobe liquide ou fusible (O) continue, une phase dispersée aqueuse (Wi) et, à l'interface des deux phases, au moins un agent stabilisant hydrosoluble ou hydrodispersable (Di) - une phase externe (We) aqueuse ou miscible à l'eau, dans laquelle est dispersée l'émulsion interne (Ei), à l'aide d'au moins un agent dispersant et/ou stabilisant (De) • ou sous forme solide (Es), hydrodispersable en une emulsion multiple (Em) dans laquelle la phase externe (We) est aqueuse, comprenant - l'émulsion inverse (Ei) dispersée dans une matrice (M) solide hydrosoluble ou hydrodispersable - et l'agent dispersant et/ou stabilisant (De) situé à l'interface de l'émulsion inverse (Ei) et de la matrice (M) et éventuellement dispersé dans la matrice (M) ladite emulsion étant caractérisée en ce que l'agent stabilisant (Di) à l'interface des deux phases de l'émulsion inverse interne (Ei) est en un matériau choisi parmi les polysaccharides (PSA) hydrosolubles ou hydrodispersables : - dont le degré moyen de polymérisation (DP) est d'au moins 1 ,5 de préférence d'au moins 20, tout particulièrement d'au moins 100 - dont la viscosité Brookfield à 25°C en solution à 1% en masse dans l'eau est inférieure à 20 000 mPa.s., de préférence inférieure à 5000 mPa.s., tout particulièrement allant de 1 à 4500 mPa.s., lesdits polysaccharides (PSA) étant en outre exempts de groupes substituants polyorganosiloxanes lipophiles. Emulsion inverse (Ei) Selon l'invention, la phase hydrophobe (O) contient et/ou est constituée d'au moins une matière active hydrophobe (A). La phase hydrophobe (O) et/ou la matière active (A) sont en au moins un matériau organique ou organosilicique ou en un mélange d'au moins un matériau organique et d'au moins un matériau organosilicique, liquide ou fusible insoluble dans une phase aqueuse. Lorsque la matière active (A) est contenue dans la phase hydrophobe (O), elle peut en outre être en au moins un matériau inorganique solide ou liquide insoluble dans une phase aqueuse ou en un mélange d'au moins un matériau inorganique et d'au moins un matériau organique et/ou d'au moins un matériau organosilicique. Selon l'invention, le matériau constituant de la phase hydrophobe (O) ou de la matière active (A) est considérée comme insoluble lorsque moins de 15%, de préférence moins de 10% de son poids, est soluble dans la phase aqueuse interne (Wi) et la phase externe (We) si cette dernière est présente, et ce dans une gamme de température comprise entre 20°C et la température de préparation de l'émulsion inverse (Ei) et de l'émulsion multiple (Em) ou de l'émulsion sous une forme solide (Es).
Ladite phase hydrophobe (O) a de préférence un point de fusion inférieur ou égal à 100°C, plus particulièrement inférieur ou égal à 80°C. Ledit matériau constituant de la phase hydrophobe (O), peut être en un matériau organosilicique (01).
Il s'agit en particulier d'une huile, d'une cire ou d'une résine en un polyorganosiloxane linéaire, cyclique, ramifié ou réticulé. Ledit polyorganosiloxane présente de préférence une viscosité dynamique mesurée à 25°C et au taux de cisaillement de 0,01 Hz pour une contrainte de 1500 Pa (effectuées sur un Carrimed ® de type CSL2-500) comprise entre 104 et 109 cP. Il peut s'agir notamment :
• d'un polyorganosiloxane non-ionique
• d'un polyorganosiloxane présentant au moins une fonction cationique ou potentiellement cationique
• d'un polyorganosiloxane présentant au moins une fonction anionique ou potentiellement anionique
• d'un polyorganosiloxane amphotère présentant au moins une fonction cationique ou potentiellement cationique et au moins une fonction anionique ou potentiellement anionique
De préférence, il s'agit d'un polyorganosiloxane non-ionique ou aminé. A titre d'exemples de polyorganosiloxanes, on peut mentionner : > les polyorganosiloxanes linéaires, cycliques ou réticulés formés de motifs organosiloxanes non-ioniques de formule générale (R)a(X)bSKO) [4-(a + b)]/2 (0 formule dans laquelle • les symboles R sont identiques ou différents et représentent un radical hydrocarboné alkyle, linéaire ou ramifié, ayant de 1 à 4 atomes de carbone, aryle, phényle notamment ;
• les symboles X sont identiques ou différents et représentent un groupement hydroxyle, un radical alkoxy, linéaire ou ramifié, ayant de 1 à 12 atomes de carbone, une fonction OCOR', où R' représente un groupe alkyle contenant de 1 à 12 atomes de carbone, de préférence 1 atome de carbone ;
• a est égal à 0, 1 , 2 ou 3
• b est égal à 0, 1 , 2 ou 3
• a+b est égal à 0, 1 , 2 ou 3 D'une manière préférentielle, ledit polyorganosiloxane est au moins substantiellement linéaire, et tout préférentiellement linéaire. A titre d'exemple, on peut citer notamment les huiles α-ω bis(hydroxy)polydiméthylsiloxanes, les huiles α-ω bis (triméthyl) polydiméthylsiloxanes, polydiméthylsiloxanes cycliques, les polyméthylphénylsiloxanes. > les polyorganosiloxanes linéaires, cycliques ou réticulés comprenant, par mole, au moins un motif organosiloxane ionique ou non-ionique de formule générale (R)a(X)b(B)cSi(O) r4_(a + b + c)]/2 (») formule dans laquelle • les symboles R sont identiques ou différents et représentent un radical hydrocarboné monovalent alkyle, linéaire ou ramifié, ayant de 1 à 4 atomes de carbone, aryle, phényle notamment ;
• les symboles X sont identiques ou différents et représentent un groupement hydroxyle, un radical alkoxy, linéaire ou ramifié, ayant de 1 à 12 atomes de carbone, une fonction OCOR1, où R' représente un groupe alkyle contenant de 1 à 12 atomes de carbone, de préférence 1 atome de carbone ;
• les symboles B sont identiques ou différents et représentent un radical hydrocarboné aliphatique et/ou aromatique et/ou cyclique contenant jusqu'à 30 atomes de carbone, éventuellement interrompu par un ou plusieurs hétéroatomes d'oxygène et/ou d'azote et/ou de soufre, éventuellement porteur d'une ou plusieurs fonctions éther, ester, thiol, hydroxyl, aminé éventuellement quaternisée, carboxylate, le symbole B étant lié au silicium de préférence par l'intermédiaire d'une liaison Si-C- ; • a est égal à 0, 1 ou 2
• b est égal à 0, 1 ou 2
• c est égal à 1 ou 2
• a+b+c est égal à 1 , 2 ou 3 A titre d'exemple de substituants répondant au symbole (B) dans la formule (II) ci-dessus, on peut mentionner
- les groupements polyéthers de formule -(CH2)n-(OC2H4)m-(OC3H6)p-OR' , où n est égal à 2 ou 3, m et p vont chacun de 0 à 30 et R' représente un reste alkyle contenant de 1 à 12 atomes de carbone, de préférence 1 à 4 atomes de carbone.
- les groupes amino primaires, secondaires, tertiaires ou quatemisés, tels que ceux de formule - R1 -N (R2)(R3) où
le symbole R1 représente un groupe alkylène contenant de 2 à 6 atomes de carbone, éventuellement substitué ou interrompu par un ou plusieurs atomes d'azote ou d'oxygène,
* les symboles R2 et R3, identiques ou différents représentent . H, . un groupe alkyle ou hydroxyalkyle contenant de 1 à 12 atomes de carbone, de préférence de 1 à 6 atomes de carbone, . un groupe amino alkyle, de préférence primaire, dont le groupe alkyle contient de 1 à 12 atomes de carbone, de préférence de 1 à 6 atomes de carbone, éventuellement substitué et/ou interrompu par au moins un atome d'azote et/ou d'oxygène, ledit groupe amino étant éventuellement quatemisé, par exemple par un acide halohydrique ou un halogénure d'alkyle ou d'aryle. On peut notamment mentionner ceux de formules
-(CH2)3 NH2 (CH2)3 NH3 + X"
-(CH2)3 N(CH3)2 (CH2)3 N+(CH3)2 (C18H37 ) X"
-(CH2)3 NHCH2CH2NH2 -(CH2)3 N(CH2CH2OH)2
-(CH2)3 N(CH2CH2NH2)2 D'une manière préférentielle, les polyorganosiloxanes porteurs de fonctions amino, présentent dans leur chaîne, pour 100 atomes de silicium total, de 0,1 à
50, de préférence de 0,3 à 10, tout particulièrement de 0,5 à 5 atomes de silicium aminofonctionalisés. les groupes pipéridinyles stériquement encombrés de formule
OU * o R4 est un radical hydrocarboné divalent choisi parmi : * les radicaux alkylènes linéaires ou ramifiés, ayant 2 à 18 atomes de carbone ; * les radicaux alkylène-carbonyle dont la partie alkylène linéaire ou ramifiée, comporte 2 à 20 atomes de carbone ; * les radicaux alkylène-cyclohexylène dont la partie alkylène linéaire ou ramifiée, comporte 2 à 12 atomes de carbone et la partie cyclo-hexylène comporte un groupement OH et éventuellement 1 ou 2 radicaux alkyles ayant 1 à 4 atomes de carbone ; * les radicaux de formule -R7 - O - R7 dans laquelle les radicaux R7 identiques ou différents représentent des radicaux alkylènes ayant 1 à 12 atomes de carbone; * les radicaux de formule -R7 - O - R7 dans laquelle les radicaux R7 ont les significations indiquées précédemment et l'un d'entre eux ou les deux sont substitués par un ou deux groupement(s) -OH; * les radicaux de formule -R7 - COO - R7 dans laquelle les radicaux R7 ont les significations indiquées précédemment; * les radicaux de formule -R8 -O -R9 - O-CO-R8 dans laquelle les radicaux R8 et R9 identiques ou différents, représentent des radicaux alkylènes ayant 2 à 12 atomes de carbone et le radical R9 est éventuellement substitué par un radical hydroxyle; * U représente -O- ou -NR10-, R10 étant un radical choisi parmi un atome d'hydrogène, un radical alkyle linéaire ou ramifié comportant 1 à 6 atomes de carbone et un radical divalent de formule :
dans laquelle R4 a la signification indiquée précédemment, R5 et R6 ont les significations indiquées ci-après et R11 représente un radical divalent alkylène, linéaire ou ramifié, ayant de 1 à 12 atomes de carbone, l'un des liens valentiels (celui de R11) étant relié à l'atome de -NR10-, l'autre (celui de R4) étant relié à un atome de silicium ; * les radicaux R5 sont identiques ou différents, choisis parmi les radicaux alkyles linéaires ou ramifiés ayant 1 à 3 atomes de carbone et le radical phényle ; * le radical R6 représente un radical hydrogène ou le radical R5 ou Ov ou les groupes piperidinyles stériquement encombrés de formule IV
ou * R'4 est choisi parmi un radical trivalent de formule : — (CH2) CH 'm \co— OÙ m représente un nombre de 2 à 20, et un radical trivalent de formule : où p représente un nombre de 2 à 20 ; * U' représente -O- ou NR12", R12 étant un radical choisi parmi un atome d'hydrogène, un radical alkyle linéaire ou ramifié comportant 1 à 6 atomes de carbone; * R5 et R6 ont les mêmes significations que celles données ci- dessus à propos de la formule III.
Préférentiellement ledit polyorganosiloxane à fonction aminée stériquement encombrée est un polyorganosiloxane linéaire, cyclique ou tridimensionnel de formule (V):
dans laquelle : (1) les symboles Z, identiques ou différents, représentent R1 ci-dessous et ou le symbole B ci-dessous; (2) les symboles R1, R2 et R3, identiques et/ou différents, représentent un radical hydrocarboné monovalent choisi parmi les radicaux alkyles linéaires ou ramifiés ayant de 1 à 4 atomes de carbone, les radicaux alkoxy linéaires ou ramifiés ayant de 1 à 4 atomes de carbone, un radical phényle et, de préférence un radical hydroxy, un radical éthoxy, un radical méthoxy ou un radical méthyle; (3) les symboles B, groupements fonctionnels identiques et/ou différents, représentent un groupement à fonction(s) pipéridinyle(s) stériquement encombrée(s) choisi parmi ceux mentionnés ci-dessus ; et (4) le nombre de motifs organosiloxy sans groupement B va de 10 à 450, de préférence de 50 à 250 ; - le nombre de motifs organosiloxy avec un groupement B va de 1 à 5, de préférence de 1 à 3 ; - 0 < w < 10 et 8 < x< 448. De manière toute préférentielle, ledit polyorganosiloxane est linéaire. A titre d'exemple de produits commerciaux polyorganosiloxanes pouvant être mis en œuvre comme phase hydrophobe (A), on peut mentionner notamment les huiles RHODORSIL® 21645, RHODORSIL® Extrasoft commercialisées par Rhodia. Ledit matériau constituant de la phase hydrophobe (O), peut être en un matériau organique (02). A titre d'exemple, on peut mentionner - les mono-, di- ou triglycérides d'acide carboxyliques en C-ι-C30 ou leurs mélanges, comme les huiles végétales (huile de colza, de ricin, de tournesol, de colza érucique, de lin ...)
- les huiles techniques, comme les huiles de lin cuites, soufflées ou standolisées commercialisées par NOVANCE - les sucroesters, les sucroglycérides
- les alcoolesters en C1-C30 d'acides carboxyliques en C1-C30 ou dicarboxyliques en C2-C30,
- les éthylène ou propylène glycol monoesters ou diesters d'acides carboxyliques en Cι.-C3o - les propylèneglycols d'alkyléther en C -C2o
- les di Cs-C3o alkyléthers
- les huiles minérales, comme les huiles naphténiques, paraffiniques (vaseline), les polybutènes
- les cires organiques comprenant des chaînes alkyles contenant de 4 à 40 atomes de carbone. Parmi les cires, on peut mentionner notamment : • les cires animales (cire d'abeille, lanoline, huile de baleine) • les cires végétales (cire de carnauba, de candellila, de canne à sucre, le jojoba) • les cires minérales fossiles (montane, ozokérite, cire d'Utah) • les cires hydrocarbonées comprenant de 4 à 35 atomes de carbone (huiles minérales, paraffines, cires microcristallines) • les cires synthétiques comme les polyoléfines (polyéthylène, polypropylène), la stérone, la carbowax.
La matière active (A) peut constituer la phase hydrophobe (O) ou être contenue dans la phase hydrophobe (O) ; lorsqu'elle est contenue dans la phase hydrophobe (O), elle peut être soluble, partiellement soluble ou insoluble dans ladite phase hydrophobe (O). On peut mentionner comme matières actives (A) contenues dans la phase hydrophobe (O), d'autres matériaux hydrophobes comme notamment les molécules parfumantes, les agents anti-UV organiques ou organosiliciques, les agents bactéricides hydrophobes, des capsules solides en polyamide, des particules de silice ou autres oxydes ou composés inorganiques ...
Agent stabilisant (Di)
L'agent stabilisant (Di) est en un matériau choisi parmi les polysaccharides (PSA) hydrosolubles ou hydrodispersables : - dont le degré moyen de polymérisation (DP) est d'au moins 1 ,5 de préférence d'au moins 20, tout particulièrement d'au moins 100 - dont la viscosité Brookfield à 25°C en solution à 1 % en masse dans l'eau est inférieure à 20 000 mPa.s., de préférence inférieure à 5000 mPa.s., tout particulièrement allant de 30 à 4500 mPa.s., lesdits polysaccharides (PSA) étant en outre exempts de groupes substituants polyorganosiloxanes lipophiles.
L'expression « hydrosoluble ou hydrodispersable » signifie ici que ledit polysaccharide (PSA) n'est pas susceptible de former une solution macroscopique diphasique à 25°C dans la phase aqueuse interne (Wi). L'expression « lipophile » est utilisée ici comme antonyme du terme « hydrophile » ; c'est-à-dire n'a pas d'affinité pour l'eau ; cela signifie que les groupes polyorganosiloxanes, dont le polysaccharide (PSA) est exempt, formeraient, pris seuls, à une concentration de 10% en poids une solution macroscopique diphasique dans de l'eau distillée à 25°C. Selon l'invention, la viscosité Brookfield à 25°C d'une solution à 1% en masse de polysaccharide (PSA) dans une solution aqueuse de HCI à 1% en volume peut être déterminée comme suit, après vieillissement pendant 24 heures à 40°C. Matériel et Réactifs Matériel • Bêcher de 800ml, forme basse • Flacon de 250ml • Moteur d'agitation permettant d'obtenir 500 tr/min et équipé d'une pale défloculeuse Raeneri de 65mm de diamètre • Viscosimètre Brookfield LVT équipé d'une aiguille n°2 (type planétaire ou à disque) • Etuve réglée à 40°C Réactifs • Eau distillée • Solution d'acide chlorhydrique à 10% en volume. Dans une fiole de 100mi contenant environ 50ml d'eau distillée, introduire 27,0g d'acide chlorhydrique à 37% (densité=1.19) grade analyses. Compléter à 100 ml avec de l'eau distillée. Mode opératoire • Sur une feuille de papier glacé, peser 0,9g de la polysaccharide • Dans le bêcher de 800 ml , peser 269,1 g d'eau • Mettre l'eau sous agitation puis ajouter la poudre en 20 à 30 secondes sur les bords du vortex. Agiter 30minutes à 500 tr/min. • Tout en agitant, introduire dans la solution 30g de la solution d'acide chlorhydrique à 10% en 5 à 10 secondes. Agiter encore 5mn à 500 tr/min • Transvaser la solution dans le flacon de 250ml et le mettre dans l'étuve à 40°C. • Après 24 h, sortir le flacon de l'étuve et ramener la température de la solution à celle de la température ambiante (20 - 25°C). • Mesurer la viscosité de la solution avec le viscosimètre Brookfield réglé à 3 tr/min et équipé de l'aiguille n°2 (planétaire). Effectuer la lecture après stabilisation de l'affichage (N).
Expression des résultats Viscosité apparente η de la solution à 1% de polysaccharide (PSA) dans la solution d'HCI à 1% η = 100 x N On entend par degré moyen de polymérisation, le nombre moyen d'unités glycosyles par mole de polysaccharide. Ledit polysaccharide (PSA) est un homopolysaccharide ou un hétéropolysaccharide ; il peut être linéaire ou ramifié, non-ionique ou ionique ; il peut éventuellement être substitué et/ou modifié par des groupes non- ioniques ou ioniques, autres que des groupes polyorganosiloxane lipophiles.
D'une manière préférentielle, ledit polysaccharide (PSA), ou son squelette, comprend des unités glycosyles semblables ou différentes jointes par des liaisons β(1-4). Il peut en outre comprendre, à côté des liaisons β(1-4), des liaisons autres, notamment β(1-3) et/ou β(1-6) . Lesdites unités glycosyles, semblables ou différentes, peuvent être notamment des unités hexoses et/ou pentoses. Parmi les unités hexoses (semblables ou différentes), on peut citer notamment les unités D-glucose, D-ou L-galactose, D-mannose, D- ou L-fucose, L-rhamnose Parmi les unités pentoses (semblables ou différentes), on peut mentionner notamment les unités D-xylose, L- ou D-arabinose ... Les ou des fonctions hydroxyles des unités glycosyles peuvent être modifiées et/ou substituées par des groupes non-ioniques, ioniques ou ionisables.
Lorsqu'il s'agit de groupes modifiants non-ioniques, ceux-ci peuvent notamment être liés aux atomes de carbone du squelette sucre soit directement soit par l'intermédiaire de liaisons -O-. Parmi les groupements non-ioniques, on peut mentionner : • Les groupes alkyles comprenant de 1 à 22 atomes de carbone, éventuellement interrompus par un ou plusieurs hétéroatomes d'oxygène et/ou azote,
• Les groupes aryles ou arylalkyles comprenant de 6 à 12 atomes de carbone • Les groupes hydroxyalkyles ou cyanoalkyles comprenant de 1 à 6 atomes de carbone
• Les groupes « esters » obtenus par remplacement de l'hydrogène d'une fonction hydroxyle -OH du squelette polysaccharide par un groupe comprenant au moins un motif acide contenant notamment du carbone, du soufre ou du phosphore, comme notamment les groupes carbonyle R- (CO)-, sulfonyle R-SO2- , phosphoryle R2P(O)- , hydroxyphosphoryle R- P(O)(OH)-, groupes acides formant des motifs « esters » avec les atomes d'oxygène rémanents du squelette polysaccharide. Le groupe R, alkyle, alkényle, aryle, peut comprendre de 1 à 20 atomes de carbone ; il peut en outre comprendre un hetéroatome, d'azote par exemple, lié directement à un motif carbonyle, sulfonyle etc.. et ainsi former des liaisons du type uréthane etc... A titre d'exemple, on peut mentionner :
• Les groupes méthyle, éthyle, propyle, isopropyle, butyle, hexyle, octyle, dodécyle, octadécyle, phényle, liés à un atome de carbone du squelette polysaccharide par l'intermédiaire d'une liaison éther, ester, amide, uréthane
• Les groupes cyanoéthyle, hydroxyéthyle, hydroxypropyle, hydroxybutyle, liés à un atome de carbone du squelette polysaccharide par l'intermédiaire d'une liaison -O-
• Les groupes « esters » choisis parmi les groupes acétate, propanoate, trifluoroacétate, 2-(2-hydroxy-1-oxopropoxy)propanoate, lactate, glycolate, pyruvate, crotonate, isovalérate, cinnamate, formate, salicylate, carbamate, méthylcarbamate, benzoate, gluconate, méthanesulfonate, toluènesulfonate ; les groupes hémiesters des acides fumarique, malonique, itaconique, oxalique, maléïque, succinique, tartarique, aspartique, glutamique, malique ; on peut mentionner plus particulièrement les groupes substituants acétate, hémiacétate et 2-(2-hydroxy-1- oxopropoxy)propanoate. Le taux de modification MS d'un polysaccharide par un groupe modifiant non- ionique correspond au nombre moyen de moles de précurseur du groupe modifiant non-ionique ayant réagi par unité glycosyle. Le taux de modification MS peut varier selon la nature du précurseur dudit groupe modifiant.
Si ledit précurseur n'est pas apte à former de nouveaux groupes hydroxyles réactifs (précurseur d'alkylation par exemple), le taux de modification par les groupes non-ioniques est inférieur à 3 par définition. Si ledit précurseur est susceptible de former de nouveaux groupes hydroxyles réactifs (précurseur d'hydroxyalkylation par exemple), le taux de modification MS n'est théoriquement pas limité ; il peut par exemple aller jusqu'à 6, de préférence jusqu'à 2. Ce taux est généralement d'au moins 0,001 , de préférence d'au moins 0,01. Parmi les groupes anioniques ou anionisables on peut mentionner ceux contenant une ou plusieurs fonctions carboxylate, sulfonate, sulfate, phosphate, phosphonate ...
On peut mentionner en particulier ceux de formule . -[-CH2-CH(R)-O]x-(CH2)y-COOH ou • -[-CH2-CH(R)-O]x-(CH2)y-COOM , où R est un atome d'hydrogène ou un radical alkyle contenant de 1 à 4 atomes de carbone x est un nombre entier allant de 0 à 5 y est un nombre entier allant de 0 à 5 M représente un métal alcalin
On peut citer tout particulièrement les groupements carboxy -COO'Na* lié directement à un atome de carbone du squelette sucre, carboxy méthyle (sel de sodium) -CH2-COO"Na+ lié à un atome de carbone du squelette sucre par l'intermédiaire d'une liaison -O-. Parmi les groupes cationiques ou potentiellement cationiques on peut mentionner ceux contenant une ou plusieurs fonctions amino, ammonium, phosphonium, pyridinium ... On peut mentionner en particulier les groupes cationiques ou potentiellement cationiques de formule -NH2 -[-CH2-CH(R)-O]x-(CH2)y-COA-R'-N(R")2 -[-CH2-CH(R)-O]x-(CH2)y-COA-R'-N+(R'")3 X" -[-CH2-CH(R)-O]x-(CH2)y-COA-R'-NH-R""-N(R")2 -[-CH2-CH(R)-O]x-R'-N(R")2 -[-CH2-CH(R)-O]x-R'-N+(R'")3 X" -[-CH2-CH(R)-O]x-R'-NH-R""-N(R")2 • -[-CH2-CH(R)-O]x-Y-R" où . R est un atome d'hydrogène ou un radical alkyle contenant de 1 à 4 atomes de carbone . x est un nombre entier allant de 0 à 5 . y est un nombre entier allant de 0 à 5 . R' est un radical alkylène contenant de 1 à 12 atomes de carbone, portant éventuellement un ou plusieurs substituants OH . les radicaux R", semblables ou différents, représentent un atome d'hydrogène, un radical alkyle contenant de 1 à 18 atomes de carbone . les radicaux R'", semblables ou différents, représentent un radical alkyle contenant de 1 à 18 atomes de carbone . R"" est un radical alkylène linéaire, ramifié ou cyclique contenant de 1 à 6 atomes de carbone . A représente O ou NH . Y est un groupement aliphatique hétérocyclique comprenant de 5 à 20 atomes de carbone et un hétéroatome d'azote . X' est un contre-ion, de préférence halogenure (chlorure, bromure, iodure notamment), ainsi que les groupes N-alkylpyridinium-yle dont le radical alkyle contient de 1 à 18 atomes de carbone, avec un contre-ion, de préférence halogenure (chlorure, bromure, iodure notamment).
Parmi les groupements cationiques ou potentiellement cationiques, on peut citer tout particulièrement : - ceux de formule • -NH2
• -CH2-CONH-(CH )2-N(CH3)2
• -CH2-COO-(CH2)2-NH-(CH2)2-N(CH3)2
. -CH2-CONH-(CH )3-NH-(CH2)2-N(CH3)2 -CH2-CONH-(CH2)2-NH-(CH2)2-N(CH3)2 -CH2-CONH-(CH2)2-N+(CH3)3 Cl" -CH2-CONH-(CH2)3-N+(CH3)3 CI" -(CH2)2-N(CH3)2 -(CH2)2-NH-(CH2)2-N(CH3)2 -(CH2)2-N+(CH3)3 Ci- tout préférentiellement 2-hydroxypropyltriméthyl ammonium chlorure -CH2-CH(OH)-CH2-N+(CH3)3 Cl" roupements pyridinium-yle tels que N-méthyl pyridinium-yle, de formule
avec un contre-ion chlorure les groupements amino encombrés tels ceux dérivés d'aminés HALS, de formule générale :
où R représente CH3 ou H. Parmi les groupements betaines, on peut citer tout particulièrement les fonctions de formule :
fonction 2-méthyl (3-sulfopropyl) imidazolium fonction (2-sulfobenzyl) imidazolium
fonction (3-sulfopropyl) pyridinium -(CH2)2-N+(CH3)2-(CH2)2-COO" fonction éthyl-diméthylammonium bétaïne -(CH2)2-N+(CH3)2-(CH2)3-SO3 " fonction sulfo-propyl diméthylammonium
Le degré de substitution DS correspond au nombre moyen de fonctions hydroxyles des unités glycosyles substituées par ledit ou lesdits groupes ioniques ou ionisables, par unité glycosyle. Il est généralement inférieur à 3, de préférence inférieur à 2. Parmi les polysaccharides (PSA) pouvant être mis en œuvre selon l'invention, on peut mentionner des polysaccharides naturels ou synthétiques, de préférence modifiés et/ou substitués par voie chimique et/ou dégradés (dépolymérisés) par hydrolyse acide ou basique, ou par voie oxydative, thermique ou enzymatique. A titre d'exemples on peut mentionner :
Les galactomannanes (notamment gomme guar) dépolymérisés. notamment par voie oxydative, éventuellement modifiés ou substitués par des groupes non-ioniques (hydroxypropyle notamment), anioniques (carboxyméthyle notamment), cationiques (hydroxypropyltriméthylammonium chlorure par exemple), présentant une viscosité Brookfield (solution à 1% dans l'eau) pouvant aller de 30 à 4500 mPa.s., de préférence de 60 à 3500 mPa.s. On peut citer notamment :
• Les guars dépolymérisés par voie oxydative (présentant quelques fonctions COOH+ résultant de la dépolymérisation en milieu oxydant), comme les MEYPRO-GAT 7, MEYPRO-GAT 20, MEYPRO-GAT 30 commercialisés par Rhodia
• Les guars dépolymérisés hydroxypropylés présentant un taux de modification de l'ordre de 0,01 à 0,8, comme le HMP-CON de Rhodia • Les guars dépolymérisés carboxyméthylés présentant un degré de substitution de l'ordre de 0,05 à 1 ,6 comme le MEYPRO-GUM R 600 commercialisé par Rhodia
• Les guars dépolymérisés cationisés présentant un degré de substitution de l'ordre de 0,04 à 0,17 , de préférence de 0,06 et 0,14 , comme le MEYPRO-COAT 21 commercialisé par Rhodia, l'AquaCat CG 518 commercialisé par Aqualon Les celluloses modifiées, comme
• Les monoacétates de cellulose, présentant un degré de substitution de 0,3 à moins de 1 ,2, de préférence de 0,3 à 1. • Les celluloses hydroxypropylées présentant un taux de modification de l'ordre de 0,2 à 1,5 comme le Primaflo HP22 commercialisé par Aqualon
• Les carboxyméthylcelluloses présentant un degré de substitution de 0,05 à 1,2 , de préférence de 0,05 à 1 , comme le Blanose Cellulose gum d'Hercules et le Liberty 3794 d'Aqualon Les dextrines contenant éventuellement des groupes hydroxyéthyl, hydroxypropyl ou aminoalkyl quaternisés (dégradation d'amidons, éventuellement chimiquement modifiés par des groupes hydroxyéthyl, hydroxypropyl ou aminoalkyl quaternisés).
- des xyloqlvcanes comme la gomme tamarind Instasol 1200 de Saiguru Food, le MEYPRO-GUM T12 commercialisé par Rhodia.
- des arabinoxylanes
- les alkylpolvglvcosides (APG) présentant un groupe alkyle en C4-C20> de préférence en CS-C-JS. ainsi qu'un nombre moyen de motifs glucose de l'ordre 1,5 à 10, de préférence de l'ordre de 1,5 à 4, plus généralement de l'ordre de 1,6 à 2,7 par mole d'alkylpolyglycoside (APG), comme ceux mentionnés dans US 4,565,647.
Phase aqueuse interne (Wi)
La taille moyenne des gouttelettes aqueuses (Wi) de l'émulsion inverse interne (Ei) peut aller jusqu'à 10μm, de préférence de 0,05μm à 5μm, et plus préférentiellement de 0,1 à 1μm.
La taille moyenne correspond au diamètre médian en volume (d50), qui représente le diamètre de la particule égal à 50% de la distribution cumulative ; elle peut être par exemple mesurée avec un granulomètre Horiba ou microscope optique.
La phase aqueuse dispersée (Wi) présente un pH pouvant aller de 0 à 14, de préférence de 2 à 11 , plus préférentiellement de 5 à 11. Elle peut contenir des additifs permettant de régler la pression osmotique, comme des sels (chlorure ou sulfate de sodium, chlorure de calcium ...) ou des sucres (glucose) ou des polysaccharides (dextran ...). Elle peut également contenir des agents tampons, des matières actives hydrophiles, notamment des agents antibactériens comme les méthyl chloro isothiazolinone et méthyl isothiazolinone (KATHON® CG commercialisé par
Rohm and Haas), des matières hydrosolubles ou hydrodispersables autres, ainsi que des matières hydrophobes insolubles dans la phase hydrophobe (O). Pour une bonne réalisation de l'invention, le rapport massique de la phase aqueuse dispersée (Wi) à la phase hydrophobe (O) peut aller de 5/95 à 95/5, de préférence de 3070 à 80/20.
Le rapport de la masse de stabilisant (Di) à la masse de phase hydrophobe (O) peut aller de 0,1/100 à 500/100, de préférence de 0,5/100 à 100/100, tout particulièrement de 0,5/100 à 50/100. L'émulsion inverse (Ei) peut être obtenue de manière classique. Par exemple, elle peut être obtenue par mise en solution et/ou dispersion dans l'eau du polysaccharide (PSA) puis ajout de la solution et/ou dispersion aqueuse obtenue à la phase hydrophobe (O), sous agitation.
L'agitation peut être avantageusement effectuée au moyen d'une pale-cadre, d'un mélangeur de type planétaire, d'un mélangeur possédant un mobile raclant et une pale tournant dans des sens contraires (contre-agitation).
La préparation de l'émulsion inverse est en général réalisée à une température supérieure à la température de fusion du matériau utilisé en tant que phase hydrophobe, mais inférieure à celle de dégradation des éléments entrant dans la composition de l'émulsion inverse. Plus particulièrement, cette température est comprise entre 10 et 80°C.
La durée de l'agitation peut être déterminée sans difficulté par l'homme de l'art.
Elle est de préférence suffisante pour obtenir une taille moyenne de gouttelettes aqueuses de l'émulsion inverse inférieure à 10 μm, tel que mentionné ci-dessus.
Les quantités des différents constituants de l'émulsion inverse (Ei) ont déjà été définies ci-dessus.
Emulsion multiple (Em) L'émulsion multiple (Em) comprend l'émulsion inverse (Ei) ci-dessus, à titre d'émulsion interne, dispersée dans une phase externe (We) aqueuse ou miscible à l'eau, comprenant au moins un agent dispersant et/ou stabilisant (De). Ledit agent dispersant et/ou stabilisant (De) a une tendance hydrophile. Préférentiellement ledit agent dispersant et/ou stabilisant (De) est choisi parmi les agents tensioactifs hydrophiles et/ou les polymères hydrophiles et/ou les polymères amphiphiles hydrophiles.
Le terme « hydrophile », est utilisé dans son sens usuel, de « qui a de l'affinité pour l'eau » ; cela signifie que l'agent dispersant et/ou stabilisant (De) n'est pas susceptible de former une solution macroscopique diphasique dans de l'eau distillée à 25°C. D'une manière préférentielle, la phase externe (We) est une phase aqueuse. Plus particulièrement, les tensioactifs et/ou polymères (De) satisfont la règle de Bancroft et sont de préférence choisis parmi les composés qui vérifient à la fois les deux conditions ci-dessous : - lorsqu'ils sont mélangés avec la phase aqueuse externe à une concentration comprise entre 0,1 et 10% en poids de ladite phase et entre 20 et 30°C, ils se trouvent sous la forme d'une solution dans tout ou partie de la gamme de concentration indiquée. - lorsqu'ils sont mélangés avec la phase hydrophobe interne (O) à une concentration comprise entre 0,1 et 10% en poids de ladite phase et entre 20 et 30°C, ils se trouvent sous la forme d'une dispersion dans tout ou partie de la gamme de concentration indiquée. Pour une bonne réalisation de l'invention, ledit agent dispersant et/ou stabilisant (De) peut être formé (a) d'au moins un agent tensioactif hydrophile non-ionique (b) d'au moins un agent tensioactif hydrophile anionique (c) d'au moins un agent tensioactif hydrophile cationique (d) d'au moins un polymère hydrophile non-ionique (e) d'au moins un polymère amphiphile hydrophile non-ionique (f) d'au moins un polymère hydrophile anionique (g) d'au moins un polymère amphiphile hydrophile anionique (h) d'au moins un polymère hydrophile cationique (i) d'au moins un polymère amphiphile hydrophile cationique G) ou d'un mélange de deux au moins desdits agents tensioactifs et/ou polymères (a) à (d) ci-dessus compatibles. Le terme « compatible » signifie ici que les agents tensioactifs en mélange ne sont pas susceptibles d'entraîner la formation d'agrégats à l'état non-dispersés dans le milieu considéré.
La teneur totale en agents tensioactif(s) et/ou polymère(s) (De) présent(s) dans la phase externe (We) peut être comprise entre 0,01 et 50% en poids, de préférence entre 0,1 et 10%, plus particulièrement entre 0,5 et 5% en poids, par rapport à l'émulsion inverse (Ei). Préférentiellement, les tensioactifs hydrophiles non ioniques présentent une valeur de HLB au moins égale au HLB requis de la phase hydrophobe (O) ; à titre indicatif cette valeur minimum de HLB est le plus souvent d'au moins 10. Ceux-ci sont de préférence polyalcoxylés.
De manière avantageuse, le tensioactif non ionique polyalcoxylé peut être choisi parmi les agents tensioactifs suivants, seuls ou en mélange :
- les alcools gras alcoxylés - les mono, di et triglycérides alcoxylés
- les acides gras alcoxylés
- les esters de sorbitan alcoxylés
- les aminés grasses alcoxylées
- les di(phényl-1 éthyl) phénols alcoxylés - les tri(phényl-1 éthyl) phénols alcoxylés
- les alkyls phénols alcoxylés plus particulièrement éthoxylés et/ou propoxylés.
A titre purement illustratif, le nombre total de motifs éthoxylés et éventuellement propoxylés est compris entre 10 et 100. Parmi les agents tensioactifs hydrophiles anioniques on peut citer :
- les alkylesters sulfonates,
- les alkylsulfates, ainsi que leurs dérivés polyalcoxylés (éthoxylés (OE), propoxylés (OP), ou leurs combinaisons), comme par exemple le dodécylsulfate de sodium ; - les alkyléthersulfates, ainsi que leurs dérivés polyalcoxylés (éthoxylés (OE), propoxylés (OP), ou leurs combinaisons), comme par exemple le laurylethersulfate avec n = 2.
- les alkylamides sulfates, ainsi que leurs dérivés polyalcoxylés (éthoxylés (OE), propoxylés (OP), ou leurs combinaisons) ; - les sels d'acides gras saturés ou insaturés, et
- les phosphates esters d'alkyle et/ou d'alkyléther et/ou d'alkylaryléther. Parmi les agents tensioactifs hydrophiles cationiques pouvant en outre être présents dans l'agent dispersant et/ou stabilisant (De), on peut mentionner les sels ammonium quaternaires de formule R1R2R3R4N+X" où les groupes R sont de chaînes hydrocarbonées longues ou courtes, alkyles, hydroalkyle ou alkyl éthoxylées, X étant un contre-ion ( R1 est un groupe alkyle en C8-C22, de préférence en Cβ-C-io, ou en C12-C14, R2 est un groupe méthyle, R3 et R4 semblables ou différents étant un groupe méthyle ou hydroxy méthyle) ; ainsi que des esters cationiques, comme les choline esters. En ce qui concerne les polymères hydrophiles non-ioniques susceptibles d'être employés, on peut mentionner les polysaccharides (PSA) hydrosolubles ou hydrodispersables non-ioniques déjà mentionnés ci-dessus comme agent stabilisant (Di), comme par exemple
• les celluloses hydroxypropylées présentant un taux de modification de l'ordre de 0,2 à 1,5 , ou
• les monoacétates de cellulose présentant un degré de substitution de 0,3 à moins de 1 ,2. En ce qui concerne les polymères amphiphiles hydrophiles non-ioniques, ces derniers sont de préférence des composés polyalcoxylés, comprenant au moins deux blocs, l'un d'eux étant hydrophile, l'autre hydrophobe, l'un au moins des blocs comprenant des motifs polyalcoxylés, plus particulièrement polyéthoxylés et/ou polypropoxylés. Plus particulièrement lesdits polymères amphiphiles hydrophiles polyalcoxylés non ioniques sont choisis parmi les polymères dont la masse molaire en poids est inférieure ou égale à 100 000 g/mol (mesurée par GPC, étalon polyéthylène glycol), de préférence comprise entre 1 000 et 50 000 g/mol, de préférence comprise entre 1 000 et 20 000 g/mol. A titre d'exemples de polymères de ce type, on peut citer entre autres les polymères triblocs polyéthylène glycol/polypropylèneglycol/polyéthylèneglycol. De tels polymères sont bien connus et sont notamment commercialisés sous les marques Pluronic (commercialisée par BASF), Arlatone (commercialisée par ICI). Ledit polymère amphiphile hydrophile non ionique peut également être est un polymère amphiphile hydrophile à blocs, obtenu par polymérisation d'au moins un monomère hydrophile non ionique et d'au moins un monomère hydrophobe, la proportion et la nature desdits monomères étant telles que le polymère résultant vérifie les conditions énoncées auparavant (règle de Bancroft - deux conditions). Ils comprennent au moins un bloc hydrophobe et au moins un bloc hydrophile neutre (non ionique). Au cas où ledit polymère comprend au moins trois blocs, et plus particulièrement trois blocs, le polymère est avantageusement linéaire. En outre, les blocs hydrophiles se trouvent plus particulièrement aux extrémités. Au cas où les polymères comprennent plus de trois blocs, ces derniers sont de préférence sous la forme de polymères greffés ou peignes.
Parmi les monomères hydrophobes à partir desquels le ou les blocs hydrophobes du polymère amphiphile hydrophile peuvent être préparés, on peut citer notamment :
- les esters des acides mono- ou poly- carboxyliques, linéaires, ramifiés, cycliques ou aromatiques, comprenant au moins une insaturation éthylénique,
- les esters d'acides carboxyliques saturés comprenant 8 à 30 atomes de carbone, éventuellement porteurs d'un groupement hydroxyle ;
- les nitriles αβ-éthyléniquement insaturés, les éthers vinyliques, les esters vinyliques, les monomères vinylaromatiques, les halogénures de vinyle ou de vinylidène,
- les monomères hydrocarbonés, linéaires ou ramifiés, aromatiques ou non, comprenant au moins une insaturation éthylénique,
- les monomères de type siloxane cyclique ou non, les chlorosilanes ; - l'oxyde de propylène, l'oxyde de butylène ; seuls ou en mélanges, ainsi que les macromonomères dérivant de tels monomères.
A titre d'exemples particuliers on peut citer :
- les esters d'acide (méth)acrylique avec un alcool comprenant 1 à 12 atomes de carbone comme le (méth)acrylate de méthyle, le (méth)acrylate d'éthyle, le (méth)acrylate de propyle, le (méth)acrylate de n-butyle, le (méth)acrylate de t-butyle, le (méth)acrylate d'isobutyle, l'acrylate de 2-éthylhexyl ;
- l'acétate de vinyle, le Versatate® de vinyle, le propionate de vinyle, le chlorure de vinyle, le chlorure de vinylidène, le méthyl vinyléther, l'éthyl vinyléther ;
- les nitriles vinyliques incluent plus particulièrement ceux ayant de 3 à 12 atomes de carbone, comme en particulier l'acrylonitrile et le méthacrylonitrile ;
- le styrène, l'α-méthylstyrène, le vinyltoluène, le butadiène, le chloroprène ; seuls ou en mélanges, ainsi que les macromonomères dérivant de tels monomères.
Les monomères préférés sont les esters de l'acide acrylique avec les alcools linéaires ou ramifiés en Cι-C4 tels que l'acrylate de méthyle, d'éthyle, de propyle et de butyle, les esters vinyliques comme l'acétate de vinyle, le styrène, l'α- méthylstyrène.
En ce qui concerne les monomères hydrophiles non ioniques à partir desquels les polymères amphiphiles hydrophiles à blocs peuvent être obtenus, on peut mentionner l'oxyde d'éthylene ; les amides des acides mono- ou poly- carboxyliques, linéaires, ramifiés, cycliques ou aromatiques, comprenant au moins une insaturation éthylénique, ou dérivés, comme le (méth)acrylamide, le N-méthyloI (méth)acrylamide ; les esters hydrophiles dérivant de l'acide (méth)acrylique comme par exemple le (méth)acrylate de 2-hydroxyéthyle ; les esters vinyliques permettant d'obtenir des blocs alcool polyvinylique après hydrolyse, comme l'acétate de vinyle, le Versatate® de vinyle, le propionate de vinyle. Ces monomères peuvent être utilisés seuls, en combinaison, ainsi que sous la forme de macromonomères. Il est rappelé que le terme macromonomère désigne une macromolécule portant une ou plusieurs fonctions polymérisables par la méthode mise en œuvre.
Les monomères hydrophiles préférés sont l'acrylamide et le méthacrylamide, seuls ou en mélange, ou sous la forme de macromonomères. Préférentiellement, les polymères amphiphiles hydrophiles non ioniques présentent une valeur de HLB au moins égale au HLB requis de la phase hydrophobe (O) ; à titre indicatif cette valeur minimum de HLB est le plus souvent d'au moins 10. Parmi les polymères hydrophiles anioniques susceptibles d'être employés, on peut mentionner les polysaccharides (PSA) hydrosolubles ou hydrodispersables anioniques déjà mentionnés ci-dessus comme agent stabilisant (Di), comme par exemple les
• Les guars dépolymérisés par voie oxydative (présentant quelques fonctions COOH+ résultant de la dépolymérisation en milieu oxydant), comme les MEYPRO-GAT 7, MEYPRO-GAT 20, MEYPRO-GAT 30 commercialisés par Rhodia • Les guars dépolymérisés hydroxypropylés présentant un taux de modification de l'ordre de 0,01 à 0,8 , comme le HMP-CON de Rhodia
• Les guars dépolymérisés carboxyméthylés présentant un degré de substitution de l'ordre de 0,05 à 1,6 comme le MEYPRO-GUM R 600 commercialisé par Rhodia Parmi les polymères amphiphiles hydrophiles anioniques susceptibles d'être employés, on peut citer tout particulièrement les polymères à blocs, de préférence diblocs ou triblocs, obtenus par polymérisation d'au moins un monomère hydrophile anionique, éventuellement d'au moins un monomère hydrophile non ionique, et d'au moins un monomère hydrophobe. Là encore, le choix des monomères et leurs proportions respectives sont telles que le polymère résultant vérifie les deux conditions précédemment énoncées (règle de Bancroft).
En ce qui concerne les monomères hydrophiles anioniques à partir desquels les polymères amphiphiles hydrophiles à blocs peuvent être obtenus, on peut mentionner
- les acides mono- ou poly- carboxyliques linéaires, ramifiés, cycliques ou aromatiques, les dérivés N-substitués de tels acides ; les monoesters d'acides polycarboxyliques, comprenant au moins une insaturation éthylénique ;
- les acides vinyl carboxyliques linéaires, ramifiés, cycliques ou aromatiques ;
- les aminoacides comprenant une ou plusieurs insaturations éthyléniques ; seuls ou en mélanges, leurs précurseurs, leurs dérivés sulfoniques ou phosphoniques, ainsi que les macromonomères dérivant de tels monomères ; les monomères ou macromonomères pouvant être sous la forme de sels. Plus particulièrement, on peut citer :
- l'acide acrylique, l'acide méthacrylique, l'acide fumarique, l'acide itaconique, l'acide citraconique, l'acide maléique, l'acide acrylamido glycolique, l'acide 2- propène 1-sulfonique, l'acide méthallyl sulfonique, l'acide styrène sulfonique, l'acide α-acrylamido méthylpropane sulfonique, le 2-sulfoéthylène méthacylate, l'acide sulfopropyl acrylique, l'acide bis-sulfopropyl acrylique, l'acide bis-sulfopropyl méthacrylique, l'acide sulfatoéthyl méthacrylique, le monoester phosphate d'acide hydroxyéthyl méthacrylique, ainsi que les sels de métal alcalin, comme le sodium, le potassium, ou d'ammonium ;
- l'acide vinyl sulfonique, l'acide vinylbenzène sulfonique, l'acide vinyl phosphonique, l'acide vinylidène phosphorique, l'acide vinyl benzoïque, ainsi que les sels de métal alcalin, comme le sodium, le potassium, ou d'ammonium ;
- le N-méthacryloyl alanine, le N-acryloyl-hydroxy-glycine ; seuls ou en mélanges, ainsi que les macromonomères dérivant de tels monomères.
Des exemples de monomères hydrophiles non-ioniques et de monomères hydrophobes ont déjà été mentionnés ci-dessus. Parmi les polymères hydrophiles cationiques susceptibles d'être employés, on peut mentionner les polysaccharides (PSA) hydrosolubles ou hydrodispersables cationiques déjà mentionnés ci-dessus comme agent stabilisant (Di), comme par exemple
• Les guars dépolymérisés cationisés présentant un degré de substitution de l'ordre de 0,04 à 0,17 , de préférence de 0,06 et 0,14 , comme le MEYPRO-COAT 21 commercialisé par Rhodia, l'AquaCat CG 518 commercialisé par Aqualon Selon un premier mode préférentiel de réalisation de l'invention, l'agent dispersant et/ou stabilisant (De) est choisi parmi les agents tensioactifs hydrophiles non ioniques et/ou les polymères (amphiphiles) hydrophiles non ioniques ; plus préférentiellement lesdits agents tensioactifs hydrophiles non ioniques et/ou polymères (amphiphiles) hydrophiles non ioniques présentent une valeur de HLB au moins égale au HLB requis de la phase hydrophobe (O) ; à titre indicatif cette valeur minimum de HLB est le plus souvent d'au moins 10. L'agent hydrophile amphiphile hydrophile (De) est tout particulièrement un polymère amphiphile hydrophile non ionique. Selon un deuxième mode préférentiel de réalisation de l'invention, l'agent dispersant et ou stabilisant (De) est en un mélange d'au moins un agent tensioactif hydrophile non-ionique et d'au moins un agent tensioactif hydrophile anionique, éventuellement associé à au moins un polymère (amphiphile) hydrophile non ionique. Selon un troisième mode de réalisation de l'invention, l'agent dispersant et/ou stabilisant (De) est choisi parmi les agents tensioactifs hydrophiles cationiques et/ou les polymères (amphiphiles) hydrophiles cationiques, éventuellement en mélange avec au moins un agent tensioactif hydrophile non ionique et/ou au moins un polymère (amphiphile) hydrophile non ionique. Lorsqu'un agent tensioactif non-ionique et/ou un polymère non-ionique est présent, celui-ci peut représenter jusqu'à 50% du poids du mélange cationique/non-ionique. Selon un quatrième mode de réalisation, l'agent dispersant et/ou stabilisant (De) est choisi parmi les agent stabilisants (Di) en au moins un polysaccharide hydrosoluble ou hydrodispersable (PSA) non-ionique, anionique ou cationique, ou leurs mélanges compatibles. Il peut éventuellement être additionné d'au moins un agent dispersant et/ou stabilisant (De) autre, compatible ; de manière préférentielle, la quantité massique d'agent dispersant et/ou stabilisant (De) autre que polysaccharide hydrosoluble ou hydrodispersable (PSA), éventuelle, est au plus égale à la masse de polysaccharide hydrosoluble ou hydrodispersable (PSA) mis en œuvre en tant qu'agent dispersant et/ou stabilisant (De). La quantité de phase externe (We) de l'émulsion multiple (Em) est fonction de la concentration désirée pour l'émulsion multiple (Em). Le rapport massique emulsion inverse interne (EiVphase externe (We) comprenant l'agent dispersant et/ou stabilisant (De) peut aller de 50/50 à 99/1 , de préférence de 70/30 à 98/2, tout particulièrement de 70/30 à 80/20.
Le rapport masse, exprimée en sec, d'agent dispersant et/ou stabilisant (De) / masse de l'émulsion inverse interne (Ei), peut aller de 0,01/100 à 50/100, de préférence de 0,1/100 à 10/100, tout particulièrement de 0,5/100 à 5/100. La concentration de la phase externe (We) en agent dispersant et/ou stabilisant (De) peut aller de 1 à 50%. D'une manière préférentielle, l'émulsion (E) est une emulsion multiple (Em) comprenant au moins 70% en poids d'émulsion interne (Ei). La taille moyenne des globules d'émulsion inverse interne (Ei) dispersés dans la phase externe (We) est de préférence inférieure à 200 μm ; de préférence elle peut aller de 1 à 20μm, plus préférentiellement de 5 à 15μm.
Pour une bonne réalisation de l'invention, la taille moyenne des globules d'émulsion inverse interne (Ei) dispersés dans la phase externe (We) est d'au moins deux fois, de préférence d'au moins 5 fois, tout particulièrement d'au moins 10 fois supérieure à celle de la taille moyenne des gouttelettes de la phase aqueuse interne (Wi) dispersées dans la phase hydrophobe. La phase externe (We) peut être aqueuse ou non-aqueuse miscible à l'eau. Le terme « miscible » à l'eau signifie n'est pas susceptible de former une solution macroscopiquediphasique à 25°C. Lorsque la phase externe (We) est une phase non-aqueuse miscible à l'eau, il s'agit notamment d'une phase alcoolique ou hydroalcoolique, en particulier d'une phase à base d'alcool isopropylique, d'éthanol ...
D'une manière préférentielle, la phase externe (We) est une phase aqueuse. Le pH de la phase aqueuse externe n'est pas limitatif ; il dépend de l'application visée de l'invention. Le pH peut aller de 0 à 14, de préférence de 2 à 11, plus préférentiellement de 5 à 11.
A titre indicatif, lorsqu'il s'agit de mettre en œuvre l'émulsion (Em) pour véhiculer une matière active hydrophobe vers la surface d'un tissu présent dans un bain lessiviel, le pH de la phase aqueuse externe (We) de l'émulsion multiple concentrée (Em) peut aller de 5 à 11 , de préférence de 6 à 8. La phase externe (We), aqueuse de préférence, peut en outre contenir des matières actives hydrophiles, notamment des agents antibactériens comme les méthyl chloro isothiazolinone et méthyl isothiazolinone (KATHON® CG commercialisé par Rohm and Haas), ainsi que des agents tampons pour régler le pH, des additifs permettant de régler la pression osmotique, comme des sels (chlorure ou sulfate de sodium, chlorure de calcium ...) ou des sucres (glucose) ou des polysaccharides (dextran ... )
Les concentrations] en sel, en sucre et/ou en polysaccharide sont telles que les pressions osmoti jes des phases externe (We) et interne (Wi) soient équilibrées. Selon un premier mode particulier de réalisation de l'invention, la matière active (A) contenue dans ou constituant la phase hydrophobe (O), est une matière active hydrophobe utile dans le domaine du soin ou de la détergence des articles en fibres textiles, et la phase externe (We) une formulation détergente liquide aqueuse renfermant l'agent dispersant et/ou stabilisant (De) formé d'un mélange d'au moins un agent tensioactif hydrophile non-ionique et d'au moins un agent tensioactif hydrophile anionique, éventuellement associé à au moins un polymère (amphiphile) hydrophile non ionique. La concentration de la phase externe (We) aqueuse en composé hydrophile (De) peut aller de 10 à 60% en poids, de préférence de 15 à 50% en poids ; son pH peut aller de 6 à 8. Le rapport massique, exprimé en sec, agent tensioactif non-ionique / agent tensioactif anionique peut aller de 3/1 à 1/1. Selon un deuxième mode particulier de réalisation de l'invention, la matière active (A) est une matière active hydrophobe utile dans le domaine du soin ou de la détergence des articles en fibres textiles, et la phase externe (We) une formulation détergente liquide non aqueuse miscible avec l'eau, renfermant l'agent dispersant et/ou stabilisant (De) formé d'un mélange d'au moins un agent tensioactif hydrophile non-ionique et d'au moins un agent tensioactif hydrophile anionique, éventuellement associé à au moins un polymère (amphiphile) hydrophile non ionique. La concentration de la phase externe (We) non-aqueuse en composé hydrophile (De) peut aller de 10 à 60% en poids, de préférence de 15 à 50% en poids. Le rapport massique, exprimé en sec, agent tensioactif non- ionique / agent tensioactif anionique peut aller de 3/1 à 1/1. Selon un troisième mode particulier de réalisation de l'invention, la matière active (A) est une matière active hydrophobe utile dans le domaine du soin des articles en fibres textiles, et la phase externe (We) une formulation rinçante liquide aqueuse, renfermant l'agent dispersant et/ou stabilisant (De) formé d'au moins un agent tensioactif hydrophile cationique et/ou d'au moins un polymère (amphiphile) hydrophile cationique, éventuellement en mélange avec au moins un agent tensioactif hydrophile non ionique et/ou au moins un polymère (amphiphile) hydrophile non ionique. Lorsqu'un agent tensioactif non-ionique et/ou un polymère non-ionique est présent, celui-ci peut représenter jusqu'à 50% du poids du mélange cationique/non-ionique. La concentration de la phase externe (We) aqueuse en composé hydrophile (De) peut aller de 3,5 à 20% en poids ; son pH peut aller de 2,5 à 6 . Selon un quatrième mode de réalisation de l'invention, la matière active (A) est une matière active hydrophobe utile dans le domaine des peintures, et la phase externe (We) une formulation aqueuse pour peinture. Selon un cinquième mode de réalisation de l'invention, la matière active
(A) est une matière active hydrophobe utile dans le domaine du soin ou maquillage corporel ou capillaire, de l'hygiène corporelle, capillaire, dentaire ou buccale, et la phase externe (We) une formulation aqueuse cosmétique ou une formulation pour l'hygiène corporelle, capillaire, dentaire ou buccale. L'émulsion multiple (Em) selon l'invention peut être obtenue en mettant en œuvre des techniques faisant intervenir un seul réacteur ou deux réacteurs. Une technique en un seul réacteur, peut être réalisée en mettant en œuvre les étapes suivantes : (a) on prépare l'émulsion inverse (Ei) (b) on prépare la phase externe contenant l'agent et/ou stabilisant (De) (c) on introduit la phase externe dans l'émulsion inverse (Ei) sans agitation (d) on agite l'ensemble L'étape (a) de préparation de l'émulsion inverse (Ei) peut être réalisée comme ci-dessus décrit.
L'étape (b) de préparation de la phase externe (We), peut être réalisée par mélange du constituant de la phase externe (We) (de l'eau de préférence) et de l'agent dispersant et/ou stabilisant (De). La phase externe (We) peut aussi comprendre des adjuvants tels que des agents conservateurs et des additifs régulateurs de la pression osmotique.
La préparation de la phase externe peut être effectuée à température ambiante.
Cependant, il peut être avantageux de préparer la phase externe (We) à une température voisine de celle à laquelle l'émulsion inverse (Ei) est préparée. Une fois la phase externe (We) obtenue, celle-ci est ajoutée à l'émulsion inverse
(Ei), lors de l'étape (c), sans agitation.
Puis, après avoir introduit la totalité de la phase externe (We) dans l'émulsion inverse (Ei), on agite l'ensemble (étape (d).
De manière avantageuse, l'agitation est réalisée au moyen de mélangeurs moyennement cisaillants, comme le sont par exemple les agitateurs munis de pale-cadre, les mélangeurs de type planétaire, ou encore ceux possédant un mobile raclant et une pale tournant dans des sens contraires (contre-agitation). Cette opération d'agitation a lieu de préférence à une température à laquelle la phase hydrophobe (O) se trouve sous une forme liquide, et plus particulièrement est comprise entre 10 et 80°C. La taille moyenne des globules d'émulsion inverse interne (Ei) varie avantageusement entre 1 et 100 μm, plus particulièrement entre 1 et 20 μm, avantageusement entre 5 et 15 μm. La taille moyenne des globules, correspondant au diamètre médian en volume (d50) qui représente le diamètre du globule égal à 50% de la distribution cumulative, est mesurée avec un appareil Horiba et, ou avec un microscope optique. Les différents constituants de l'émulsion (Em) peuvent être mis en œuvre selon les quantités mentionnées ci-dessus.
Lorsque (We) est une phase aqueuse, bien que la valeur du pH de la phase aqueuse ne soit pas limitative, il peut être avantageux d'ajuster le pH de la phase aqueuse externe par ajout de base (soude, potasse) ou d'acide (chlorhydrique). A titre illustratif, la gamme habituelle de pH de la phase aqueuse externe est comprise entre 0 et 14, de préférence entre 2 et 11, plus préférentiellement entre
5 et 11. A l'issue de cette étape d'agitation (d), on obtient une emulsion multiple concentrée dont le rapport pondéral emulsion inverse/phase externe (We) peut aller de 50/50 à 99/1 de préférence de 70/30 à 98/2, tout particulièrement de
70/30 à 80/20. Une technique en deux réacteurs, peut être réalisée en mettant en œuvre les étapes suivantes : (a) on prépare la phase externe (We) contenant l'agent dispersant et/ou stabilisant (De) comme ci-dessus (b) on prépare l'émulsion inverse (Ei) comme ci-dessus (c) on introduit petit à petit l'émulsion inverse (Ei) dans la phase externe (We), sous agitation
L'étape (c) de préparation de l'émulsion multiple proprement dite est réalisée sous agitation ; l'agitation peut être faite au moyen d'une pale cadre.
Typiquement, la vitesse d'agitation est relativement lente, de l'ordre de 400 tours/minute.
L'émulsion multiple (Em) obtenue est analogue à celle obtenue par la technique dite à un seul réacteur. Une autre technique en deux réacteurs, permettant de préparer une emulsion multiple (Em) analogue, met en œuvre les étapes suivantes : (a) on prépare l'émulsion inverse (Ei) comme ci-dessus ; la quantité emulsion inverse (Ei) préparée est divisée en deux parties (b) on prépare la phase externe (We) contenant l'agent dispersant et/ou stabilisant (De) (c) on introduit la phase externe (We) dans la première partie de l'émulsion inverse (Ei) sans agitation (d) on agite l'ensemble (e) on introduit petit à petit la partie restante de l'émulsion inverse (Ei) dans l'émulsion multiple obtenue à l'étape (d), sous agitation Lorsque l'agent dispersant et/ou stabilisant (De) est en au moins polysaccharide hydrosoluble ou hydrodispersible (PSA) constituant de l'agent stabilisant (Di), l'émulsion multiple (Em) peut être directement obtenue en soumettant un mélange formé du ou des constituants de la phase hydrophobe (O), de l'agent stabilisant (Di) et du ou des constituants de la phase externe (We) à une opération d'agitation sous haut cisaillement.
Forme solide (Es)
L'émulsion sous forme solide (Es), selon l'invention peut être obtenue par addition, à la phase externe de l'émulsion multiple (Em), d'une matrice (M) - en un composé hydrosoluble ou hydrodispersable, capable de former, en présence de la phase externe de l'émulsion multiple (Em), une écorce solide, après séchage et éventuellement cristallisation - en un matériau solide hydrosoluble ou hydrodispersable capable d'adsorber et/ou absorber l'émulsion multiple (Em) et/ou de s'hydrater, tout en restant sous une forme solide - ou en un matériau solide insoluble, capable d'adsorber et/ou absorber l'émulsion multiple (Em). D'une manière préférentielle, la phase externe (We) de l'émulsion multiple (Em) est aqueuse.
Parmi les matériaux susceptibles de former la matrice (M), on peut citer : • les composés organiques et inorganiques hydrosolubles ou hydrodispersables suivants : - les polyéthylène qlvcols (PEG) ayant une masse moléculaire comprise entre 2 000 et 100 000 g/mole - les copolvmères d'acide ou anhydride carboxylique éthyléniquement insaturé et de monomère non-ionique éthyléniquement insaturé - les polypeptides (PP) d'origine naturelle ou synthétique hydrosolubles ou hydrodispersables - les polvélectrolvtes (PE) sous forme acide, appartenant à la famille des polyacides faibles, ayant une masse moléculaire inférieure à 20 000 g/mole, de préférence comprise entre 1 000 et 5 000 g/mole - les polvvinylpyrrolidones (PVP) ayant une masse moléculaire inférieure à 20 000 g/mole, de préférence comprise entre 1 000 et 10 000 g/mole - les alcools polwinyliαues (APV) ayant une masse moléculaire inférieure à 100 000 g/mole, et présentant de préférence un taux de désacétylation de 80 à 99% molaire, de préférence de 87 à 95% molaire - les polymères ampholvtes (PA) filmogènes hydrosolubles ou hydrodispersables - les oses, osides ou polvholosides (Oz) hydrosolubles ou hydrodispersables - les acides aminés (AA) ou sels hydrosolubles ou hydrodispersables d'acides aminés - l'acide citrique - les acides gras - l'urée - les agents tensioactifs (TA) dont le diagramme de phases binaire eau- tensioactif, comporte une phase isotrope fluide à 25°C jusqu'à une concentration d'au moins 50% en poids de tensio-actif, suivie d'une phase cristal liquide rigide de type hexagonale ou cubique à des concentrations supérieures, stable au moins jusqu'à 60°C - les sels hydrosolubles ou hydrodispersables de métaux alcalins, comme les silicates (Sil). carbonates (Carb). phosphates (Phos). sulfates. phosphonates. acétates, citrates, les sels d'acides gras saturés ou insaturés (stéarates) de métaux alcalins, les mélanges d'acétate de sodium et d'acide citrique - ou leurs mélanges.
• ainsi que des matériaux poreux insolubles comme les carbonates de métaux alcalino-terreux, les argiles. Parmi les copolvmères d'acide ou anhydride carboxylique éthyléniquement insaturé et de monomère non-ionique éthyléniquement insaturé, on peut mentionner les copolymères d'acide ou anhydride, monocarboxylique ou polycarboxylique aliphatique linéaire ou ramifié, cycloaliphatique ou aromatique éthyléniquement insaturé et d'α monooléfines contenant de 2 à 20 atomes de carbone.
Parmi les monomères acides ou anhydrides, on peut mentionner ceux contenant de 3 à 10 atomes de carbone, de préférence ceux de formule (R2')(R2")C=C(R2,")COOH où R2', (R2") et R2"1 sont identiques ou différents et représentent • un atome d'hydrogène, • un radical hydrocarboné contenant de 1 à 4 atomes de carbone, méthyle de préférence • une fonction -COOH • un radical -R-COOH, où R représente un reste hydrocarboné contenant de 1 à 4 atomes de carbone, de préférence un reste alkylène contenant 1 ou 2 atomes de carbone, méthylène tout particulièrement. D'une manière préférentielle, au moins l'un des radicaux R2' ou R2" est de l'hydrogène.
A titre d'exemple, on peut citer notamment les acides ou anhydrides acrylique, méthacrylique, crotonique, maléique, fumarique, citraconique, itaconique. Parmi les monomères α monooléfines, on peut citer particulièrement l'éthylène, le propylène, le butène-1 , l'isobutylène, le n-pentène-1 , les méthyl-2 butène-1 , le n-hexène-1 , le méthyl-2 pentène-1 , le méthyl-4 pentène-1 , l'éthyl-2 butène-1 , le diisobutylène (ou -triméthyl-2,4,4 pentène-1), le méthyl-2 diméthyl-3,3 pentène-1. Préférentiellement, le rapport molaire entre les deux types de monomères peut aller de 30/70 à 70/30. De préférence, le copolymere de formule (i) est issu de la polymérisation de l'anhydride maléique et du 2,4,4 - triméthyl 1-pentène.
Ce type de copolymere est bien connu de l'homme de l'art. A titre de polymère de ce type, on peut citer celui commercialisé sous la dénomination Geropon® EGPM et T36 (anhydride maléique/diisobutylène), commercialisé par Rhodia Chimie, ainsi que le Sokalan® CP9 (anhydride maléique/oléfine) commercialisé par BASF. Parmi les polvpeptides (PP) de synthèse hydrosolubles ou hydrodispersables, on peut mentionner les homopolymères ou copolymères dérivés de la polycondensation d'acides aminés ou de précurseurs d'acides aminés, notamment de l'acide aspartique et glutamique ou de leurs précurseurs, et hydrolyse. Ces polymères peuvent être aussi bien des homopolymères dérivés de l'acide aspartique ou glutamique que des copolymères dérivés de l'acide aspartique et de l'acide glutamique en proportions quelconques, ou des copolymères dérivés de l'acide aspartique et / ou glutamique et d'aminoacides autres. Parmi les aminoacides copolymérisables, on peut citer la glycine, l'alanine, la leucine, l'isoleucine, la phényl alanine, la méthionine, l'histidine, la proline, la lysine, la serine, la thréonine, la cystéine... Parmi les polypeptides (PP) d'origine végétale, on peut citer les protéines d'origine végétale ; celles-ci sont de préférence hydrolysées, avec un degré d'hydrolyse inférieur ou égal à 40%, par exemple de 5 à moins de 40%. Parmi les protéines d'origine végétale, on peut citer à titre indicatif les protéines provenant des graines protéagineuses notamment celles de pois, de féverole, de lupin, de haricot, et de lentille ; les protéines provenant de grains de céréales notamment celles du blé, de l'orge, du seigle, du maïs, du riz, de l'avoine, et du millet ; les protéines provenant des graines oléagineuses notamment celles du soja, de l'arachide, du tournesol, du colza, et de la noix de coco ; les protéines provenant des feuilles notamment de luzerne, et d'orties ; et les protéines provenant d'organes végétaux de réserves enterrées notamment celle de pomme de terre, et de betterave.
Parmi les protéines d'origine animale, on peut citer, par exemple, les protéines musculaires notamment les protéines du stroma, et la gélatine; les protéines provenant du lait notamment la caséine, la lactoglobuline ; et les protéines de poissons.
La protéine est de préférence d'origine végétale, et plus particulièrement provient du soja ou du blé. Le polvélectrolvte (PE) peut être choisi parmi ceux issus de la polymérisation de monomères qui ont la formule générale suivante (R1)(R2)C=C (R3) COOH formule dans laquelle R1, R2, et R3 sont identiques ou différents et représentent . un atome d'hydrogène, . un radical hydrocarboné contenant de 1 à 4 atomes de carbone, méthyle de préférence
. une fonction -COOH
. un radical -R-COOH, où R représente un reste hydrocarboné contenant de 1 à 4 atomes de carbone, de préférence un reste alkylène contenant 1 ou 2 atomes de carbone, méthylène tout particulièrement. A titre d'exemples non limitatifs, on peut citer les acides acrylique, méthacrylique, maléique, fumarique, itaconique, crotonique. Conviennent également les copolymères obtenus à partir des monomères répondant à la formule générale précédente et ceux obtenus à l'aide de ces monomères et d'autres monomères, en particulier les dérivés vinyliques comme les alcools vinyliques et les amides copolymérisables comme l'acrylamide ou le méthacrylamide. On peut également citer les copolymères obtenus à partir d'alkyle vinyl éther et d'acide maléique ainsi que ceux obtenus à partir de vinyl styrène et d'acide maléique qui sont notamment décrits dans l'encyclopédie KIRK-OTHMER intitulé "ENCYCLOPEDIA OF CHEMICAL TECHNOLOGY" - Volume 18 - 3ème édition - Wiley interscience publication - 1982. Les polyélectrolytes préférés présentent un degré de polymérisation faible. La masse moléculaire en poids des polyélectrolytes est plus particulièrement inférieure à 20000 g/mole. De préférence, elle est comprise entre 1 000 et 5 000 g/mole. Un polymère ampholyte (PA) est un polymère qui comprend des charges anioniques ou potentiellement anioniques en fonction du pH et des charges cationiques ou potentiellement cationiques en fonction du pH, les charges potentiellement anioniques ou potentiellement cationiques étant prises en compte pour le calcul du rapport du nombre total de charges anioniques au nombre total de charges cationiques.
Le polymère filmogène ampholyte (PA) présente généralement une masse moléculaire inférieure à 500000 g/mol, déterminée par chromatographie de perméation de gel aqueux (GPC).
Le polymère filmogène ampholyte (PA) peut être obtenu à partir de monomères à insaturation éthylénique anioniques et cationiques. Il peut aussi être obtenu à partir d'un mélange de monomères contenant de plus des monomères neutres. Les monomères à insaturation éthylénique anioniques peuvent être choisis parmi les acides ou anhydrides acrylique, méthacrylique, fumarique, maléique, itaconique, N-méthacroyl alanine, N-acryloyl-hydroxy-glycine ... ou leurs sels hydrosolubles ; les monomères éthyléniquement insaturés hydrosolubles sulfonés ou phosphonés, tels que l'acrylate de sulfopropyle ou ses sels hydrosolubles, les styrène sulfonates hydrosolubles, l'acide vinylsulfonique et ses sels hydrosolubles ou l'acide vinylphosphonique et ses sels hydrosolubles. Les monomères à insaturation éthylénique cationiques peuvent être choisis parmi
* les monomères aminoacryloyles ou acryloyloxy comme le chlorure de triméthylaminopropylméthacrylate, le chlorure ou le bromure de triméthylaminoéthylacrylamide ou méthacrylamide, le méthylsulfate de triméthylaminobutylacrylamide ou méthacrylamide, le méthylsulfate de triméthylaminopropylméthacrylamide (MES), le chlorure de (3- méthacrylamidopropyl)triméthylammonium (MAPTAC), le chlorure de (3- acrylamidopropyl)triméthylammonium (APTAC), le chlorure ou le méthylsulfate de méthacryloyloxyéthyl triméthylammonium, le chlorure d'acryloyloxyéthyl triméthylammonium ;
* le bromure, chlorure ou méthylsulfate de 1 -éthyl 2-vinylpyridinium ; * les monomères N,N-dialkyldiallylamines comme le chlorure de N,N- diméthyldiallylammonium (DADMAC) ;
* les monomères polyquaternaires comme le chlorure de diméthylaminopropylméthacrylamide,N-(3-chloro-2- hydroxypropyl)triméthylammonium (DIQUAT) ... Les monomères neutres à insaturation éthyléniques peuvent être choisis parmi l'acrylamide, la N-isopropylacrylamide, la N,N-diméthylacrylamide, le diméthylaminoéthylméthacrylate (DMAEMA), le diméthylaminopropyl méthacrylamide, l'alcool vinylique, les acrylates ou méthacrylates d'alkyle ou d'hydroxyalkyle, les acrylates ou méthacrylates de polyoxyalkylèneglycols ... On peut citer tout particulièrement, comme polymère ampholyte (PA), les copolymères ou terpolymères
* MAPTAC/acide acrylique ou méthacrylique ; DIQUAT/acide acrylique ou méthacrylique ; DADMAC/acide acrylique ou méthacrylique ; * MES/acide acrylique ou méthacrylique/DMAEMA ;
* MAPTAC/acide acrylique/acrylamide ; MAPTAC/anhydride maléique/acrylamide ; MAPTAC/acide vinyl sulfonique/acrylamide ;
* DADMAC/acide acrylique/acrylamide ; DADMAC/anhydride maléique/acrylamide ; DADMAC/acide vinyl sulfonique/acrylamide ; * DIQUAT/acide acrylique/acrylamide ; DIQUAT/anhydride maléique/acrylamide ; DIQUAT/acide vinyl sulfonique/acrylamide ; avec un rapport du nombre total de charges anioniques au nombre total de charges cationiques pouvant aller de 0,1 à 10. Parmi les oses (Oz) on peut mentionner les aldoses tels que le glucose, le mannose, le galactose, le ribose et les cétoses tels que le fructose.
Les osides sont des composés qui résultent de la condensation, avec élimination d'eau, de molécules d'osés entre elles ou encore de molécules d'osés avec des molécules non glucidiques. parmi les osides on préfère les holosides qui sont formés par la réunion de motifs exclusivement glucidiques et plus particulièrement les oligoholosides (ou oligosaccharides) qui ne comportent qu'un nombre restreint de ces motifs, c'est-à-dire un nombre en général inférieur ou égal à 10. A titre d'exemples d'oligoholosides, on peut mentionner le saccharose, le lactose, la cellobiose, le maltose, le sucrose et le tréhalose. Les polyholosides (ou polysaccharides) hydrosolubles ou hydrodispersables sont fortement dépolymérisés ; ils sont décrits par exemple dans l'ouvrage de P. ARNAUD intitulé "cours de chimie organique", Gaultier-Villars éditeurs, 1987. Plus particulièrement, ces polyholosides ont une masse moléculaire en poids inférieure à 500 000 g/mole, de préférence inférieure à 20 000 g/mole. A titre d'exemple non limitatif de polyholosides on peut mentionner les celluloses et dérivés de cellulose (carboxy méthyl cellulose), les carraghenannes ; parmi les polyholosides fortement dépolymérisés, on peut citer le dextran, l'amidon, la gomme xanthane et les galactomannanes tels que le guar ou la caroube, ces polysaccharides présentant de préférence un point de fusion supérieur à 100°C et une solubilité dans l'eau comprise entre 5 et 500 g/l. Parmi les acides aminés (AA). on peut mentionner les acides monoaminés monocarboxylés ou dicarboxylés, les acides diaminés monocarboxylés et leurs dérivés hydrosolubles. De préférence les acides aminés (AA) possèdent une chaîne latérale avec des propriétés acido-basiques ; ils sont choisis notamment parmi l'arginine, la lysine, l'histidine, les acides aspartique, glutamique, hydroxyglutamique ; ils peuvent également se présenter sous la forme de dérivés, de préférence hydrosolubles ; il peut s'agir par exemple des sels des sodium, potassium ou ammonium, comme les glutamate, aspartate ou hydroxyglutamate de sodium. En ce qui concerne les agents tensioactifs (TA) susceptibles de constituer la matrice (M), la description des phases isotrope fluide et cristal liquide rigide de type hexagonale ou cubique est donnée dans l'ouvrage de R.G. LAUGHLIN intitulé "The AQUEOUS PHASE BEHAVIOR OF SURFACTANTS" - ACADEMIC PRESS - 1994. Leur identification par diffusion de rayonnements (X et neutrons) est décrite dans l'ouvrage de V. LUZZATI intitulé "BIOLOGICAL MEMBRANES, PHYSICAL FACT AND FUNCTION" - ACADEMIC PRESS - 1968. Plus particulièrement, la phase cristal liquide rigide est stable jusqu'à une température au moins égale à 55°C. La phase isotrope fluide peut être coulée, tandis que la phase cristal liquide rigide ne le peut pas.
Parmi les agents tensioactifs (TA), on peut mentionner les tensioactifs glycolipidiques ioniques, notamment les dérivés des acides uroniques (acides galacturonique, glucuronique, D-mannuronique, L-iduronique, L-guluronique...), présentant une chaîne hydrocarbonée substituée ou non, saturée ou non saturée comportant de 6 à 24 atomes de carbone et préférentiellement de 8 à 16 atomes de carbone, ou leurs sels. Ce type de produits est décrit notamment dans la demande de brevet EP 532 370.
D'autres exemples d'agent tensioactif (TA) sont des tensio-actifs amphotères tels que les dérivés amphotères des alkyl polyamines comme l'amphionic XL®, le Mirataine H2C-HA® commercialisés par Rhône-Poulenc ainsi que l'Ampholac 7T/X® et l'Ampholac 7C/X® commercialisés par Berol Nobel. Parmi les silicates de métal alcalin (Sil). on peut citer notamment ceux présentant un rapport molaire SiO2/M2O de 1 ,6 à 3,5 avec M représentant un atome de sodium ou de potassium.
Parmi les phosphates de métal alcalin ou alcalino-terreux (Phos). on peut citer notamment l'hexamétaphosphate de sodium, les tripolyphosphates de sodium anhydres. Parmi les carbonates, on peut citer notamment ceux de sodium ou de calcium. La quantité de matrice (M) mise en œuvre est telle qu'elle représente de 20 à 80%, de préférence de 30 à 70% du poids de l'émulsion sous forme solide (Es) exprimé en sec. La mise sous forme solide (Es) de l'émulsion multiple (Em) peut être réalisée de différente façon, selon la nature de la matrice. Lorsqu'il s'agit d'une matrice fusible à une température inférieure à 80°C et cristallisable comme les polyethylenes glycols de masse moléculaire allant de 2000 à 100 000 g/mole, de préférence de 3 000 à 50 000 g/mole, la mise sous forme solide de l'émulsion multiple (Em) peut être réalisée par addition à ladite emulsion multiple (Em) de polyéthylène glycol à l'état fondu à une température de l'ordre de 60 à 80°C, ou en solution aqueuse, puis cristallisation par séchage / refroidissement en film mince dans une étuve ventilée, et écaillage.
Une variante de ce procédé consiste à réaliser l'émulsion multiple (Em) par mise en dispersion de l'émulsion inverse (Ei) à une température de 60 à 80°C dans le polyéthylène glycol fondu additionné de (De) puis cristallisation par séchage / refroidissement en film mince dans une étuve ventilée, et écaillage. Lorsqu'il s'agit d'un matrice en un matériau, inorganique de préférence, anhydre poreux et/ou hydratable, susceptible de rester à l'état solide après hydratation, adsorption et/ou absorption, comme les tripolyphosphates de sodium, le carbonate de sodium, la mise sous forme solide peut être réalisée par mise sur support sur ledit matériau et éventuellement séchage modéré. Selon un mode préférentiel de préparation de l'émulsion (E) sous une forme solide (Es), la phase aqueuse externe de l'émulsion multiple (Em) comprend au moins un composé hydrosoluble ou hydrodispersable (M) non- fusible à une température inférieure à 100°C, en tant qu'additif de séchage de l'émulsion multiple. En effet, en présence de ces composés, il devient possible de sécher l'émulsion multiple (en d'autres termes d'éliminer l'eau externe de ladite emulsion) afin d'obtenir des granulés (ou tout autre forme). D'une manière préférentielle, l'émulsion multiple (Em) est diluée avec de l'eau comprenant de préférence de l'agent dispersant et/ou stabilisant (De) et introduite dans la matrice (M), puis séchée.
L'opération de séchage (consistant à éliminer l'eau de la phase aqueuse externe) peut être effectuée par tout moyen connu de l'homme du métier.
De préférence, le séchage est effectué de telle sorte qu'au moins 90% en poids de la phase aqueuse externe soient éliminés.
Le séchage peut être réalisé en étuve, de préférence en couche mince. Habituellement, la température de séchage est inférieure ou égale à 100°C. Plus particulièrement, des températures comprises entre 50 et 90°C conviennent à la mise en œuvre de cette méthode.
Un autre mode de séchage de l'émulsion est une méthode dite rapide. Conviennent à ce titre le séchage par atomisation, le séchage par mise en œuvre des tambours Duprat®, ou encore la lyophilisation (congélation- sublimation).
Le séchage par atomisation peut s'effectuer de manière habituelle dans tout appareil connu tel que par exemple une tour d'atomisation associant une pulvérisation réalisée par une buse ou une turbine avec un courant de gaz chaud. La température d'entrée des gaz est de l'ordre de 100°C et 200°C et celle de sortie des gaz d'atomisation est de préférence comprise entre 55 et 100°C. Ces températures sont données à titre indicatif, et dépendent de la stabilité thermique des divers éléments. De plus, elle est définie selon la teneur en eau finale souhaitée dans le granulé. De manière avantageuse, la taille moyenne recherchée des granulés (d50) est comprise entre 100 μm et quelques millimètres (Sympatec), de préférence entre 100 et 800 μm. De tels granulés peuvent être obtenus directement à l'aide d'un atomiseur double effet (séchage/granulation). Ils peuvent également être obtenus à l'aide d'un atomiseur simple effet (séchage) associé à un appareil de granulation (lit fluidisé) avec pulvérisation d'eau éventuellement additivée de matériau de la matrice (M).
Dans le cas d'opérations de séchage de l'émulsion multiple réalisées au moyen de tambour Duprat®, ou de tout moyen permettant d'obtenir rapidement un film sec qui est séparé du support séchant par une opération de raclage par exemple, on obtient des écailles ou de la poudre que l'on peut éventuellement broyer. Si nécessaire, ces écailles peuvent faire l'objet d'une mise en œuvre ultérieure, comme une étape d'agglomération, de manière à obtenir des granulés agglomérés. De manière avantageuse, la taille moyenne des granulés (d50) obtenus directement après séchage est comprise entre 100 μm et quelques millimètres (Sympatec), de préférence entre 100 et 800 μm.
Il est à noter que des additifs, tels que les agents anti-mottants, des charges (comme silice, kaolin, dioxyde de titane, etc.) peuvent être incorporés aux granulés. Ces additifs peuvent être introduits pendant le séchage ou en post addition. Un deuxième objet de l'invention consiste en l'utilisation d'une emulsion (E) comprenant une phase hydrophobe liquide ou fusible (O) contenant et/ou constituée d'au moins une matière active hydrophobe (A), ladite emulsion (E) se présentant : • sous la forme d'une emulsion multiple (Em) comprenant : - une emulsion inverse interne (Ei) comprenant ladite phase hydrophobe liquide ou fusible (O) continue, une phase dispersée aqueuse (Wi) et, à l'interface des deux phases, au moins un agent stabilisant hydrosoluble ou hydrodispersable (Di) - une phase externe (We) aqueuse ou miscible à l'eau, dans laquelle est dispersée l'émulsion interne (Ei), à l'aide d'au moins un agent dispersant et/ou stabilisant (De) • ou sous forme solide (Es), hydrodispersable en lune emulsion multiple (Em) dans laquelle la phase externe (We) est aqueuse, comprenant - l'émulsion inverse (Ei) dispersée dans une matrice (M) solide hydrosoluble ou hydrodispersable - et l'agent dispersant et/ou stabilisant (De) situé à l'interface de l'émulsion inverse (Ei) et de la matrice (M) et éventuellement dispersé dans la matrice (M) emulsion (E) dans laquelle l'agent stabilisant (Di) à l'interface des deux phases de l'émulsion inverse interne (Ei) est en un matériau choisi parmi les polysaccharides (PSA) hydrosolubles ou hydrodispersables, exempts de groupes substituants polyorganosiloxanes lipophiles : - dont le degré moyen de polymérisation (DP) est d'au moins 1 ,5 de préférence d'au moins 20 ?, tout particulièrement d'au moins 100 - dont la viscosité Brookfield à 25°C en solution à 1% en masse dans l'eau est inférieure à 20 000 mPa.s., de préférence inférieure à 5000 mPa.s., tout particulièrement allant de 1 à 4500 mPa.s., pour véhiculer , en milieu aqueux (B) en contact avec un substrat (S), la phase hydrophobe (O) contenant et/ou constituée d'au moins une matière active hydrophobe (A), vers ledit substrat (S). Ledit substrat (S) peut être en un matériau quelconque, notamment en un métal ou tout matériau naturel, artificiel ou synthétique, ou en un mélange de ces matériaux. Ladite phase hydrophobe (O) est de préférence en une matière active susceptible d'apporter ses propriétés intrinsèques ou les bénéfices qui en résultent, audit substrat. La phase externe (We) aqueuse peut elle-même constituer le milieu aqueux (B), avec libération de la phase hydrophobe et de la matière active hydrophobe par dépôt ou application et séchage de l'émulsion sur le substrat (S). L'émulsion selon l'invention peut être utilisée dans les peintures, de préférence aqueuses ou constituer elle-même une peinture de préférence aqueuse, et être mise en œuvre pour véhiculer notamment un agent hydrophobant sur une surface de type matériau de construction, plâtre, ciment, bois ... , avec libération de l'agent hydrophobant par dépôt et séchage de la peinture sur la surface. Elle peut également être mise en œuvre pour le traitement des métaux. De même, elle peut être utilisée dans les compositions cosmétiques ou constituer elle-même une composition cosmétique aqueuse (crèmes hydratantes, crèmes solaires, produits de maquillage, gels coiffants ...) ; la phase hydrophobe peut être ou contenir toute matière active hydrophobe de soin (comme des agents conditionneurs, des agents démêlants ...), des agents anti-UV, des pigments, des colorants ... Elle peut aussi être mise en œuvre pour conférer à des surfaces en un matériau tissé ou non-tissé d'origine cellulosique et/ou synthétique, pour l'hygiène corporelle ou le nettoyage de la maison, destinées à être mises en contact avec la peau, comme des lingettes de soin, de nettoyage ou démaquillage (« wipes »), des papiers absorbants (« tissues »), des protections féminines (« towels »), des couches culottes (« diapers ») etc ..., des bénéfices intrinsèques à la phase hydrophobe (O) et/ou aux matières actives (A) contenues dans la phase hydrophobe, et ce lors de la préparation desdites surfaces ou par post-traitement desdites surfaces. Peuvent être ainsi conférées des propriétés adoucissantes, anti-odeur, parfumantes, bactéricides etc ... Elle peut aussi être utilisée au cours de la fabrication ou pour le posttraitement de cartons ou emballages en carton, pour apporter des propriétés hydrophobes, anti-odeurs, bactéricides, parfumantes ... Le deuxième objet de l'invention consiste en particulier en l'utilisation d'une emulsion (E) comprenant une phase hydrophobe liquide ou fusible (O) contenant et/ou constituée d'au moins une matière active hydrophobe (A), ladite emulsion (E) se présentant : • sous la forme d'une emulsion multiple (Em) comprenant : - une emulsion inverse interne (Ei) comprenant ladite phase hydrophobe liquide ou fusible (O) continue, une phase dispersée aqueuse (Wi) et, à l'interface des deux phases, au moins un agent stabilisant hydrosoluble ou hydrodispersable (Di) - une phase externe (We) aqueuse ou miscible à l'eau, dans laquelle est dispersée l'émulsion interne (Ei), à l'aide d'au moins un agent dispersant et/ou stabilisant (De) • ou sous forme solide (Es), hydrodispersable en lune emulsion multiple (Em) dans laquelle la phase externe (We) est aqueuse, comprenant - l'émulsion inverse (Ei) dispersée dans une matrice (M) solide hydrosoluble ou hydrodispersable - et l'agent dispersant et/ou stabilisant (De) situé à l'interface de l'émulsion inverse (Ei) et de la matrice (M) et éventuellement dispersé dans la matrice (M) emulsion (E) dans laquelle l'agent stabilisant (Di) à l'interface des deux phases de l'émulsion inverse interne (Ei) est en un matériau choisi parmi les polysaccharides (PSA) hydrosolubles ou hydrodispersables, exempts de groupes substituants polyorganosiloxanes lipophiles : - dont le degré moyen de polymérisation (DP) est d'au moins 1,5 de préférence d'au moins 20 ?, tout particulièrement d'au moins 100 - dont la viscosité Brookfield à 25°C en solution à 1 % en masse dans l'eau est inférieure à 20 000 mPa.s., de préférence inférieure à 5000 mPa.s., tout particulièrement allant de 1 à 4500 mPa.s., pour véhiculer, en milieu aqueux (B) mis en contact avec un substrat (S), la phase hydrophobe (O) contenant et/ou constituée d'au moins une matière active hydrophobe (A), vers ledit substrat (S), le volume dudit milieu aqueux étant suffisant pour provoquer la déstabilisation et/ou la rupture de l'émulsion
(E) par dilution de ladite emulsion (E) et/ou séchage subséquent à la dilution de ladite emulsion (E), et la mise à disposition et/ou libération de la matière active (A) contenue ou constituante de la phase hydrophobe (O), sur le substrat (S). D'une manière préférentielle, l'émulsion (E) est une emulsion multiple
(Em) comprenant au moins 70% en poids d'émulsion interne (Ei). Pour une bonne réalisation de l'invention, peuvent être mises en œuvre des quantités relatives d'émulsion (Em) et de milieu aqueux (B) équivalentes à une dilution de 2 à 100 fois le volume de ladite emulsion (Em). L'émulsion selon l'invention est particulièrement intéressante pour véhiculer et déposer une matière active hydrophobe sur une surface en hydroxyapatite (dent) , une surface kératinique (peau, cheveu, cuir) ou une surface textile. Lorsque ledit substrat (S) est en hydroxyapatite (dents), la phase hydrophobe peut contenir des agents hydrophobes présentant des propriétés rafraîchissantes, des agents permettant de lutter contre la plaque dentaire, des agents antiseptiques ... L'émulsion (E) peut être incluse ou former elle-même une composition pour l'hygiène dentaire ou buccale, composition destinée à être rincée ou diluée. Il peut s'agir de dentifrices, de bains de bouche ... Ledit substrat (S) peut être notamment une surface kératinique, comme la peau et les cheveux. La phase hydrophobe peut être ou contenir toute matière active hydrophobe de soin (comme des agents conditionneurs, des agents démêlants ...), des agents anti-UV, des pigments, des colorants ... ; l'émulsion (E) peut être incluse dans ou former elle-même une composition cosmétique destinée à être rincée ou diluée ; il peut s'agir notamment_d'un shampoing, d'un après-shampoing, d'un gel douche ... Ledit substrat (S) peut être du cuir ; la phase hydrophobe peut être ou contenir toute matière active hydrophobe susceptible d'apporter au substrat hydrophobie, douceur, souplesse, protection vis-à-vis des agents extérieurs etc .... D'une manière toute préférentielle, ledit substrat (S) est en un matériau textile.
Le substrat textile peut se présenter sous forme de fibres textiles ou d'articles réalisés à partir de fibres textiles naturelles (coton, lin ou autre matériau naturel cellulosique, laine ...), artificielles (viscose, rayonne ...) ou synthétiques (polyamide, polyester ...) ou leurs mélanges. D'une manière préférentielle, ledit substrat est une surface textile en un matériau cellulosique, en coton notamment.
Ladite phase hydrophobe (O) est de préférence en un matériau pour le soin des textiles (« textile care agent »). Les exemples particuliers de matériaux organosiliciques (01) et organiques (02) mentionnés plus haut sont particulièrement bien adaptés, tout particulièrement les matériaux organosiliciques, aminés notamment. Les bénéfices apportés par une phase hydrophobe lubrifiante (01) ou (02) à un substrat textile sont notamment l'apport de propriétés de douceur (softness), d'anti-froissage (anti-wrinkling), de facilité de repassage (easy- ironing), de résistance à l'abrasion (protection vis-à-vis notamment du vieillissement lors du port du vêtement ou des opérations répétées de lavage), d'élasticité, de protection des couleurs, de rétention des parfums ... Parmi les matières actives autres apportant des bénéfices autres dans le domaine du soin des articles en fibres textiles, on peut mentionner en particulier les parfums ; de manière préférentielle, ceux-ci sont mis en solution dans la phase hydrophobe (O), notamment en matériaux organosiliciques (01) ou organiques (02). Le bain aqueux (B) dans lequel est présent le substrat textile pour y acquérir des bénéfices, peut être très varié. Il peut s'agir, à titre non limitatif, d'un bain de trempage, de lavage, de rinçage, de foulardage ... L'émulsion (E) selon l'invention, peut notamment être utilisée comme additif dans une composition détergente pour le lavage ou le rinçage des articles en fibres textiles, ou comme composition détergente ou rinçante pour le lavage ou le rinçage des articles en fibres textiles, dans le but de véhiculer un agent de soin hydrophobe (« textile care agent ») et/ou toute matière active hydrophobe autre utile, et de favoriser le dépôt de celui-ci et/ou de celle- ci sur un article en fibres textiles, en coton notamment, lors de l'opération de rinçage et/ou lors de l'opération de séchage subséquente(s) à l'opération de lavage principal lorsqu'il s'agit d'une composition détergente pour le lavage, ou lors de l'opération subséquente de séchage lorsqu'il s'agit d'une composition de rinçage. Il a été en effet constaté que l'utilisation de l'émulsion (E) sous forme d'une emulsion multiple (Em) ou sous forme d'un solide hydrodispersable (Es) contenant une phase hydrophobe (O) de soin, comme composition détergente ou dans une composition détergente pour le lavage du linge en machine à laver, mise en œuvre au cycle de lavage, et ce sans ajout de liquide de rinçage adoucissant au cycle de rinçage, permettait d'apporter au linge lavé des propriétés de douceur, souplesse, d'anti-froissage (anti-wrinkling), de facilité de repassage (easy-ironing), de résistance à l'abrasion, d'élasticité, de protection des couleurs, de rétention des parfums ... Il a également été constaté que l'utilisation de l'émulsion (E) sous forme d'une emulsion multiple (Em) ou sous forme d'un solide hydrodispersable (Es) contenant une phase hydrophobe (O) de soin, comme composition de rinçage ou dans une composition pour le rinçage du linge, permettait d'apporter au linge, après séchage, des propriétés de douceur, souplesse, d'anti-froissage (anti- wrinkling), de facilité de repassage (easy-ironing), de résistance à l'abrasion, d'élasticité, de protection des couleurs, de rétention des parfums ... Le dépôt de la phase hydrophobe (O) contenant ou constitué de la matière active (A) sur le substrat peut être un dépôt par adsorption, co- cristallisation, piégeage et/ou adhésion. La quantité d'émulsion (E) sous forme d'une emulsion multiple (Em) ou sous forme d'un solide hydrodispersable (Es) pouvant être présente dans une composition de lavage des articles en fibres textiles, selon le troisième objet de l'invention, correspond à une quantité de phase hydrophobe (O) représentant de 0,0001% à 25%, de préférence de 0,0001% à 5% du poids total de la composition, avec des quantités relatives d'émulsion, exprimée en emulsion multiple (Em), et de milieu aqueux (B) équivalentes à une dilution de 2 à 100 fois le volume de ladite emulsion (Em). La quantité d'émulsion (E) sous forme d'une emulsion multiple (Em) pouvant être présente dans une composition de rinçage des articles en fibres textiles, selon le troisième objet de l'invention, correspond à une quantité de phase hydrophobe (O) représentant de 0,0001% à 25%, de préférence de 0,0001% à 5% du poids total de la composition, avec des quantités relatives d'émulsion, exprimée en emulsion multiple (Em), et de milieu aqueux (B) équivalentes à une dilution de 2 à 100 fois le volume de ladite emulsion (Em). Une composition de lavage en poudre compactée ou non, ou liquide, des articles en fibres textiles peut contenir au moins un agent tensioactif choisi de préférence parmi les agents tensioactifs anioniques et les non-ioniques ou leurs mélanges. Parmi les agents tensioactifs anioniques, on peut mentionner les alkyl (C8-Cι5) benzène sulfonates (à raison de 0-30%, de préférence 1-25%, plus préférentiellement 2-15% en poids).
En outre on peut mentionner les alkyl sulfates primaires ou secondaires, en particulier les alkyl (C8-Cι5) sulfates primaires ; les alkyl éther sulfates ; les sulfonates d'oléfine ; les alkyl xylène sulfonates ; les dialkyl sulfosuccinates ; les ester sulfonates d'acides gras ; les sels de sodium sont en général préférés. Parmi les agents tensioactifs non-ioniques, on peut mentionner les éthoxylats d'alcools primaires ou secondaires, en particulier les éthoxylats d'alcools aliphatiques en C8-C2o ayant de 1 à 20 moles d'oxyde d'éthylene par mole d'alcool, et plus particulièrement les éthoxylats d'alcools aliphatiques primaires ou secondaires en C10-C15 ayant de 1 à 10 moles d'oxyde d'éthylene par mole d'alcool ; peuvent être également mentionnés des tensioactifs non-ioniques non- éthoxylés comme les alkylpolyglucosides, les glycérol monoéthers, et les polyhydroxyamides (glucamides).
De préférence le taux d'agents tensioactif non-ioniques est de 0-30%, de préférence de 1-25%, plus préférentiellement de 2-15% en poids. Le choix et la quantité de l'agent tensioactif dépend de l'utilisation désirée de la composition détergente. Les systèmes de tensioactifs à choisir pour le lavage de textiles à la main ou en machine sont bien connus des formulateurs. Des quantités d'agents tensioactifs aussi élevées que 60% en poids peuvent être présentes dans les compositions pour le lavage à la main. De quantités de 5-40% en poids conviennent généralement pour le lavage des textiles en machine. Typiquement ces compositions comprennent au moins 2% en poids, de préférence de 2-60%, plus préférentiellement 15-40% et particulièrement 25- 35% en poids.
Il est également possible d'inclure des agents tensioactifs mono-alkyl cationiques. On peut mentionner les sels ammonium quaternaires de formule R1R2R3R4N+X" où les groupes R sont de chaînes hydrocarbonées longues ou courtes, alkyles, hydroalkyle ou alkyl éthoxylées, X étant un contre-ion ( R1 est un groupe alkyle en C8-C22, de préférence en C8-Cιo, ou en C12-C14, R2 est un groupe méthyle, R3 et R4 semblables ou différents étant un groupe méthyle ou hydroxyméthyle) ; ainsi que des esters cationiques, comme les choline esters. Les compositions détergentes pour la plupart des machine à laver, contiennent généralement un agent tensioactif anionique différent des savons, ou un agent tensioactif non-ionique, ou leurs mélanges, et éventuellement un savon. Les compositions détergentes pour le lavage des textiles contiennent généralement au moins un adjuvant de détergence (« builder ») ; la quantité totale d'adjuvant de détergence est typiquement de 5-80%, de préférence de 10- 60% en poids.
On peut citer les adjuvants inorganiques comme le carbonate de sodium, les aluminosilicates cristallins ou amorphes (10-70%, de préférence 25-50% en sec), les silicates lamellaires, les phosphates inorganiques (Na orthophosphate, pyrophosphate et tripolyphosphate). De plus amples détails relatifs aux aluminosilicates et zéolites particulièrement adaptés sont donnés dans WO 03/020819. On peut citer également des adjuvants de détergence organiques, comme les polymères de type polyacrylates, copolymères acrylique/maléique et les phosphinates acryliques ; les polycarboxylates monomères comme les citrates, gluconates, oxydisuccinates, mono-, di- et tri-succinates de glycérol, dipicolinates, hydroxyéthyliminodiacétates, malonates ou succinates d'alkyle ou d'alcényle ; les sels d'acide gras sulfonates ....
De préférence, les adjuvants de détergence organiques sont des citrates (5- 30%, de préférence 10-25% en poids), les polymères acryliques, plus particulièrement les copolymères acrylique/maléique (0,5-10%, de préférence 1- 10% en poids). Lorsqu'elles sont en poudre compactée ou non, les compositions peuvent favorablement contenir un système de blanchiment, notamment des composés peroxydes comme les persels inorganiques (perborates, percarbonates, perphosphates, persilicates et persulfates, de préférence le perborate de sodium monohydraté ou tetrahydraté, et le percarbonate de sodium) ou les peroxyacides organiques (peroxyde d'urée), capables de libérer de l'oxygène en solution. Le composé peroxyde de blanchiment est favorablement présent à raison de 0,1-35%, de préférence de 0,5-25% en poids. Il peut être associé à un activateur de blanchiment pour améliorer le blanchiment à basse température ; il est présent favorablement en quantité de 0,1-8%, de préférence de 0,5-5% en poids. Les activateurs préférés sont les acides peroxycarboxyliques, notamment les acides peracétiques et pernonanoiques. On peut mentionner tout particulièrement la N,N,N',N',-tetracetyl éthylènediamine (TAED) et le nonanoyloxybenzène sulfonate de sodium (SNOBS).. Les compositions comprennent aussi généralement une ou plusieurs enzymes, notamment des protéases, amylases, cellulases, oxydases, peroxydases et lipases (0,1-3% en poids), des parfums, des agents anti- redéposition, antisalissures, anti-transfert de couleur, des agents adoucissants non-ioniques ... Les compositions détergentes de lavage des textiles peuvent également se présenter sous forme de tablettes liquides non aqueuses dans une enveloppe en un matériau se dispersant dans le milieu lessiviel comme l'alcool polyvinylique par exemple. Elles comprennent au moins un alcool miscible à l'eau, comme notamment alcool isopropylique, en quantité pouvant aller de 5 à 20% en poids. .
Elles peuvent contenir au moins un agent tensioactif choisi de préférence parmi les agents tensioactifs anioniques et les non-ioniques ou leurs mélanges, en quantité pouvant aller de 20 à 75 % en poids. Elles peuvent en outre comprendre des adjuvants de détergence (« builders ») organiques, comme les citrates de sodium, les phopsphonates ..., en quantité pouvant aller de 5 à 20 % en poids ; .elles peuvent également comprendre des parfums, des colorants ... Les compositions pour le rinçage des articles en fibres textiles peuvent contenir des agents adoucissants cationiques ou non-ioniques. Ils peuvent représenter de 0,5 à 35%, de préférence de 1-30%, plus préférentiellement 3- 25% du poids de la composition de rinçage. Les adoucissants cationiques sont des composés ammonium quaternaires substantiellement non-hydrosolubles, comprenant une seule chaîne alkyle ou alcényle contenant au moins 20 atomes de carbone, ou de préférence des composés ayant deux têtes polaires et deux chaînes alkyles ou alcényles contenant au moins 14 atomes de carbone. Tout préférentiellement les composés adoucissants ont deux chaînes alkyles ou alcényles contenant au moins 16 atomes de carbone, et particulièrement au moins 50% des groupes alkyles ou alcényles ont 18 atomes de carbone ou plus. Tout préférentiellement les chaînes alkyles ou alcényles linéaires sont prédominantes. Dans les formules de rinçage adoucissantes du commerce, on utilise très couramment des composés ammonium quaternaires ayant deux longues chaînes aliphatiques, comme les chlorures de distéaryl diméthyl ammonium; de ditallow alkyl diméthyl ammonium.
Les compositions de rinçage peuvent en outre comprendre des adoucissants non-ioniques comme la lanoline ; les lécithines et autres phospholipides conviennent également. Les compositions de rinçage peuvent également contenir des agents stabilisants non-ioniques comme les alcools linéaires en C8- C22 alcoxylés contenant de 10 à 20 moles d'oxyde d'alkylène, les alcools en C10- C20 et leurs mélanges . La quantité d'agent stabilisant non-ionique représente de 0,1-10%, de préférence 0,5-5%, tout particulièrement 1-4% du poids de la composition. Le rapport molaire du composé ammonium quaternaire et/ou autre agent cationique adoucissant à l'agent stabilisant est favorablement de 40/1-1/1 , de préférence de 18/1-3/1.
La composition peut en outre comprendre des acides gras, notamment des acides alkyl ou alcényle (C8-C2 ) monocarboxylés ou leurs polymères ; de préférence ils sont saturés et non-saponifiés, comme les acides oléique, laurique ou de suif. Ils peuvent être utilisés à raison d'au moins 0,1%, de préférence d'au moins 0,2% en poids. Dans les compositions concentrées, ils peuvent être présents à raison de 0,5-20%, de préférence 1-10% en poids. Le rapport molaire du composé ammonium quaternaire et/ou autre agent cationique adoucissant à l'acide gras est favorablement de 10/1-1/10. Un dernier objet de l'invention consiste en un procédé pour véhiculer, vers un substrat (S) en contact avec un milieu aqueux (B), au moins une matière active contenue dans ou constituante d'une phase hydrophobe (O) liquide ou fusible d'une emulsion (E), ladite emulsion se présentant • sous la forme d'une emulsion multiple (Em) comprenant : - une emulsion inverse interne (Ei) comprenant ladite phase hydrophobe liquide ou fusible (O) continue, une phase dispersée aqueuse (Wi) et, à l'interface des deux phases, au moins un agent stabilisant hydrosoluble ou hydrodispersable (Di) - une phase externe (We) aqueuse ou miscible à l'eau, dans laquelle est dispersée l'émulsion interne (Ei), à l'aide d'au moins un agent dispersant et/ou stabilisant (De) • ou sous forme solide (Es), hydrodispersable en une emulsion multiple (Em), comprenant - l'émulsion inverse (Ei) dispersée dans une matrice (M) solide hydrosoluble ou hydrodispersable - et l'agent dispersant et/ou stabilisant (De) situé à l'interface de l'émulsion inverse (Ei) et de la matrice (M) et éventuellement dispersé dans la matrice (M) emulsion (E) dans laquelle l'agent stabilisant (Di) à l'interface des deux phases de l'émulsion inverse interne (Ei) est en un matériau choisi parmi les polysaccharides (PSA) hydrosolubles ou hydrodispersables, exempts de groupes substituants polyorganosiloxanes lipophiles : - dont le degré moyen de polymérisation (DP) est d'au moins 1,5 de préférence d'au moins 20, tout particulièrement d'au moins 100 - dont la viscosité Brookfield à 25°C en solution à 1% en masse dans l'eau est inférieure à 20 000 mPa.s., de préférence inférieure à 5000 mPa.s., tout particulièrement allant de 1 à 4500 mPa.s., par mise en présence de l'émulsion (E) avec le substrat (S) en contact avec le milieu aqueux (B). Le dernier objet de l'invention vise en particulier un procédé pour véhiculer, vers un substrat (S) en contact avec un milieu aqueux (B), au moins une matière active contenue dans ou constituante d'une phase hydrophobe (O) liquide ou fusible d'une emulsion (E), ladite emulsion se présentant • sous la forme d'une emulsion multiple (Em) comprenant : - une emulsion inverse interne (Ei) comprenant ladite phase hydrophobe liquide ou fusible (O) continue, une phase dispersée aqueuse (Wi) et, à l'interface des deux phases, au moins un agent stabilisant hydrosoluble ou hydrodispersable (Di) - une phase externe (We) aqueuse ou miscible à l'eau, dans laquelle est dispersée l'émulsion interne (Ei), à l'aide d'au moins un agent dispersant et/ou stabilisant (De) • ou sous forme solide (Es), hydrodispersable en une emulsion multiple (Em), comprenant - l'émulsion inverse (Ei) dispersée dans une matrice (M) solide hydrosoluble ou hydrodispersable - et l'agent dispersant et/ou stabilisant (De) situé à l'interface de l'émulsion inverse (Ei) et de la matrice (M) et éventuellement dispersé dans la matrice (M) emulsion (E) dans laquelle l'agent stabilisant (Di) à l'interface des deux phases de l'émulsion inverse interne (Ei) est en un matériau choisi parmi les polysaccharides (PSA) hydrosolubles ou hydrodispersables, exempts de groupes substituants polyorganosiloxanes lipophiles : - dont le degré moyen de polymérisation (DP) est d'au moins 1,5 de préférence d'au moins 20 , tout particulièrement d'au moins 100 - dont la viscosité Brookfield à 25°C en solution à 1% en masse dans l'eau est inférieure à 20 000 mPa.s., de préférence inférieure à 5000 mPa.s., tout particulièrement allant de 1 à 4500 mPa.s., par mise en présence de l'émulsion (E) avec le substrat (S) en contact avec le milieu aqueux (B), le volume dudit milieu aqueux (B) étant suffisant pour provoquer la déstabilisation et/ou la rupture de l'émulsion (E) par dilution de ladite emulsion (E) et/ou séchage subséquent à la dilution de ladite emulsion (E), et la mise à disposition et/ou libération de la matière active (A) contenue ou constituante de la phase hydrophobe (O), sur le substrat (S). D'une manière préférentielle, l'émulsion (E) est une emulsion multiple (Em) comprenant au moins 70% en poids d'émulsion interne (Ei). Les conditions de réalisation dudit procédé ont déjà été décrites ci- dessus.
Les exemples suivants sont donnés à titre indicatif. Dans les exemples suivants sont mis en œuvre
• Comme phase hydrophobe (O) et matière active (A) l'huile silicone aminée RHODORSIL® EXTRASOFT commercialisée par Rhodia.
• Comme agent stabilisant (Di) - Le guar dépolymérisé MEYPROGAT® 7 commercialisée par Rhodia, de masse moléculaire en poids de 47 000 environ, de degré de polymérisation d'environ 300, et présentant une viscosité Brookfield de 1-5 mPa.s à 1% dans l'eau à 25°C - Un monoacétate de cellulose de degré de polymérisation d'environ 300,de degré de substitution de 0,67 et présentant une viscosité Brookfield de 1-5 mPa.s à 1% dans l'eau à 25°C
• Comme agent dispersant et/ou stabilisant (De), l'Arlatone® F 127G, de formule HO(CH2CH2θ)χ(CH(CH3)CH2θ)y(CH2CH2O)zH commercialisé par ICI -Uniquema
Exemple 1 : Emulsion multiple Composition de l'émulsion inverse (Ei) :
• 50% en poids de phase aqueuse interne constituée de : Eau 90 parties en poids Meyprogat® 7 10 parties en poids
• 50% en poids de phase huile silicone aminée (O) Huile Rhodorsil® Extrasoft 100 parties en poids
Préparation de l'émulsion inverse (Ei) :
Préparation de la phase aqueuse interne On introduit l'eau dans un réacteur de 1 I muni d'une agitation type pale cadre
(diamètre 54 mm, vitesse 400 tours/minute), à température ambiante.
On introduit alors progressivement la poudre de Meyprogat® 7 sous agitation à température ambiante.
On agite durant deux heures à température ambiante de manière à disperser les particules de gel de Meyprogat® 7 d'une manière homogène. Eventuellement on procède à un cisaillement de la dispersion à l'aide d'un outil du type rotor-stator
(Ultra-turrax type GT45).
Le pH de la solution/ dispersion aqueuse interne est de 5 à 7,5
Préparation de l'émulsion inverse Dans un réacteur de 2 I muni d'une agitation type pale cadre (diamètre 90 mm, vitesse 400 tours/minute), on introduit l'huile Rhodorsil® Extrasoft.
On introduit alors, en 45 minutes, la phase aqueuse interne, à température ambiante. On maintient l'agitation durant 15 minutes pour affiner l'émulsion. On obtient une emulsion inverse (Ei) dont les gouttes de phase aqueuse dispersée (Wi) présentant une granulométrie de 1μm (observation faite en microscopie optique sur un échantillon sans et avec dilution préalable dans l'huile Extrasoft).
Composition de l'émulsion multiple :
• 91% en poids d'émulsion inverse (Ei) ci-dessus
• 9% en poids de phase aqueuse externe (We), obtenue à partir de 9 parties en poids d'une solution aqueuse à 10% en poids d'Arlatone F 127G® ce qui correspond à - 10% d'Arlatone® F127G sec - 90% d'eau
Préparation de l'émulsion multiple :
Préparation de la phase aqueuse externe Dans un bêcher de 0,5 I muni d'une agitation barreau magnétique, on introduit l'eau et progressivement la poudre d'Arlatone F 127G sous agitation à température ambiante.
On agite durant 15 minutes à température ambiante, de manière à obtenir une solution homogène (solution à 10% d'Arlatone F 127G ). Préparation de l'émulsion double
On ajoute, sans agitation et rapidement à température ambiante, la phase aqueuse externe préparée ci-dessus à l'émulsion inverse (Ei) obtenue ci-dessus contenue dans le réacteur de 2 I muni d'une agitation type pale cadre (diamètre
90 mm). On agite ensuite l'ensemble (agitation type pale cadre - diamètre 90 mm, vitesse
200 tours/minute). On obtient rapidement une emulsion multiple ; cette emulsion est maintenue sous agitation pour affinage durant 10 minutes.
On obtient une emulsion multiple (Em) concentrée, qui se présente sous la forme d'une crème visqueuse non coulable ; la taille moyenne des gouttelettes (d50) d'émulsion inverse interne est voisine de 10 μm, avec un indice de polydispersité faible.
Exemple , 2 : emulsion multiple On prépare une emulsion multiple selon le mode opératoire de l'exemple 1 , en remplaçant les 10 parties en poids de Meyprogat® 7 par 10 parties de monoacétate de cellulose. Exemple 3 : dépôt en bain lessiviel de l'huile Rhodorsil® Extrasoft sur du coton
Test Le test est réalisé dans un appareil de laboratoire Tergotometre, bien connu des formulateurs de compositions détergentes. L'appareil simule les effets mécaniques et thermiques des machines à laver de type américain à pulsateur ; grâce à la présence de 6 pots de lavage, il permet de réaliser des séries d'essais simultanés avec une économie de temps appréciable. Préparation
Les pots sont chauffés à 40°C.
500ml d'eau présentant une dureté de 30°HT (eau minérale Contrexéville® diluée) sont introduits dans chaque pot
5g d'une composition détergente en poudre pour le lavage du linge en machine sont introduits dans chaque pot (soit 10g/I) le Tergotometre est mis en marche (100 cycles/minute pendant 5 minutes) pour solubiliser la lessive.
Cycle de lavage
On introduit dans chaque pot une quantité d'émulsion double préparée à l'exemple 1 ou à l'exemple 2 correspondant à 0,5g d'huile Rhodorsil® Extrasoft
On introduit dans chaque pot 3 éprouvettes de coton éponge Terry
(10cmx10cm).
On lave à 100 cycles/minute pendant 20 minutes.
Cycle de rinçage Les carrés de tissus sont ensuite rincés 3 fois pendant 5 minutes (chaque fois) à l'eau froide.
Séchage
Les carrés de tissu sont sortis et laissées sécher à l'air. Une estimation de performance de douceur est donnée par un jury d'experts entraînés, dans un test en aveugle.
La performance obtenue est donnée dans le tableau qui suit (« Emulsion ») et comparée à celle obtenue avec :
• Un lavage en Tergotometre sans addition de l'émulsion multiple de l'exemple 1 ou 2 (« Référence 1 ») • Un lavage en Tergotometre sans addition de l'émulsion multiple de l'exemple 1 ou 2, suivi d'un rinçage avec addition de 5g d'une formulation adoucissante du commerce au 3éme rinçage (« Référence 2 »). Les résultats obtenus figurent au tableau suivant

Claims

REVENDICATIONS
1 ) Emulsion (E) comprenant une phase hydrophobe liquide ou fusible (O) contenant et/ou constituée d'au moins une matière active hydrophobe (A), ladite emulsion (E) se présentant : • sous la forme d'une emulsion multiple (Em) comprenant : - une emulsion inverse interne (Ei) comprenant ladite phase hydrophobe liquide ou fusible (O) continue, une phase dispersée aqueuse (Wi) et, à l'interface des deux phases, au moins un agent stabilisant hydrosoluble ou hydrodispersable (Di) - une phase externe (We) aqueuse ou miscible à l'eau, dans laquelle est dispersée l'émulsion interne (Ei), à l'aide d'au moins un agent dispersant et/ou stabilisant (De) • ou sous forme solide (Es), hydrodispersable en une emulsion multiple (Em) dans laquelle la phase externe (We) est aqueuse, comprenant - l'émulsion inverse (Ei) dispersée dans une matrice (M) solide hydrosoluble ou hydrodispersable - et l'agent dispersant et/ou stabilisant (De) situé à l'interface de l'émulsion inverse (Ei) et de la matrice (M) et éventuellement dispersé dans la matrice (M) ladite emulsion étant caractérisée en ce que l'agent stabilisant (Di) à l'interface des deux phases de l'émulsion inverse interne (Ei) est en un matériau choisi parmi les polysaccharides (PSA) hydrosolubles ou hydrodispersables : - dont le degré moyen de polymérisation (DP) est d'au moins 1,5 de préférence d'au moins 20, tout particulièrement d'au moins 100 - dont la viscosité Brookfield à 25°C en solution à 1% en masse dans l'eau est inférieure à 20 000 mPa.s., de préférence inférieure à 5000 mPa.s., tout particulièrement allant de 1 à 4500 mPa.s., lesdits polysaccharides (PSA) étant en outre exempts de groupes substituants polyorganosiloxanes lipophiles.
2) Emulsion selon la revendication 1), caractérisée en ce que la phase hydrophobe (O) est en au moins un matériau organique ou organosilicique ou en un mélange d'au moins un matériau organique et d'au moins un matériau organosilicique, liquide ou fusible insoluble dans une phase aqueuse. 3) Emulsion selon la revendication 1) ou 2), caractérisée en ce que la matière active (A) est en au moins un matériau organique ou organosilicique, en un mélange d'au moins un matériau organique et d'au moins un matériau organosilicique, liquide ou fusible insoluble dans une phase aqueuse, en au moins un matériau inorganique solide ou liquide insoluble dans une phase aqueuse ou en un mélange d'au moins un desdits matériaux inorganiques et d'au moins un desdits matériaux organiques et/ou d'au moins un desdits matériaux organosiliciques. 4) Emulsion selon l'une quelconque des revendications 1) à 3), caractérisée en ce que ladite phase hydrophobe (O) et/ou ladite matière active (A) est une huile, une cire ou une résine en un polyorganosiloxane linéaire, cyclique, ramifié ou réticulé. 5) Emulsion selon la revendication 4), caractérisée en ce que ledit polyorganosiloxane est un polyorganosiloxane non-ionique ou aminé.
6) Emulsion selon l'une quelconque des revendications 1) à 3), caractérisée en ce que ladite phase hydrophobe (O) et/ou ladite matière active (A) est en un matériau organique choisi parmi
• les mono-, di- ou triglycérides d'acide carboxyliques en Cι-C30 ou leurs mélanges, notamment les huiles végétales
• les huiles techniques, notamment les huiles de lin cuites, soufflées ou standolisées • les sucroesters, les sucroglycérides
• les alcoolesters en C-ι-C3o d'acides carboxyliques en C-ι-C3o ou dicarboxyliques en C2-C3o,
• les éthylène ou propylène glycol monoesters ou diesters d'acides carboxyliques en Cι-C30 • les propylèneglycols d'alkyléther en C4-C2o
• les di C8-C3o alkyléthers
• les huiles minérales, notamment les huiles naphténiques, paraffiniques, les polybutènes
• les cires organiques comprenant des chaînes alkyles contenant de 4 à 40 atomes de carbone, notamment les cires animales, les cires végétales, les cires minérales, les cires hydrocarbonées comprenant de 4 à 35 atomes de carbone, les cires synthétiques. 7) Emulsion selon l'une quelconque des revendications 1) à 3), caractérisée en ce que la matière active (A) est contenue dans la phase hydrophobe (O), et est en une ou des molécules parfumantes, un agent anti- UV organique ou organosilicique, un agent bactéricide hydrophobe, des capsules solides en polyamide, des particules de silice ou autre oxyde ou composé inorganique.
8) Emulsion selon l'une quelconque des revendications 1) à 7), caractérisée en ce que ledit polysaccharide (PSA) ou son squelette est un homopolysaccharide ou un hétéropolysaccharide linéaire ou ramifié, non- ionique ou ionique, comprenant des unités glycosyles semblables ou différentes jointes par des liaisons β(1-4), et éventuellement des liaisons autres, notamment β(1-3) et/ou β(1-6) . 9) Emulsion selon la revendication 8), caractérisée en ce que les fonctions hydroxyles des unités glycosyles sont substituées et/ou modifiées par des groupes non-ioniques ou ioniques autres que des groupes polyorganosiloxanes lipophiles. 10) Emulsion selon la revendication 8) ou 9), caractérisée en ce que ledit polysaccharide (PSA) est choisi parmi :
• les galactomannanes, de préférence gomme guar, dépolymérisés, éventuellement modifiés ou substitués par des groupes non-ioniques, de préférence hydroxypropyle, anioniques, de préférence carboxyméthyle, cationiques, de préférence hydroxypropyltriméthylammonium chlorure ;
• les monoacétates de cellulose, présentant un degré de substitution de 0,3 à moins de 1 ,2, de préférence de 0,3 à 1 ,
• les celluloses hydroxypropylées présentant un taux de modification de l'ordre de 0,2 à 1,5 • les carboxyméthylcelluloses présentant un degré de substitution de 0,05 à 1 ,2 , de préférence de 0,05 à 1 ,
• les dextrines contenant éventuellement des groupes hydroxyéthyl, hydroxypropyl ou aminoalkyl quaternisés
• les xyloglycanes comme la gomme tamarind • les arabinoxylanes
• les alkylpolyglycosides 11) Emulsion selon l'une quelconque des revendications 1) à 10), caractérisée en ce que le rapport massique de la phase aqueuse dispersée (Wi) à la phase hydrophobe (O) va de 5/95 à 95/5, de préférence de 30/70 à 80/20.
12) Emulsion selon l'une quelconque des revendications 1) à 11), caractérisée en ce que le rapport de la masse de stabilisant (Di) à la masse de phase hydrophobe (O) va de 0,1/100 à 500/100, de préférence de 0,5/100 à 100/100, tout particulièrement de 0,5/100 à 50/100.
13) Emulsion selon l'une quelconque des revendications 1) à 12), caractérisée en ce que ledit agent dispersant et/ou stabilisant (De) est choisi parmi les agents tensioactifs hydrophiles et/ou les polymères hydrophiles et/ou les polymères amphiphiles hydrophiles.
14) Emulsion selon la revendication 13), caractérisée en ce que ledit agent dispersant et/ou stabilisant (De) est formé (a) d'au moins un agent tensioactif hydrophile non-ionique (b) d'au moins un agent tensioactif hydrophile anionique (c) d'au moins un agent tensioactif hydrophile cationique (d) d'au moins un polymère hydrophile non-ionique (e) d'au moins un polymère amphiphile hydrophile non-ionique (f) d'au moins un polymère hydrophile anionique (g) d'au moins un polymère amphiphile hydrophile anionique (h) d'au moins un polymère hydrophile cationique (i) d'au moins un polymère amphiphile hydrophile cationique G) ou d'un mélange de deux au moins desdits agents tensioactifs et/ou polymères (a) à (d) ci-dessus compatibles. 15) Emulsion selon la revendication 13) ou 14), caractérisée en ce que la teneur totale en agents tensioactif(s) et/ou polymère(s) (De) présent(s) dans la phase externe (We) est comprise entre 0,01 et 50% en poids, de préférence entre 0,1 et 10%, plus particulièrement entre 0,5 et 5% en poids, par rapport à l'émulsion inverse (Ei).
16) Emulsion selon l'une quelconque des revendications 13) à 15), caractérisée en ce que ledit polymère hydrophile (De) est en au moins un ou comprend au moins un polysaccharide (PSA) hydrosoluble ou hydrodispersable (Di).
17) Emulsion selon l'une quelconque des revendications 1) à 16), caractérisée en ce que le rapport massique emulsion inverse interne
(Ei)/phase externe (We) comprenant l'agent dispersant et/ou stabilisant (De) va de 50/50 à 99/1 , de préférence de 70/30 à 98/2, tout particulièrement de
70/30 à 80/20. 18) Emulsion selon l'une quelconque des revendications 1) à 17), caractérisée en ce que le rapport masse, exprimée en sec, d'agent dispersant et/ou stabilisant (De) / masse de l'émulsion inverse interne (Ei), va de 0,01/100 à 50/100, de préférence de 0,1/100 à 10/100, tout particulièrement de 0,5/100 à 5/100.
19) Emulsion selon l'une quelconque des revendications 1) à 18), caractérisée en ce que la concentration de la phase externe (We) en agent dispersant et/ou stabilisant (De) va de 1 à 50%. 20) Emulsion selon l'une quelconque des revendications 1) à 19), caractérisée en ce que la phase externe (We) est une phase aqueuse.
21) Emulsion selon l'une quelconque des revendications 1) à 19), caractérisée en ce que la phase externe (We) est une phase alcoolique ou hydroalcoolique, de préférence de l'isopropanol ou de l'éthanol.
22) Emulsion selon l'une quelconque des revendications 1) à 20), caractérisée en ce que la matière active (A) contenue dans ou constituant la phase hydrophobe (O) est choisie parmi les agents de soin ou de détergence des articles en fibres textiles, et en ce que la phase externe (We) est une formulation détergente liquide aqueuse renfermant l'agent dispersant et/ou stabilisant (De) formé d'un mélange d'au moins un agent tensioactif hydrophile non-ionique et d'au moins un agent tensioactif hydrophile anionique, éventuellement associé à au moins un polymère (amphiphile) hydrophile non ionique.
23) Emulsion selon l'une quelconque des revendications 1) à 19) et 21), caractérisée en ce que la matière active (A) contenue dans ou constituant la phase hydrophobe (O) est choisie parmi les agents de soin ou de détergence des articles en fibres textiles, et en ce que la phase externe (We) est une formulation détergente liquide non aqueuse miscible avec l'eau, renfermant l'agent dispersant et/ou stabilisant (De) formé d'un mélange d'au moins un agent tensioactif hydrophile non-ionique et d'au moins un agent tensioactif hydrophile anionique, éventuellement associé à au moins un polymère (amphiphile) hydrophile non ionique.
24) Emulsion selon l'une quelconque des revendications 1) à 20), caractérisée en ce que la matière active (A) contenue dans ou constituant la phase hydrophobe (O) est choisie parmi les agents de soin des articles en fibres textiles, et en ce que la phase externe (We) est une formulation rinçante liquide aqueuse, renfermant l'agent dispersant et/ou stabilisant (De) formé d'au moins un agent tensioactif hydrophile cationique et/ou d'au moins un polymère (amphiphile) hydrophile cationique, éventuellement en mélange avec au moins un agent tensioactif hydrophile non ionique et/ou au moins un polymère (amphiphile) hydrophile non ionique.
25) Emulsion selon l'une quelconque des revendications 1) à 20), caractérisée en ce que la matière active (A) contenue dans ou constituant la phase hydrophobe (O) est choisie parmi les agents du domaine des peintures, et en ce que la phase externe (We) est une peinture aqueuse.
26) Emulsion selon l'une quelconque des revendications 1) à 20), caractérisée en ce que la matière active (A) contenue dans ou constituant la phase hydrophobe (O) est choisie parmi les agents du domaine cosmétique ou de soin corporel, et en ce que la phase externe (We) est une composition cosmétique aqueuse. 27) Emulsion selon l'une quelconque des revendications 1) à 16), caractérisée en ce qu'elle se présente sous forme (Es) et en ce que la matrice (M) solide est en matériaux choisi parmi - les polyéthylène glycols ayant une masse moléculaire comprise entre 2 000 et 100 000 g/mole - les copolymères d'acide ou anhydride carboxylique éthyléniquement insaturé et de monomère non-ionique éthyléniquement insaturé - les polypeptides d'origine naturelle ou synthétique hydrosolubles ou hydrodispersables - les polyélectrolytes sous forme acide, appartenant à la famille des polyacides faibles, ayant une masse moléculaire inférieure à 20 000 g/mole, de préférence comprise entre 1 000 et 5000 g/mole - les polyvinylpyrrolidones ayant une masse moléculaire inférieure à 20 000 g/mole, de préférence comprise entre 1 000 et 10 000 g/mole - les alcools polyvinyliques ayant une masse moléculaire inférieure à 100 000 g/mole, et présentant de préférence un taux de désacétylation de 80 à 99% molaire, de préférence de 87 à 95% molaire - les polymères ampholytes filmogènes hydrosolubles ou hydrodispersables - les oses, osides ou polyholosides hydrosolubles ou hydrodispersables - les acides aminés ou sels hydrosolubles ou hydrodispersables d'acides aminés - l'acide citrique - les acides gras - l'urée - les agents tensioactifs dont le diagramme de phases binaire eau- tensioactif, comporte une phase isotrope fluide à 25°C jusqu'à une concentration d'au moins 50% en poids de tensio-actif, suivie d'une phase cristal liquide rigide de type hexagonale ou cubique à des concentrations supérieures, stable au moins jusqu'à 60°C - les sels hydrosolubles ou hydrodispersables de métaux alcalins, comme les silicates, carbonates, phosphates, sulfates, phosphonates, acétates, citrates, les sels d'acides gras saturés ou insaturés de métaux alcalins, les mélanges d'acétate de sodium et d'acide citrique - ou leurs mélanges.
28) Utilisation de l'émulsion (E) faisant l'objet de l'une quelconque des revendications 1) à 27), pour véhiculer , en milieu aqueux (B) en contact avec un substrat (S), la phase hydrophobe (O) contenant et/ou constituée d'au moins une matière active hydrophobe (A), vers ledit substrat (S).
29) Utilisation selon la revendication 28), caractérisée en ce que ledit substrat (S) est en un matériau quelconque, notamment en un métal ou tout matériau naturel, artificiel ou synthétique, ou en un mélange de ces matériaux.
30) Utilisation selon la revendication 28) ou 29), dans les peintures pour véhiculer un agent hydrophobant sur une surface en un matériau de construction, plâtre, ciment, ou bois, avec libération de l'agent hydrophobant par dépôt et séchage de la peinture sur la surface.
31) Utilisation selon la revendication 28) ou 29), dans les compositions cosmétiques pour véhiculer une matière active hydrophobe cosmétique ou de de soin corporel ou capillaire, avec libération de l'agent hydrophobe par dépôt ou application et séchage sur la peau ou les cheveux.
32) Utilisation selon la revendication 28) ou 29) dans les formulations pour le traitement des métaux.
33) Utilisation selon la revendication 28) ou 29), pour la préparation ou le post-traitement d'une surface en un matériau tissé ou non-tissé d'origine cellulosique et/ou synthétique, pour l'hygiène corporelle ou le nettoyage de la maison, destinée à être mise en contact avec la peau.
34) Utilisation selon la revendication 28) ou 29), pour la préparation ou le post-traitement de cartons ou emballages en carton 35) Utilisation selon la revendication 28) ou 29), pour véhiculer, en milieu aqueux (B) mis en contact avec un substrat (S), la phase hydrophobe (O) contenant et/ou constituée d'au moins une matière active hydrophobe (A), vers ledit substrat (S), le volume dudit milieu aqueux étant suffisant pour provoquer la déstabilisation et/ou la rupture de l'émulsion (E) par dilution de ladite emulsion (E) et/ou séchage subséquent à la dilution de ladite emulsion (E), et la mise à disposition et/ou libération de la matière active (A) contenue ou constituante de la phase hydrophobe (O), sur le substrat (S).
36) Utilisation selon la revendication 35), caractérisée en ce que l'émulsion multiple (Em) comprend au moins 70% en poids d'émulsion interne
(Ei).
37) Utilisation selon la revendication 35) ou 36), caractérisée en ce que les quantités relatives d'émulsion (Em) et de milieu aqueux (B) sont équivalentes à une dilution de 2 à 100 fois le volume de ladite emulsion (Em). 38) Utilisation selon l'une quelconque des revendications 35) à 37), pour véhiculer et déposer une matière active hydrophobe sur une surface en hydroxyapatite, une surface kératinique ou une surface textile. 39) Utilisation selon la revendication 38), dans une formulation pour l'hygiène dentaire ou buccale, destinée à être rincée ou diluée.
40) Utilisation selon la revendication 38, dans une formulation cosmétique pour le soin des cheveux et/ou de la peau, destinée à être rincée ou diluée.
41) Utilisation selon l'une quelconque des revendications 35) à 38), caractérisée en ce que la phase hydrophobe (O) et/ou la matière active (A) est choisie parmi les agents de soin ou de détergence des articles en fibres textiles.
42) Utilisation de l'émulsion (E) selon la revendication 38) ou 41), comme additif dans une composition détergente pour le lavage ou le rinçage des articles en fibres textiles, ou comme composition détergente ou rinçante pour le lavage ou le rinçage des articles en fibres textiles, dans le but de véhiculer un agent de soin hydrophobe et/ou toute matière active hydrophobe autre utile, et de favoriser le dépôt de celui-ci et/ou de celle-ci sur un article en fibres textiles, en coton notamment, lors de l'opération de rinçage et/ou lors de l'opération de séchage subséquente(s) à l'opération de lavage principal lorsqu'il s'agit d'une composition détergente pour le lavage, ou lors de l'opération subséquente de séchage lorsqu'il s'agit d'une composition de rinçage.
43) Procédé pour véhiculer, vers un substrat (S) en contact avec un milieu aqueux (B), au moins une matière active (A) contenue dans ou constituante d'une phase hydrophobe (O) liquide ou fusible de l'émulsion (E) faisant l'objet de l'une quelconque des revendications 1) à 27), par mise en présence de ladite emulsion (E) avec le substrat (S) en contact avec le milieu aqueux (B).
44) Procédé selon la revendication 43), caractérisé en ce que le volume dudit milieu aqueux (B) est suffisant pour provoquer la déstabilisation et/ou la rupture de l'émulsion (E) par dilution de ladite emulsion (E) et/ou séchage subséquent à la dilution de ladite emulsion (E), et la mise à disposition et/ou libération de la matière active (A) contenue ou constituante de la phase hydrophobe (O), sur le substrat (S). 45) Procédé selon la revendication 44), caractérisé en ce que l'émulsion
(E) est une emulsion multiple (Em) comprenant au moins 70% en poids d'émulsion interne (Ei).
EP04805319A 2003-11-13 2004-10-27 Emulsion pour vehiculer une matiere active hydrophobe vers un substrat en milieu aqueux Ceased EP1684894A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0313284A FR2862234B1 (fr) 2003-11-13 2003-11-13 Emulsion pour vehiculer une matiere active hydrophobe vers un substrat en milieu aqueux
FR0400665A FR2862235B1 (fr) 2003-11-13 2004-01-23 Emulsion pour vehiculer une matiere active hydrophobe vers un substrat en milieu aqueux
PCT/FR2004/002762 WO2005049189A1 (fr) 2003-11-13 2004-10-27 Emulsion pour vehiculer une matiere active hydrophobe vers un substrat en milieu aqueux

Publications (1)

Publication Number Publication Date
EP1684894A1 true EP1684894A1 (fr) 2006-08-02

Family

ID=34524997

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04805319A Ceased EP1684894A1 (fr) 2003-11-13 2004-10-27 Emulsion pour vehiculer une matiere active hydrophobe vers un substrat en milieu aqueux

Country Status (5)

Country Link
US (1) US20070128142A1 (fr)
EP (1) EP1684894A1 (fr)
JP (1) JP2007519506A (fr)
FR (1) FR2862235B1 (fr)
WO (1) WO2005049189A1 (fr)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2887448B1 (fr) * 2005-06-23 2009-04-17 Rhodia Chimie Sa Composition cosmetique comprenant un copolymere ampholyte
FR2887450B1 (fr) * 2005-06-23 2007-08-24 Rhodia Chimie Sa Ingredient concentre pour le traitement et/ou la modification de surfaces, et son utilisation dans des compositions cosmetiques
US7807766B2 (en) * 2005-09-21 2010-10-05 Cognis Ip Management Gmbh Polymers for use in cleaning compositions
DE102005047833A1 (de) * 2005-10-05 2007-04-19 Basf Ag Verfahren zur Herstellung von granulären oder pulverförmigen Waschmittelzusammensetzungen
US7951762B2 (en) * 2005-12-28 2011-05-31 Kao Corporation Skin or hair washing composition
JP4886505B2 (ja) 2006-12-28 2012-02-29 花王株式会社 洗浄剤用組成物
DE102007013141A1 (de) * 2007-03-15 2008-09-18 Cognis Ip Management Gmbh Amphotere Polymere als Soil Release Additive in Wasch- und Reinigungsmitteln
GB0818473D0 (en) 2008-10-08 2008-11-12 Probio Nutraceuticals As Composition
JP2011121871A (ja) * 2009-12-08 2011-06-23 Kao Corp 皮膚化粧料
ITVA20110009A1 (it) * 2011-03-25 2012-09-26 Lamberti Spa Composizione cosmetica per la pelle
FR2977801B1 (fr) * 2011-07-11 2013-08-16 Fabre Pierre Dermo Cosmetique Dispositif et procede pour la sterilisation a ultra-haute temperature d'une emulsion, notamment dermo-cosmetique, instable a la temperature de sterilisation
US9217094B2 (en) 2011-07-28 2015-12-22 The Board Of Trustees Of The University Of Illinois Superhydrophobic compositions
US9364859B2 (en) 2011-07-28 2016-06-14 Kimberly-Clark Worldwide, Inc. Superhydrophobic surfaces
CN104135999B (zh) 2012-02-28 2017-03-22 三得利控股株式会社 具有经时稳定性的w/o/w型乳液及其制造方法
AU2013235266B2 (en) 2012-03-20 2017-10-19 Particle Dynamics International, Llc Gelling agent-based dosage form
US9803100B2 (en) * 2013-04-30 2017-10-31 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic surfaces
US10005917B2 (en) 2013-04-30 2018-06-26 Kimberly-Clark Worldwide, Inc. Non-fluorinated water-based superhydrophobic compositions
US10653738B2 (en) * 2014-07-22 2020-05-19 Meridian Research and Development Inc. Topical medications for bruises and burns
WO2016138272A1 (fr) 2015-02-27 2016-09-01 Kimberly-Clark Worldwide, Inc. Compositions super-hydrophobes non-fluorées à base d'eau
CN110291182B (zh) * 2017-02-13 2022-04-26 联合利华知识产权控股有限公司 递送洗衣组合物的方法
WO2018145898A1 (fr) 2017-02-13 2018-08-16 Unilever Plc Additif pour composition de lessive
US20190376007A1 (en) * 2017-02-13 2019-12-12 Conopco, Inc., D/B/A Unilever Use of laundry serum
BR112019016823B1 (pt) 2017-02-13 2024-01-02 Unilever Ip Holdings B.V. Composição auxiliar para a lavagem de tecidos, método de lavagem de tecidos e uso da composição auxiliar para a lavagem de tecidos

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4565647B1 (en) * 1982-04-26 1994-04-05 Procter & Gamble Foaming surfactant compositions
FR2679563B1 (fr) * 1991-07-22 1995-06-09 Agro Ind Recherc Dev Alkylgalactosides uronates d'alkyle, leur procede de preparation et leurs applications, notamment comme agents tensio-actifs non ioniques.
JP2002510319A (ja) * 1997-07-01 2002-04-02 アイシス・ファーマシューティカルス・インコーポレーテッド オリゴヌクレオチドの消化管を介したデリバリーのための組成物及び方法
FR2767064B1 (fr) * 1997-08-07 1999-11-12 Centre Nat Rech Scient Procede de liberation d'un principe actif contenu dans une emulsion multiple
PL197805B1 (pl) * 1998-12-05 2008-04-30 Croda Int Plc Emulsja higieniczna albo kosmetyczna typu olej w wodzie, sposoby jej wytwarzania oraz sucha mieszanka preparatu stabilizującego emulsję
FR2798601B1 (fr) * 1999-09-20 2001-12-21 Centre Nat Rech Scient Emulsion double polydisperse, emulsion double monodisperse correspondante et procede de preparation de l'emulsion monodisperse
JP4478264B2 (ja) * 1999-11-29 2010-06-09 ライオン株式会社 W/o/w型複合エマルション
WO2001091703A2 (fr) * 2000-05-26 2001-12-06 Color Access, Inc. Emulsions multiples a emulsifiants faibles
JP2001354820A (ja) * 2000-06-14 2001-12-25 Shiseido Co Ltd 複合エマルジョン及びこれを配合した化粧料
FR2815550B1 (fr) * 2000-10-20 2003-08-29 Rhodia Chimie Sa Granules obtenus par sechage d'une emulsion multiple
FR2815637B1 (fr) * 2000-10-20 2006-08-04 Rhodia Chimie Sa Procede de preparation d'une emulsion dont la phase huileuse est de forte viscosite
KR100435921B1 (ko) * 2000-12-29 2004-06-12 주식회사 태평양 동수역학적 이중 안정화에 의한 안정한 수-유-수 다중에멀젼 시스템 및 이의 제조방법
JP4858664B2 (ja) * 2001-07-23 2012-01-18 ライオン株式会社 W/o/w型複合エマルション
WO2003020819A1 (fr) * 2001-08-31 2003-03-13 Unilever Plc Compositions pour le traitement du linge
FR2833184B1 (fr) * 2001-12-11 2004-01-23 Rhodia Chimie Sa Procede de preparation d'une emulsion multiple de type eau/huile/eau
FR2833186B1 (fr) * 2001-12-12 2004-01-23 Rhodia Chimie Sa Utilisation de copolymeres cationiques a blocs comme aide au depot d'emulsions simples ou multiples
DE60210737T2 (de) * 2002-01-04 2007-01-18 L'oreal S.A. Ein Silikon-Copolymer und entweder ein Polymer aus einem ethylenisch ungesättigten Monomer mit Sulfongruppen oder ein organisches Pulver enthaltende Zusammensetzung; deren Verwendungen, insbesondere in der Kosmetik
US7094842B2 (en) * 2002-01-04 2006-08-22 L'oreal Composition containing a silicone copolymer and an AMPS-like polymer and/or organic powder
EP1711163A2 (fr) * 2004-02-05 2006-10-18 Baxter International Inc. Dispersions preparees avec des agents autostabilisants

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005049189A1 *

Also Published As

Publication number Publication date
US20070128142A1 (en) 2007-06-07
JP2007519506A (ja) 2007-07-19
WO2005049189A1 (fr) 2005-06-02
FR2862235A1 (fr) 2005-05-20
FR2862235B1 (fr) 2007-12-28

Similar Documents

Publication Publication Date Title
EP1684894A1 (fr) Emulsion pour vehiculer une matiere active hydrophobe vers un substrat en milieu aqueux
EP1453597B1 (fr) Utilisation de copolymeres cationiques a blocs comme aide au depot d&#39;emulsions simples ou multiples
EP1345970B1 (fr) Utilisation de polysaccharide amphotere pour le soin des articles en fibres textiles
EP3177703A1 (fr) Utilisation dans des compositions détergentes de polymères obtenus par polymérisation en émulsion inverse basse concentration avec un faible taux de monomères neutralises
EP2069471A1 (fr) Système de distribution de détergents ou de nettoyants
FR2529907A1 (fr) Composition detergente non-ionique favorisant la separation des salissures, son procede de preparation et son application au lavage des matieres fibreuses synthetiques
FR2829693A1 (fr) Creme cosmetique moussante
FR3016288A1 (fr) Article de conditionnement comportant une enveloppe et une composition anhydre comprenant un agent oxydant
FR2913896A1 (fr) Nouvelles compositions a base de glycosides d&#39;alkyle, procede pour leur preparation et utilisation comme agent tensioactifs
JP2019206521A (ja) カルボキシメチル化セルロースナノファイバーを含む添加剤
FR2537596A1 (fr) Detergent liquide puissant assouplissant les textiles
LU85927A1 (fr) Composition detergente assouplissant les tissus,renforcee par un adjuvant de detergence et procede de lavage
WO2010069732A1 (fr) Améliorations apportées à des compositions de traitement de tissu
JP2021181466A (ja) マイクロカプセルを含む消費者製品組成物
WO2005003270A1 (fr) Emulsion inverse ou multiple eau/huile ou eau/huile/eau, comprenant une phase hydrophobe et un polysaccharide substitue hydrosoluble ou hydrodispersable
EP1257599A1 (fr) Utilisation de compositions a base de proteines, de polysaccharides et de derives d&#39;oxyde d&#39;ethylene comme surfactants
WO2005032497A2 (fr) Emulsions comprenant un polymere dendritique et utilisation d&#39;un polymere dendritique comme agent d&#39;emulsification
FR2575177A1 (fr) Detergent et composition detergente liquides assouplissant les tissus pour gros lavages contenant de la bentonite
FR3117027A1 (fr) Composition solide anhydre comprenant une association de tensioactifs anioniques de types sulfonate et carboxylate
FR3117024A1 (fr) Composition solide anhydre comprenant une association de tensioactifs anioniques particuliers et au moins un polysaccharide cationique
FR3117019A1 (fr) Composition solide anhydre comprenant une association de tensioactifs anioniques carboxylates et sulfonates, de tensioactifs cationiques et éventuellement de tensioactifs amphotères ou zwittérioniques
FR2581992A1 (fr) Polyamides antistatiques d&#39;acides trialkylacetiques et de polyamines, composition detergente les contenant et procedes pour laver et/ou traiter le linge les utilisant
EP1419231B1 (fr) Additif preformule pour composition de traitement des articles en fibres textiles et utilisation dudit additif comme agent de soin
FR2862234A1 (fr) Emulsion pour vehiculer une matiere active hydrophobe vers un substrat en milieu aqueux
JP7164918B1 (ja) 皮膚洗浄剤組成物

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060501

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070709

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20110423