EP1682751B1 - Procede pour regler l'angle de rotation et dispositif de dephasage pour mettre en oeuvre ce procede - Google Patents

Procede pour regler l'angle de rotation et dispositif de dephasage pour mettre en oeuvre ce procede Download PDF

Info

Publication number
EP1682751B1
EP1682751B1 EP04802686.8A EP04802686A EP1682751B1 EP 1682751 B1 EP1682751 B1 EP 1682751B1 EP 04802686 A EP04802686 A EP 04802686A EP 1682751 B1 EP1682751 B1 EP 1682751B1
Authority
EP
European Patent Office
Prior art keywords
angle
rotation
adjustment speed
current
calculating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP04802686.8A
Other languages
German (de)
English (en)
Other versions
EP1682751A2 (fr
Inventor
Uwe Finis
Kave Kianer
Marco Rohe
Markus Wilke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Schaeffler Engineering GmbH
Original Assignee
AFT Atlas Fahrzeugtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AFT Atlas Fahrzeugtechnik GmbH filed Critical AFT Atlas Fahrzeugtechnik GmbH
Publication of EP1682751A2 publication Critical patent/EP1682751A2/fr
Application granted granted Critical
Publication of EP1682751B1 publication Critical patent/EP1682751B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/20Valve-gear or valve arrangements actuated non-mechanically by electric means

Definitions

  • the invention relates to a method for controlling a relative angle of rotation between a camshaft and a crankshaft in an internal combustion engine by means of an electromechanical Phasenverstellvorraum.
  • the invention further relates to a Phasenverstellvortechnische for performing such a method.
  • Electromechanical Phasenverstellvoriquesen of the generic type are from the DE 100 38 354 A1 or the DE 102 22 475 A1 known. Such Phasenverstellvoriquesen serve to adjust the relative angle of rotation between a camshaft and the crankshaft of an internal combustion engine. By adjusting this angle of rotation, the opening times of the intake or exhaust valves can be selectively influenced, which has proven to be advantageous in the operation of internal combustion engines in terms of fuel consumption and pollutant emissions.
  • twist angle cascade control for such electromechanical Phasenverstellvorraumen known which uses the control element speed as a controlled variable in a subordinate control loop.
  • a disadvantage of such a twist angle cascade control is that the actuator speed deviates from the time changes of the rotation angle and thus the twist angle cascade control has a poor control behavior.
  • the invention has the object, a method for fast and accurate control of the relative angle of rotation between a camshaft and a crankshaft in an internal combustion engine by means of an electromechanical Phasenverstellvorraum indicate.
  • the essence of the invention consists in calculating the temporal change of the angle of rotation, hereinafter referred to as the adjustment speed, from at least one measurable variable, which is usually easily measurable, and this variable is used as the controlled variable.
  • the actual adjustment speed calculated from at least one measured variable is compared with a setpoint adjustment speed and the resulting adjustment speed control deviation is fed to an adjustment speed controller, which is subordinated to a torsion angle controller which predefines the desired adjustment speed. Due to the fact that the adjustment speed is calculated from at least one, usually easily measurable, measured variable, a complicated and expensive direct measurement is not required.
  • a calculation of the overlay speed according to claim 2 is easy to carry out, since the overlap speed results as half the speed of the crankshaft.
  • a calculation in an observer model according to claim 3 allows a very precise determination of the actual adjustment speed, since inaccuracies in the calculation of the actual adjustment speed are corrected in the observer model.
  • a desired current according to claim 4 allows the Unterlagerung a current regulator.
  • a power controller which is subordinate to the adjustment speed regulator according to claim 6 permits a delay-free and exact compensation of disturbances on the current of the actuator and thus on the drive torque of the actuator. Disturbances may arise, for example, due to the temperature dependence of resistors of the actuator.
  • a limitation of the target current according to claim 6 allows effective protection of the actuator against overload.
  • Another object of the invention is to provide a phase adjuster for performing a method for quickly and accurately controlling a relative angle of rotation between a camshaft and a crankshaft in an internal combustion engine.
  • phase adjustment device correspond to those which have been described above in connection with the method according to the invention for controlling a relative angle of rotation between a camshaft and a crankshaft.
  • a DC motor according to claim 8 allows easy design and adjustment of the controller.
  • Fig. 1 shows an internal combustion engine 1, which is constructed in a known manner.
  • the internal combustion engine 1 comprises a plurality of cylinders 2 arranged in series, in each of which a piston 3 is guided.
  • Each piston 3 is connected by means of a connecting rod 4 with a crankshaft 5, wherein the crankshaft 5 is rotatably mounted about a crankshaft rotation axis 6.
  • a crankshaft sensor 7 is arranged, which serves to measure a rotational angle ⁇ K and a rotational speed ⁇ K of the crankshaft 5.
  • a crankshaft 8 is arranged, which drives a camshaft 10 via a toothed belt 9.
  • Camshaft gear 10 is coupled to an electromechanical phaser 11 and a camshaft 12.
  • the phase adjuster 11 comprises a swash plate mechanism 13 and an actuator 14 in the form of a DC motor, wherein the swash plate mechanism 13 with the DC motor 14, the camshaft 10 and the camshaft 12 is connected such that a rotational angle ⁇ N of the camshaft 12 is adjustable.
  • the swash plate mechanism 13 is on the DE 100 38 354 A1 and the DE 102 22 475 A1 directed.
  • a camshaft sensor 17 is arranged, for measuring the rotational angle ⁇ N and the rotational speed ⁇ N of the camshaft 12 is used.
  • the phase adjuster 11 further comprises a control and control unit 18, which is connected to transmit measured data to the crankshaft sensor 7, the camshaft sensor 17, a first actuator sensor 19 and a second actuator sensor 20.
  • the first actuator sensor 19 is used to measure the angle of rotation ⁇ S and the speed ⁇ S of the DC motor 14 and the second actuator sensor 20 is used to measure the armature current I S of the DC motor 14.
  • the control unit 18 is not one shown power electronic circuit connected by means of which the DC motor 14 is actuated.
  • the camshaft 12 is rotated about a camshaft rotation axis 21 via the swash plate mechanism 13.
  • the adjustment speed ⁇ is defined as the temporal change of the relative displacement angle ⁇ with the dimension ° / sec.
  • the adjustment speed ⁇ is related to the crankshaft 5 and thus has the unit ° crankshaft / sec.
  • a rotational angle control deviation ⁇ between a desired rotational angle ⁇ SOLL to be set and a determined actual rotational angle ⁇ IST are calculated.
  • the angle of rotation control deviation ⁇ is then fed to a torsion angle controller 23, in which a desired adjustment speed ⁇ SOLL which is dependent on the torsion angle control deviation ⁇ is calculated.
  • the desired torsion angle ⁇ SOLL is predetermined by a higher-level engine control, not shown.
  • the actual angle of rotation ⁇ IST can be determined either by direct measurement, as from the DE 102 36 507 A1 is known, or from existing variables, such as the rotation angle ⁇ K of the crankshaft 5, the rotation angle ⁇ N of the camshaft 12 and the rotation angle ⁇ S of the DC motor 14 are calculated. Is the measurement or calculation of the actual angle of rotation ⁇ IS ideal, this corresponds to the relative angle of rotation ⁇ .
  • an adjustment speed control deviation ⁇ between the desired adjustment speed ⁇ SOLL and a calculated actual adjustment speed ⁇ IST is also calculated.
  • the adjustment speed control deviation ⁇ is fed to an adjustment speed controller 26, which is subordinate to the torsion angle controller 23 and in which an output quantity dependent on the adjustment speed control deviation ⁇ is calculated and output.
  • the output of the Verstell quitesregler 26 is a setpoint for the current driving voltage of the DC motor 14, which is set by an unillustrated power electronic circuit on the DC motor 14.
  • the direct current motor 14 adjusts the angle of rotation ⁇ via the swash plate transmission 13 until the setpoint rotation angle ⁇ SOLL to be set is reached and the torsion angle control deviation ⁇ becomes zero.
  • the torsion angle controller 23 is part of a first control loop for controlling the angle of rotation ⁇ and the Verstell effets controller 26 is part of a second control loop for controlling the adjustment speed ⁇ , wherein the second control loop is cascaded under the first control loop.
  • changes in the superimposition speed ⁇ Ü ie changes in the operating point of the internal combustion engine, which act as a disturbance variable for the control (see arrow in the swash plate transmission 13 in FIG Fig. 2
  • changes in the superimposition speed ⁇ Ü can be used for a change in operating point occurring simultaneously with an adjustment of the relative angle of rotation ⁇ to regulate the relative angle of rotation ⁇ quickly. This is possible because the superposition speed ⁇ Ü is included in the calculation of the actual adjustment speed ⁇ IST .
  • linear regulator structures are also possible for the torsion angle controller 23 and the adjustment speed controller 26, so that the design and parameterization of the controllers 23, 26 is easily possible.
  • the computational effort in the control and control unit 18 is kept low.
  • linear controller structures known linear methods for parameterizing the controllers 23, 26 can be used.
  • the subordinate control of the adjustment speed ⁇ allows a rapid settling of the control of the angle of rotation ⁇ with low overshoot and very good stationary control accuracy.
  • the number of parameters to be set, the controller 23, 26 manageable, so that the parameterization of the controller 23, 26 for an applicator illustrative and thus easy to carry out.
  • Fig. 3 a realized in the control and control unit 18 method for controlling the angle of rotation ⁇ described according to a second embodiment.
  • the essential difference from the first embodiment is that the output variable of the adjustment speed controller 26 and the speed ⁇ S of the DC motor 14 are supplied to a disturbance compensation 27, in which a self-induction voltage of the DC motor 14 which is dependent on the speed ⁇ S of the DC motor 14 is compensated.
  • the output of the Störlongednkompensation 27 is a function of the self-induction voltage compensated setpoint for the current-driving voltage of the DC motor 14, which is supplied to a power electronic circuit and adjusted by this to the DC motor 14.
  • the actual adjustment speed ⁇ IS is calculated in an observer model.
  • the phase adjustment device 11 is at least partially modeled, the modeled state variables of the phase adjustment device 11, in particular the actual adjustment speed ⁇ actual , being constantly corrected by matching the observer model 28 by means of the actual rotation angle ⁇ actual .
  • the comparison of the observer model 28 prevents the calculated actual adjustment speed ⁇ actual from drifting off from the real adjustment speed ⁇ as a result of the integrating system behavior.
  • the actual adjustment speed ⁇ IST can be calculated very accurately in the observer model 28.
  • Fig. 5 a realized in the control and control unit 18 method for controlling the angle of rotation ⁇ described according to a fourth embodiment.
  • the essential difference with respect to the preceding embodiments is that the output variable of the adjustment speed controller 26 is interpreted as a desired current I SOLL of the DC motor 14 and in a third calculation module 29 first a current control deviation ⁇ I between the desired current I SOLL and a measured actual current I IST of the DC motor 14 is calculated. Subsequently, in a subordinate to the Verstell Anthonys controller 26 current controller 30 is dependent on the current control deviation .DELTA.I control variable for adjusting the angle of rotation ⁇ calculated. The actual current I IST of the DC motor 14 is measured by means of the second actuator sensor 20.
  • the first and second control loop is subordinated to a third control loop.
  • a current limiting is further provided which serves to limit the desired current I SOLL to a maximum current value I MAX , whereby the armature current I S is limited.
  • the current limit is used to protect the DC motor 14 against overload.
  • the disturbance compensation 27 and the observer model 28 can be combined with the method for controlling the angle of rotation ⁇ according to the fourth embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Valve Device For Special Equipments (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Claims (8)

  1. Procédé pour régler un angle de rotation relatif (φ) entre un arbre à cames (12) et un vilebrequin (5) au moyen d'un dispositif de déphasage électromécanique (11), comprenant les étapes consistant à :
    - calculer un écart de réglage d'angle de rotation (Δφ) entre un angle de rotation théorique (φTHEORIQUE) et un angle de rotation réel (φREEL) déterminé dans un premier circuit de régulation,
    - calculer une vitesse de réglage théorique (ΩTHEORIQUE) dépendant de l'écart de réglage d'angle de rotation (Δφ) au moyen d'un régulateur d'angle de rotation (23),
    - calculer un écart de régulation de vitesse de réglage (ΔΩ) entre la vitesse de réglage théorique (ΩTHEORIQUE) et une vitesse de réglage réelle (ΩREEL) calculé à partir d'au moins une grandeur de mesure dans un deuxième circuit de régulation sous-jacent par rapport au premier circuit de régulation,
    - calculer une grandeur de sortie dépendant de l'écart de régulation de vitesse de réglage (ΔΩ) au moyen d'un régulateur de vitesse de réglage (26) sous-jacent par rapport au régulateur d'angle de rotation (23), et
    - régler l'angle de rotation (φ) en fonction des grandeurs calculées lors des étapes précédentes au moyen d'un organe de réglage (14) électromécanique, caractérisé en ce que la vitesse de réglage réelle (ΩREEL) est calculée au moins à partir d'une vitesse de rotation (ΩS) de l'organe de réglage (14) et d'une vitesse de rotation de superposition (ΔU) d'un arbre moteur ou d'un arbre couplé à celui-ci.
  2. Procédé selon la revendication 1, caractérisé en ce que la vitesse de rotation de superposition (ΩU) est calculée au moins à partir de la vitesse de rotation (ΩK) du vilebrequin (5).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que la vitesse de réglage réelle (ΩREEL) est calculé dans un modèle d'observation (28).
  4. Procédé selon l'une quelconque des revendications 1 à 3, caractérisé en ce que la grandeur de sortie du régulateur de vitesse de réglage (26) est un courant théorique (ITHEORIQUE) de l'organe de réglage (14).
  5. Procédé selon la revendication 4, caractérisé par les étapes consistant à :
    - calculer un écart de régulation de courant (ΔI) entre le courant théorique (ITHEORIQUE) et un courant réel (IREEL) mesuré de l'organe de réglage (14) dans un troisième circuit de régulation sous-jacent par rapport au deuxième circuit de régulation, et
    - calculer une grandeur de réglage dépendant de l'écart de régulation de courant (ΔI) au moyen d'un régulateur de courant (30) sous-jacent par rapport au régulateur de vitesse de réglage (26) avant le réglage de l'angle de rotation (φ).
  6. Procédé selon la revendication 4 ou 5, caractérisé en ce que le courant théorique (ITHEORIQUE) est limité à une valeur de courant maximale (IMAX).
  7. Dispositif de déphasage (11) pour la régulation d'un angle de rotation relatif (φ) entre un arbre à cames (12) et un vilebrequin (5), comprenant
    - un premier module de calcul (22), destiné à calculer un écart de régulation d'angle de rotation (Δφ) entre un angle de rotation théorique (φTHEORIQUE) à régler et un angle de rotation réel (φREEL) déterminé dans un premier organe de régulation,
    - un régulateur d'angle de rotation (23), destiné à calculer une vitesse de réglage théorique (ΩTHEORIQUE) dépendant de l'écart de régulation d'angle de rotation (Δφ),
    - un deuxième module de calcul (24), destiné à calculer un écart de régulation de vitesse de réglage (ΔΩ) entre la vitesse de réglage théorique (ΩTHEORIQUE) et une vitesse de réglage réelle (ΩREEL) calculée à partir d'au moins une grandeur de mesure dans un deuxième circuit de régulation sous-jacent par rapport au premier circuit de régulation,
    - un régulateur de vitesse de réglage (26) sous-jacent par rapport au régulateur d'angle de rotation (23), destiné à calculer une grandeur de sortie dépendant de l'écart de régulation de vitesse de réglage (ΔΩ),
    - un organe de réglage électromécanique (14), destiné à régler l'angle de rotation (φ), et
    - un troisième module de calcul (29), destiné à calculer un écart de régulation de courant (ΔI) entre un courant théorique (ITHEORIQUE) et un courant réel (IREEL) mesuré de l'organe de réglage (14) dans un troisième circuit de régulation sous-jacent par rapport au deuxième circuit de régulation, et
    - un régulateur de courant (30) sous-jacent par rapport au régulateur de vitesse de réglage (26), destiné à calculer une grandeur de réglage dépendant de l'écart de régulation de courant (ΔI) avant le réglage de l'angle de rotation (φ).
  8. Dispositif de déphasage selon la revendication 7, caractérisé en ce que l'organe de réglage (14) est un moteur à courant continu.
EP04802686.8A 2003-11-10 2004-11-05 Procede pour regler l'angle de rotation et dispositif de dephasage pour mettre en oeuvre ce procede Active EP1682751B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10352851A DE10352851A1 (de) 2003-11-10 2003-11-10 Verdrehwinkelregelung
PCT/DE2004/002467 WO2005047657A2 (fr) 2003-11-10 2004-11-05 Procede pour regler l'angle de rotation et dispositif de dephasage pour mettre en oeuvre ce procede

Publications (2)

Publication Number Publication Date
EP1682751A2 EP1682751A2 (fr) 2006-07-26
EP1682751B1 true EP1682751B1 (fr) 2017-05-17

Family

ID=34585014

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04802686.8A Active EP1682751B1 (fr) 2003-11-10 2004-11-05 Procede pour regler l'angle de rotation et dispositif de dephasage pour mettre en oeuvre ce procede

Country Status (5)

Country Link
US (1) US7380529B2 (fr)
EP (1) EP1682751B1 (fr)
JP (1) JP2007530846A (fr)
DE (2) DE10352851A1 (fr)
WO (1) WO2005047657A2 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015856A1 (de) * 2004-12-24 2006-07-13 Daimlerchrysler Ag Verfahren und Einrichtung zum Einstellen einer elektrodynamischen Bremse eines elektrischen Nockenwellenverstellers für eine Nockenwelle einer Brennkraftmaschine
DE102006003131B4 (de) * 2006-01-23 2009-03-05 Continental Automotive Gmbh Verfahren und Vorrichtung zum Steuern einer Brennkraftmaschine
US8567359B2 (en) 2010-08-06 2013-10-29 Ford Global Technologies, Llc Feed forward control for electric variable valve operation
DE102010053685B4 (de) * 2010-12-08 2014-10-30 Schwäbische Hüttenwerke Automotive GmbH Vorrichtung zur Verstellung der Drehwinkelposition einer Nockenwelle
US9341088B2 (en) 2011-03-29 2016-05-17 GM Global Technology Operations LLC Camshaft phaser control systems and methods
US9273738B2 (en) * 2014-05-30 2016-03-01 Goodrich Corporation Belt park brake and methods
DE102014213253B4 (de) 2014-07-08 2017-12-28 Schaeffler Technologies AG & Co. KG Verfahren zum Betrieb eines Nockenwellenverstellers und Regelvorrichtung für einen Nockenwellenversteller
DE102016222732A1 (de) * 2016-11-18 2018-05-24 Robert Bosch Gmbh Verfahren und Vorrichtung zum Durchführen einer Positionsregelung für eine Stellgebereinheit
CN111219223A (zh) * 2018-11-26 2020-06-02 博格华纳公司 电致动可变凸轮轴正时设备控制器
DE102019219451A1 (de) 2019-07-26 2021-01-28 Robert Bosch Gmbh Hydraulische Druckmittelversorgungsanordnung für eine mobile Arbeitsmaschine und Verfahren
EP3770428B1 (fr) * 2019-07-26 2023-04-19 Robert Bosch GmbH Agencement d'alimentation en milieu de pression hydraulique pour une machine de travail mobile et procédé

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2922501A1 (de) 1979-05-31 1980-12-04 Licentia Gmbh Verfahren und einrichtung zur lageregelung von drehzahl- oder ankerspannungsgeregelten gleichstromantrieben
GB2234314A (en) 1989-07-18 1991-01-30 Candy Mfg Co Inc Zero back lash phase adjusting mechanism
DE4122391A1 (de) * 1991-07-05 1993-01-07 Bosch Gmbh Robert Verfahren zum betrieb eines drehzahlregelbaren motors
US5218935A (en) * 1992-09-03 1993-06-15 Borg-Warner Automotive Transmission & Engine Components Corporation VCT system having closed loop control employing spool valve actuated by a stepper motor
JP3036394B2 (ja) * 1995-03-31 2000-04-24 トヨタ自動車株式会社 内燃機関のバルブタイミング制御装置
DE19600853A1 (de) 1996-01-12 1997-07-17 Schaeffler Waelzlager Kg Vorrichtung zum Verändern der Steuerzeiten einer Brennkraftmaschine
AU5420299A (en) 1999-08-05 2001-03-05 Trochocentric (International) Ag Adjusting device for adjusting the phase position of a shaft
DE10038354C2 (de) 2000-08-05 2003-03-20 Atlas Fahrzeugtechnik Gmbh Steuereinrichtung zum Verstellen des Drehwinkels einer Nockenwelle
JP4027589B2 (ja) * 2000-11-30 2007-12-26 株式会社日立製作所 電磁式可変バルブタイミング装置の制御装置
DE10220687A1 (de) 2002-05-10 2003-11-20 Ina Schaeffler Kg Nockenwellenversteller mit elektrischem Antrieb
DE10222475A1 (de) 2002-05-22 2003-12-04 Atlas Fahrzeugtechnik Gmbh Getriebe mit zwei ineinander angeordneten Drehscheiben, die durch eine Taumelscheibe miteinander verbunden sind
DE10248351A1 (de) * 2002-10-17 2004-04-29 Ina-Schaeffler Kg Elektrisch angetriebener Nockenwellenversteller
DE10259134A1 (de) * 2002-12-18 2004-07-15 Aft Atlas Fahrzeugtechnik Gmbh Vorrichtung zum Verstellen der Phasenlage zwischen Nockenwelle und Kurbelwelle
DE10332264A1 (de) 2003-07-16 2005-02-03 Aft Atlas Fahrzeugtechnik Gmbh Elektromechanischen Phasensteller und Verfahren zu dessen Betrieb
JP4269169B2 (ja) * 2004-08-31 2009-05-27 株式会社デンソー 内燃機関の回転状態検出装置

Also Published As

Publication number Publication date
EP1682751A2 (fr) 2006-07-26
US7380529B2 (en) 2008-06-03
DE10352851A1 (de) 2005-06-23
WO2005047657A2 (fr) 2005-05-26
US20070125331A1 (en) 2007-06-07
WO2005047657A3 (fr) 2009-03-12
DE112004002672D2 (de) 2006-11-16
JP2007530846A (ja) 2007-11-01

Similar Documents

Publication Publication Date Title
DE602005000270T2 (de) Regelungssystem
EP1682751B1 (fr) Procede pour regler l'angle de rotation et dispositif de dephasage pour mettre en oeuvre ce procede
DE102006002837B4 (de) Elektronische Drosselklappen-Steuerungsvorrichtung
DE3937102C2 (de) Vorrichtung zur elektronischen Steuerung der Drosselklappenöffnung
WO2004007919A1 (fr) Structure de regulation pour le servomoteur d'un dispositif de reglage d'arbre a came electrique
DE10065488B4 (de) Luftansaugmengensteuereinrichtung für Brennkraftmaschinen
EP1605140B1 (fr) Déphaseur d'arbre à cames
WO2016180890A1 (fr) Entraînement de positionnement ainsi que procédé de positionnement d'un élément de sortie
DE60302824T2 (de) Zweifache PWM-Regelung eines in der Mitte montierten Schieberventils zur Regelung eines Nockenwellenverstellers
EP2681430B1 (fr) Procédé et dispositif de mise en service d'un organe de réglage dans un système de moteur pour un véhicule automobile
DE19723639B4 (de) Automobilaktuatorschnittstelle
DE60301176T2 (de) Steuerungsverfahren zur Durchführung einer Nockenwellenverstellung nach einem Sollwert unter Verwendung einer Einschränkung der einzustellenden Winkeländerung
DE102006008051B3 (de) Adaptives Positionierverfahren eines Stellglieds
DE102016222732A1 (de) Verfahren und Vorrichtung zum Durchführen einer Positionsregelung für eine Stellgebereinheit
DE102015006491A1 (de) Verfahren zur Regelung eines elektrischen Stellantriebs
EP1573175A1 (fr) Systeme de reglage du rapport d'angle de rotation entre un arbre a cames et un vilebrequin
DE102018100905B3 (de) Verfahren zur Überwachung eines Hubkolbenmotors mit variablem Verdichtungsverhältnis
DE60301451T2 (de) Ausgleich für Phasenabweichung eines variablen Nockenwellephasenverstellers über einen Drehzahlbereich
EP0957239B1 (fr) Arrangement pour la commande d'un dispositif de variation de la levée d'une soupape de moteur à combustion interne pour la circulation des gaz d'admission ou d'échappement
DE10226988A1 (de) Verfahren zur Ermittlung eines Drehwinkels einer Welle aus dem Winkel-Signal dreier Single-Turn-Winkelsensoren
DE102010018850B4 (de) Verfahren und System zum Steuern eines Nockenphasenstellers
EP1325214B1 (fr) Procede de decalage simultane d'arbres a cames de differentes rangees de cylindres d'un moteur a combustion interne
DE102007060018B3 (de) Verfahren und Steuereinheit zur elektrischen Ansteuerung eines Aktors eines Einspritzventils
DE102021132950B3 (de) Verfahren zum Betreiben einer Antriebseinrichtung für ein Kraftfahrzeug sowie entsprechende Antriebseinrichtung
EP1573177B1 (fr) Dispositif pour regler la position de phase entre un arbre a cames et un vilebrequin

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060428

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

RIN1 Information on inventor provided before grant (corrected)

Inventor name: ROHE, MARCO

Inventor name: FINIS, UWE

Inventor name: WILKE, MARKUS

Inventor name: KIANER, KAVE

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

17Q First examination report despatched

Effective date: 20120419

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20170125

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015534

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015534

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170517

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180220

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20171105

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171105

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230522

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240119

Year of fee payment: 20