EP3770428B1 - Agencement d'alimentation en milieu de pression hydraulique pour une machine de travail mobile et procédé - Google Patents

Agencement d'alimentation en milieu de pression hydraulique pour une machine de travail mobile et procédé Download PDF

Info

Publication number
EP3770428B1
EP3770428B1 EP20186955.9A EP20186955A EP3770428B1 EP 3770428 B1 EP3770428 B1 EP 3770428B1 EP 20186955 A EP20186955 A EP 20186955A EP 3770428 B1 EP3770428 B1 EP 3770428B1
Authority
EP
European Patent Office
Prior art keywords
actual
pressure
control
medium supply
supply assembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20186955.9A
Other languages
German (de)
English (en)
Other versions
EP3770428A1 (fr
Inventor
Ximing Wang
Minha An
Michael Brand
Salih Tetik
Florian Muehlbauer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE102019219451.6A external-priority patent/DE102019219451A1/de
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP3770428A1 publication Critical patent/EP3770428A1/fr
Application granted granted Critical
Publication of EP3770428B1 publication Critical patent/EP3770428B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/002Hydraulic systems to change the pump delivery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/28Control of machines or pumps with stationary cylinders
    • F04B1/29Control of machines or pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block
    • F04B1/295Control of machines or pumps with stationary cylinders by varying the relative positions of a swash plate and a cylinder block by changing the inclination of the swash plate
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/26Control
    • F04B1/30Control of machines or pumps with rotary cylinder blocks
    • F04B1/32Control of machines or pumps with rotary cylinder blocks by varying the relative positions of a swash plate and a cylinder block
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity
    • F04B49/065Control using electricity and making use of computers

Definitions

  • the invention relates to a hydraulic pressure medium supply arrangement for an open hydraulic circuit, for example for mobile working machines, according to the preamble of claim 1.
  • a pressure and flow control system is known from the document RE 30630/04.13 from Rexroth. This is used for the electro-hydraulic control of a swivel angle, a pressure and an output of an axial piston variable displacement pump.
  • the control system has an axial piston variable displacement pump with an electrically controlled proportional valve. This can be used to control an actuating piston. This is used to adjust a swash plate of the variable displacement pump.
  • a displacement sensor is provided for the actuating piston, via which a pivoting angle of the swash plate can be determined on the basis of the displacement path of the actuating piston.
  • a swivel angle of the swash plate can also be picked up on the swivel axis using a Hall sensor.
  • the volume flow of the variable displacement pump can in turn be determined from the swivel angle of the swash plate.
  • the variable displacement pump is driven by a motor. If the variable displacement pump is not driven and the actuating system is depressurized, then the variable displacement pump pivots to a maximum delivery volume by the spring force of a spring. On the other hand, when the variable displacement pump is in the driven state and the pilot valve is de-energized and the pump outlet is closed, the variable displacement pump pivots to a zero stroke pressure.
  • a controller for the pilot valve has a target pressure, a target swivel angle and optionally a target power value as input variables.
  • An actual pressure on the outlet side of the variable displacement pump is detected by a pressure sensor.
  • an actual swivel angle is determined via the displacement pickup.
  • the recorded actual values are processed digitally in an electronic unit and compared with the specified target values.
  • a minimum value generator then ensures that only the controller assigned to the desired operating point is automatically active. An output signal from the minimum value generator is then a desired value for a proportional magnet on the pilot valve.
  • a displacement path of a valve spool of the pilot valve is detected by a displacement pickup and reported to the controller.
  • RE 30242/03.10 external control electronics for the described adjustment of the axial piston adjustment machine are disclosed.
  • electro-hydraulic control system is disclosed in the document RD 92 088/08.04 from Rexroth.
  • a pivotable hydraulic axial piston adjustment machine is provided, which is connected to another hydraulic machine via a drive shaft. Furthermore, a control circuit for a drive torque of the adjusting machine is provided. An actual drive torque and a setpoint drive torque are supplied to the control circuit, from which a manipulated variable for an actuating device of the adjusting machine is determined.
  • the setpoint drive torque is an output variable from a minimum value generator. This selects an output variable of a pressure control and a volume flow control.
  • the volume flow of the hydraulic machine connected to the adjustment machine is provided as the actual volume flow. Furthermore, a high pressure of this hydraulic machine is provided as the actual pressure.
  • EP 2 851 565 B1 , U.S. 4,801,247 , U.S. 5,182,908 , EP 034 9092 B1 , US5267441 , US5967756 and US5170625 each disclosed a hydraulic machine with a swivel angle sensor and a pressure sensor. The pressure, the volume flow and the power can be controlled.
  • the invention is based on the object of creating a hydraulic pressure medium supply arrangement that is simple and inexpensive in terms of device technology and yet reliably and dynamically regulates and/or limits essential control variables of an adjustable hydraulic machine and parameters. Furthermore, a simple method for the pressure medium supply arrangement should be provided.
  • a hydraulic pressure medium supply arrangement for an open hydraulic circuit, in particular for a mobile work machine.
  • the pressure medium supply arrangement can have a hydraulic machine and an adjustment mechanism.
  • the adjustment mechanism is preferably used to adjust a delivery volume of the hydraulic machine.
  • An actuating cylinder with an actuating piston is provided for this purpose.
  • the adjustment mechanism has an electrically proportionally controllable pilot valve. This can be used to control an inflow and/or an outflow in a control chamber of the actuating cylinder that is delimited by the actuating piston, in order to apply pressure medium to the actuating piston for actuation.
  • the pressure medium supply arrangement preferably has an electronic controller. More preferably, this has at least one setpoint outlet pressure of the hydraulic machine as an input variable.
  • a setpoint delivery volume of the hydraulic machine can be provided as an input variable for the controller. It is conceivable to define the target variable(s) or alternatively to design them to be adjustable, so that they can be adapted as needed during operation, for example.
  • a manipulated variable for the pilot valve is preferably provided as the output variable of the controller.
  • the controller can have a first control loop for an actual outlet pressure of the hydraulic machine. This is preferably tapped off between a high-pressure connection of the hydraulic machine and a main control valve for consumers. Alternatively or additionally, the first control loop can be provided for an actual delivery volume of the hydraulic machine.
  • the hydraulic machine is an axial piston machine with an adjustable swivel cradle or swash plate for setting a delivery volume
  • the actual delivery volume can be recorded using a suitable means, for example a swivel angle sensor, such as a displacement sensor for the actuating piston.
  • a swivel angle of the swash plate can also be picked up on the swivel axis using a Hall sensor.
  • a measuring device for detecting the displacement position or the displacement volume is provided. It would also be conceivable to determine the swivel angle via a torque of the drive shaft and a pressure measurement.
  • the first control loop is subordinate to a second control loop, which can be provided for a delivery volume adjustment speed.
  • An actual delivery volume adjustment speed, in particular as a derivation of the actual delivery volume, of the hydraulic machine is preferably provided as the input variable for the second control circuit. If the actual delivery volume adjustment speed is determined via the actual delivery volume, the recorded actual delivery volume can advantageously be used both for the first and for the second control circuit, which means that separate detection of the actual delivery volume adjustment speed is not necessary.
  • An output variable of the second control loop is preferably the manipulated variable for the pilot valve.
  • the second control loop a control value from the first Be supplied control circuit in the form of a delivery volume adjustment speed. The manipulated variable from the first control loop can then be a target value for the second control loop.
  • This solution has the advantage of creating an electronically controllable hydraulic machine for open circuit mobile applications which has a simple pump adjustment mechanism without hydromechanical feedback.
  • it is not necessary to detect a position of the actuating piston of the pilot valve, which means that corresponding means can be dispensed with, with the result that costs and the complexity of the device are reduced.
  • the pressure medium supply arrangement is therefore designed to be extremely simple and inexpensive.
  • the first control circuit preferably has the actual outlet pressure of the hydraulic machine and/or the actual delivery volume of the hydraulic machine as input variables.
  • the first control loop of the controller can also be designed for an actual torque of the hydraulic machine.
  • a target torque and an actual torque are then provided as input variables for the controller.
  • the first control loop of the controller is designed for an actual power including an actual speed of the hydraulic machine.
  • the actual power or the actual torque can be determined from the actual speed via a characteristic curve in order to then regulate the actual power.
  • a controller, in particular a P controller can be provided for controlling the actual torque.
  • the controller in particular a P controller, can be provided for controlling the actual torque.
  • the controller it is conceivable to design the controller as a PI controller or as a PID controller.
  • the first control loop has a manipulated variable for the actual output pressure of the hydraulic machine and/or for the actual delivery volume of the hydraulic machine and/or for the actual torque of the hydraulic machine.
  • the controller can then provide an overriding control that has a minimum value generator for the output manipulated variables of the first control loop.
  • An output variable of the minimum value generator is then preferably the control value in the form of the delivery volume adjustment speed, which is supplied to the second control loop.
  • the minimum value generator ensures that only the controller assigned to the desired operating point is automatically active. For example, the minimum value generator selects the smallest of the manipulated variables that are supplied and then feeds this to the subordinate second control circuit as the target delivery volume adjustment speed.
  • the first control loop preferably has a controller for the delivery volume or the swivel angle—from which the delivery volume can be determined—of the hydraulic machine.
  • This is preferably a P controller, for example.
  • this can be designed as a PI controller or as a PID controller.
  • the controller can have a target swivel angle and an actual swivel angle or a target delivery volume or actual delivery volume as an input variable.
  • a filter for example in the form of a PT1 element or a filter of a higher order, is preferably provided for the actual swivel angle.
  • the signal can be calmed down in a simple manner by the filter.
  • the first control circuit preferably has a regulator for the actual outlet pressure of the hydraulic machine.
  • the actual outlet pressure and the setpoint outlet pressure which are recorded in particular by a pressure sensor, are supplied to this as input variables.
  • a PID controller is preferably provided as the controller. Alternatively, a P controller or PI controller can be used.
  • the target outlet pressure of the hydraulic machine is preferably adjustable.
  • an actual load-sensing (LS) pressure of the consumers which are supplied with pressure medium via the pressure medium supply arrangement, is recorded in order to determine the desired output pressure.
  • the actual LS pressure is the highest actual load pressure of the consumers.
  • the actual LS pressure is preferably fed to the controller or regulator for the actual outlet pressure as an input variable.
  • the highest load pressure of the variable displacement pump is to be reported and the variable displacement pump is to be regulated in such a way that the actual outlet pressure in the pump line is a specific pressure difference (delta_p) above the highest actual load pressure.
  • the regulator for the actual outlet pressure is additionally supplied with a setpoint differential pressure as an input variable.
  • the target outlet pressure can then be calculated by adding the actual LS pressure and the target differential pressure and can be used by the controller as an input variable.
  • the setpoint differential pressure can either be parameterized as a fixed value or can be flexibly adjusted and specified as a parameter.
  • the hydraulic machine (pump) is advantageously set to a minimum quantity in addition to the LS pressure control, in order to also ensure steerability in the event of a pressure sensor error.
  • the LS pressure on the basis of which the hydraulic machine is regulated, can be regarded as the leading variable.
  • a minimum amount is set as a function of the steering request, so that steering ability is retained even if there is incorrect information regarding the LS pressure.
  • An I component can be provided in a controller for the actual outlet pressure and/or for the actual delivery volume and/or for the actual torque, such as in a PID controller, which is explained above. It can then be provided, particularly when using the minimum value generator, that the controller or controller(s) that are not active and have an I component freeze the I component or, in particular, partially or completely reset it. If the controller is then active, the I component is used in the usual way and the controller can react immediately. As a result, the I component of the controller(s) is/are not raised during inactivity. This embodiment can be referred to as "anti-windup", which means that the freezing and the reset of the I component are combined.
  • One or more filters with a pressure-dependent filter coefficient can advantageously be provided for the regulator of the actual outlet pressure.
  • the respective filter is, for example, a variable PT1 filter or a higher-order filter.
  • the filter or a respective filter is preferably provided for the actual outlet pressure and/or for the actual LS pressure.
  • the pressure-dependent filter is preferably designed in such a way that when the actual outlet pressure of the hydraulic machine increases, the filtering is reduced and, conversely, when the actual outlet pressure of the hydraulic machine decreases, the filtering is increased in order to influence the dynamics of the control.
  • one or more filters in particular with pressure-dependent filter coefficients, can be used for the other controllers listed above and below, in particular for one or more input variables.
  • an asymmetric filter for the controller of the actual outlet pressure and/or for one or more of the controllers listed above and below, in particular for the one or more input variable(s). This depends on the direction in which the swash plate is pivoted. This means that the filtering of the filter in the first pivoting direction is different compared to the filtering in the second pivoting direction.
  • an amplification factor in particular for the controller for the actual outlet pressure, is provided which depends on the actual temperature of the pressure medium Hydraulic machine, in particular the pressure medium on the output side, and/or the actual speed of the hydraulic machine and/or the actual outlet pressure of the hydraulic machine and/or a predetermined pressure gradient or setpoint pressure gradient, in particular for the setpoint outlet pressure of the hydraulic machine.
  • the amplification factor can thus be determined as a function of these variables.
  • the amplification factor can then be multiplied by the control deviation, for example in the controller, with the control deviation being, for example, the setpoint differential pressure minus the actual differential pressure and the actual differential pressure being equal to the actual LS pressure minus the actual outlet pressure.
  • the lower the actual temperature, the lower the amplification factor since this can prevent or at least reduce oscillations of the hydraulic machine, preferably in the cold state of the hydraulic machine.
  • the greater the actual temperature the greater the amplification factor.
  • the lower the actual speed of the hydraulic machine the greater the amplification factor, since the pressure build-up depends on the volume flow and thus on the speed of the hydraulic machine.
  • the reverse can also apply here that the greater the actual speed, the smaller the amplification factor.
  • the amplification factor can advantageously be in the form of a control parameter that is dependent on the operating point.
  • the following can apply for pressure control and/or for torque control and/or for swivel angle control: the greater the actual outlet pressure, the greater the amplification factor can be, or the amplification factor is increased up to a predetermined actual outlet pressure and then with a further increase Actual outlet pressure lowered again.
  • an amplification factor can also be provided in the controllers for the actual outlet pressure and/or for the actual torque, in particular for the actual variables.
  • a pressure-dependent adjustment of the control loop gains can be provided.
  • the control parameters can thus be adjusted during operation of the pressure medium supply arrangement.
  • the control dynamics and/or control stability are adjusted as needed during operation.
  • a target pressure gradient is provided for the regulator of the actual outlet pressure.
  • the setpoint pressure gradient can then have an influence on the setpoint outlet pressure, for example.
  • One influence is such, for example, that the higher the setpoint pressure gradient, the faster the hydraulic machine should swing out.
  • the higher the setpoint pressure gradient the faster the requirement grows than the actual gradient, which is why the hydraulic machine is pivoted faster in order to reach the setpoint pressure gradient. It is conceivable to use the setpoint pressure gradient as a limit for the setpoint outlet pressure or as a limit for the change in the setpoint outlet pressure.
  • the first control circuit preferably has a controller for the actual torque or the actual power based on the actual torque multiplied by the actual speed.
  • An actual speed can be provided as an input variable, which is picked up from a drive shaft, in particular via a speed sensor, of the hydraulic machine.
  • the actual torque or absorption torque of the hydraulic machine (pump) can then be calculated from the actual speed.
  • the actual torque is calculated from the actual swivel angle multiplied by the actual outlet pressure divided by the hydromechanical efficiency.
  • the hydromechanical efficiency is a function of the actual outlet pressure, the actual swivel angle and the actual speed and can be determined, for example, using a characteristic curve.
  • a setpoint torque can be specified for the controller.
  • the manipulated variable on the output side of the controller is preferably fed to the minimum value generator.
  • the characteristic curve for determining the actual torque is dependent on the actual pressure and/or the actual swivel angle, for example. In other words, an instantaneous power can be calculated with the controller, especially if the actual speed is included.
  • the actual variables for the first and second control circuits or part of the actual variables and one or more derivatives thereof are filtered in order to calm the signals.
  • a PT1 element or a variable PT1 element is used here, for example, as already explained above.
  • a delivery volume adjustment speed specification or a maximum delivery volume adjustment speed for the controller which is supplied to the second control loop, in particular downstream of the minimum value generator.
  • the delivery volume adjustment speed specification is fed to the controller via a control element.
  • This preferably has the control value from the first control loop as an input variable, ie the control value output by the minimum value generator.
  • the delivery volume adjustment speed specification can be provided as a further input variable be.
  • the final set delivery volume adjustment speed for the second control circuit can then be provided as the output variable of the control element.
  • the control value of the minimum value generator is limited via the additionally specified delivery volume adjustment speed specification, which can be adjusted, for example, in order to influence the control dynamics of the pressure medium supply arrangement.
  • the default delivery volume adjustment speed can be, for example, a positive or negative maximum of the delivery volume adjustment speed. The higher the final setpoint delivery volume adjustment speed, the faster the hydraulic machine can swing out.
  • the control dynamics of the pressure medium supply arrangement can be influenced in a simple manner with the adjustable setpoint pressure gradient explained above and/or the adjustable delivery volume adjustment speed specification.
  • the control force for the pilot valve can thus be dependent on the setpoint pressure gradient and/or on the delivery volume adjustment speed specification. These values can be variably adjusted during operation.
  • the control dynamics can thus be adjusted as required during operation and can be dependent on the operating point or working point, for example.
  • the pump dynamics can thus be limited and/or adjusted by the value(s).
  • the swivel angle of the hydraulic machine and/or the delivery volume adjustment speed can then be regulated in such a way that the setpoint value or values are not exceeded.
  • the dynamics of the pressure medium supply arrangement can be adjusted via software parameters with the adjustable variables (desired pressure gradient and/or the adjustable delivery volume adjustment speed specification), with which, for example, soft or hard machine behavior can be adjusted.
  • the dynamics can also be changed for sub-functions.
  • One sub-function can be matched to the target pressure gradient and the other sub-function to the delivery volume adjustment speed specification.
  • a reduction in vibrations is also made possible.
  • jerky movements can be avoided. It has been shown that the hydraulic pressure medium supply arrangement leads to an increase in efficiency, in particular due to less control oil consumption.
  • hydraulic pressure medium supply arrangement is easier integration compared to hydromechanical controllers, since, for example, connecting lines or hoses to the hydromechanical controller of the variable displacement pump are omitted.
  • pilot control and/or auto-calibration of a neutral current can be provided for an actuator of the pilot valve.
  • a pressure-dependent specification of a neutral signal value for the pilot valve can be present.
  • the neutral signal value is, for example, the full control value for the Pilot valve in which the displacement volume adjustment speed is zero.
  • the actual outlet pressure can be used for this.
  • a neutral current can then be determined from this, in particular via a characteristic diagram. This is then preferably fed to the manipulated variable of the controller, in particular by addition.
  • the controller can be relieved by the pilot control of the neutral current.
  • the neutral current can be auto-calibrated.
  • This may be necessary in order to keep the hydraulic machine in a stationary state as a function of an actual outlet pressure and/or a viscosity of the pressure medium and/or a spring variation and/or a magnetic variation of the pilot valve. In this way, it is possible to compensate for the hardware scatter via the auto-calibration of the neutral current.
  • a setpoint torque gradient is advantageously provided for the controller of the actual torque. This can be designed to be adaptable and adjustable, for example.
  • the setpoint torque gradient can have an influence on the setpoint torque, for example.
  • the setpoint torque gradient is preferably provided as a limit for the setpoint torque or for limiting the change in the setpoint torque. It is also conceivable to regulate the setpoint torque gradient as a specification.
  • a target torque can be formed based on the target torque gradient.
  • a provided filter or pre-filter can then set a target dynamic.
  • a superordinate machine control can be provided in addition to the control or pump control. This is, for example, the actual outlet pressure and/or the actual swivel angle and/or the actual torque and/or the actual delivery volume and/or the actual delivery volume adjustment speed and/or the gradient of the actual outlet pressure and/or the Maximum torque and / or the gradient of the torque change supplied.
  • a valve slide of the pilot valve is controlled in such a way that it executes an axial oscillating movement at times or continuously, in particular during operation of the pressure medium supply arrangement.
  • the oscillating movement preferably takes place in such a way that the current switching position of the valve slide is practically not influenced.
  • a pressure-dependent adjustment and optimization of the hysteresis-reducing measure (dither) takes place with the aim of optimizing the hysteresis of the pilot valve and not influencing the control dynamics through counter-compensation through the dither, especially if the controller output works in phase opposition or in phase with the dither.
  • a method is disclosed that is provided for controlling a displacement and/or a torque and/or a pressure of a hydrostatic machine.
  • a volume flow can be regulated into or out of the actuating device by means of a control valve for setting the stroke volume on the basis of a force difference between a control force and a force acting on the control valve in the opposite direction.
  • the force acting on the control valve in the opposite direction to the control force can be a spring force.
  • the control force may be an electric force of a solenoid valve.
  • the machine is adjusted as a function of the detected displacement and/or pressure and/or target displacement and/or target pressure and/or target torque.
  • the swept volume is preferably set in such a way that the smallest swept volume that leads to the achievement of one of the target values is always set.
  • the hydraulic machine is preferably de-energized at zero lift or at maximum lift, depending on the fail-operation application.
  • the volume flow of the hydraulic machine or variable displacement pump can be determined from the swivel angle of the swash plate. If the variable displacement pump is not driven and the actuating system is pressureless, then the variable displacement pump pivots to a maximum delivery volume, for example, by the spring force of a spring. On the other hand, when the variable displacement pump is in the driven state and the pilot valve is de-energized and the pump outlet is closed, the variable displacement pump pivots to a zero stroke pressure. A balance between the pump pressure on the positioning piston and the spring force of the spring plus the pump pressure on the counter-piston occurs at around 4 to 8 bar. The basic setting is usually adopted with the control electronics de-energized.
  • variable displacement pump when the pilot valve is de-energized, the variable displacement pump is pivoted to the maximum delivery volume in order to ensure that a consumer, such as a steering system, is supplied with pressure medium.
  • a pressure-limiting valve is then preferably provided in order to limit the actual outlet pressure of the hydraulic machine. This can be done, for example, in that the valve behavior of the pilot valve is inverted.
  • the actuating cylinder connection can be connected to the tank connection.
  • a hydraulic pressure medium supply arrangement 1 which has a hydraulic machine in the form of an axial piston machine 2 .
  • This has a pivoting cradle for adjusting a delivery volume.
  • the axial piston machine 2 can be used both as a pump and as a motor.
  • the axial piston machine 2 is driven via a drive unit 4, which can be, for example, an internal combustion engine, such as a diesel unit, or an electric motor.
  • the axial piston machine 2 is connected to the drive unit 4 via a drive shaft 6 .
  • a rotational speed 8 of the drive shaft 6 can be picked up via means that are not shown, for example via a rotational speed sensor, and can be fed to a controller of the pressure medium supply arrangement 1 .
  • An adjusting mechanism 12 is provided for the axial piston machine 2 .
  • This has a pilot valve 14. Its valve slide can be controlled electrically proportionally via an actuator 16.
  • a control variable 18 is supplied to the actuator 16 by a controller 20 .
  • the valve slide of the pilot valve 14 is acted upon by a spring force of a valve spring 22 in the direction of a basic position. The spring force acts against the actuator force of the actuator 16.
  • the axial piston machine 2 is connected on the output side to a pressure line 24, which in turn is connected to a main control valve 26 or valve block. This can be used to control the pressure medium supply between the axial piston machine 2 and one or more consumers.
  • a control line 28 branches off from the pressure line 24 and is connected to a pressure port P of the pilot valve 14 .
  • the control line 28 is formed in a housing of the axial piston machine 2, for example.
  • the pilot valve 14 has a tank connection T, which is connected to a tank via a tank line 30 .
  • the pilot valve 14 has a working connection A, which is connected to a control chamber 32 of an actuating cylinder 34 .
  • the control chamber 32 is delimited by an actuating piston 36 of the actuating cylinder.
  • a swash plate of the axial piston machine 2 can then be adjusted via the actuating piston 36 .
  • a displacement path of the actuating piston 36 is detected by a displacement sensor 38 .
  • a pivoting angle of the pivoting cradle of the axial piston machine 2 is picked up by a rotary, magnetic sensor from a pivoting axis of the pivoting cradle.
  • the actual delivery volume or the actual displacement volume of the axial piston machine 2 can then be determined via the recorded path.
  • the actual delivery volume 40 is then reported to the controller 20 .
  • the pressure port P is connected to the working port A and the tank port T is shut off.
  • valve slide When the valve slide is acted upon by the actuator force of the actuator 16, the valve slide is moved from its basic position in the direction of switch positions in which the pressure port P is blocked and the working port A is connected to the tank port T.
  • the actuating piston 36 is acted upon by pressure medium from the pressure line 24 .
  • a cylinder 42 is provided in the adjusting mechanism 12 .
  • This has an actuating piston 44 which acts on the swash plate of the axial piston machine 2 .
  • the actuating piston 44 delimits a control chamber 46 which is connected to the pressure line 24 .
  • the actuating piston 44 is acted upon by the pressure medium of the control chamber 46 and by the spring force of a spring 48 in such a way that it loads the swash plate in the direction of increasing the delivery volume.
  • a pressure sensor 50 is provided, via which the pressure in the pressure line 24 is tapped and reported to the controller 20 , the pressure being an actual outlet pressure 52 .
  • a pressure sensor 54 is also provided, which detects the highest actual load pressure (actual LS pressure) 56 which is transmitted to the controller 20 .
  • a controller 57 is connected to the controller 20 via a CAN interface 58 in order in particular to transmit the actual speed to the controller 20 . It is also conceivable to feed the actual speed 8 directly to the controller 20 .
  • the position of the swash plate of the axial piston machine 2 is controlled via the pilot valve 14 and the actuating piston 36 .
  • a volume flow delivered by the axial piston machine 2 is proportional to the position of the swash plate.
  • the adjusting piston 44 or counter-piston, which is pretensioned by the spring 48, is constantly subjected to the actual outlet pressure or pump pressure.
  • the swash plate is held in a +100 percent position by the spring 48 .
  • the second shows a schematic of how the controller 20 works. It has a first control circuit 60 and a second control circuit 62.
  • the first control circuit 60 has a controller 64 for a pivoting angle of the swash plate of the axial piston machine 2 1 , a regulator 66 for the outlet pressure of the axial piston machine 2 and a regulator 68 for a torque of the axial piston machine 2 .
  • the controller 64 has a setpoint delivery volume 70 and the actual delivery volume 40 as input variables.
  • a manipulated variable 72 is provided as the output variable.
  • the controller 66 has a setpoint outlet pressure 74 and the actual outlet pressure 52 as input variables.
  • a manipulated variable 75 is provided as the output variable.
  • the controller 68 has an actual torque 76 or a setpoint torque as input variables.
  • the actual torque is provided as a further input variable, which in turn can be determined, for example, using a characteristic diagram via the actual speed 8 .
  • a manipulated variable 78 is provided as the output variable for the controller 68 .
  • the input variables are each supplied to a control element in the form of a PID controller.
  • the manipulated variables 72, 75 and 78 are supplied to a minimum value generator 80. This ensures that only the controller 72, 75 or 78 is active. In this case, either the output pressure, the torque or the delivery volume is then precisely adjusted, with the other two variables being below a specified setpoint.
  • An output signal of the minimum value generator 80 is then a setpoint in the form of a delivery volume adjustment speed or setpoint delivery volume adjustment speed 82. This is then an input variable for the second subordinate control circuit 62.
  • Another input variable of the second control circuit 62 is the derivation of the actual delivery volume 40 , which is then an actual delivery volume adjustment speed 84 .
  • the input variables 82 and 84 for the second control circuit 62 are then fed to a control element in the form of a PID element 86 . This then outputs the manipulated variable 18 for the pilot valve 14 1 out of.
  • FIG 1 Another embodiment for the controller 20 is shown in FIG 1 shown.
  • This has a controller 88 for the delivery volume of the axial piston machine 2, see also 1 .
  • a controller 90 for the outlet pressure of the axial piston machine 2 and a controller 92 for the torque of the axial piston machine 2 are provided. This is part of a first control circuit 94.
  • a second control circuit 96 which is subordinate to the first control circuit, is provided for the delivery volume adjustment speed of the axial piston machine 2.
  • the controller 88 has a control element 98 in the form of a P element.
  • Target delivery volume 70 and actual delivery volume 40 are provided as input variables.
  • the actual delivery volume 40 is supplied with the control element 98 via a filter in the form of a PT1 filter.
  • the manipulated variable 72 is provided as an output variable on the output side of the controller 88 and is supplied to the minimum value generator 80 .
  • the controller 90 has the actual outlet pressure 52, the actual LS pressure 56, a setpoint pressure difference 100 and a setpoint pressure gradient 102 as input variables.
  • the actual LS pressure 56 and the setpoint pressure difference 100 are combined via a summing element 104 to form a setpoint outlet pressure.
  • the target outlet pressure is then fed to a control element 106 in the form of an inverted PT1 element, which estimates a probable signal course.
  • the target outlet pressure is then fed to a control element 108, which has the target pressure gradient 102 as a further input variable.
  • Target pressure gradient 102 specifies the maximum possible gradient that should be provided.
  • the target output pressure is then influenced by the specified target pressure gradient 102 via the control element 108 in such a way that the dynamics of the pressure medium supply arrangement 1 are adjusted with the target pressure gradient 102 1 is controllable.
  • the influence can be such that the higher the setpoint pressure gradient 102, the faster the swash plate of the axial piston machine 2 can be adjusted. Conversely, the smaller the setpoint pressure gradient, the slower the swash plate of the axial piston machine 2 is adjusted.
  • the control element 108 is then the Target output pressure supplied to a control element 110 in the form of a PID element. Actual outlet pressure 52 is then provided as a further input variable for control element 110 .
  • the output variable of the control element 110 is the manipulated variable 75 which is fed to the minimum value generator 80 .
  • the actual LS pressure 56 from the regulator 90 is fed before the summer 104 to a filter 112 which is a variable PT1 filter.
  • the filters 112 and 114 have variable, in particular pressure-dependent, filter coefficients, which is explained in more detail above.
  • the controller 92 has the actual speed 8, the actual delivery volume 40, the actual outlet pressure 52 and a target torque 116 as input variables.
  • the input variables are supplied to a control element 118 in the form of a P element.
  • the manipulated variable 78 which is fed to the minimum value generator 80 , is provided as the output variable for the control element 118 .
  • a control element 120 is provided for the manipulated variable 78, which, like the control element 106, is an inverted PT1 filter.
  • the actual speed, the actual delivery volume 40 and the actual outlet pressure 8 are fed to a control element 122 before being fed to the control element 118 . This is used to calculate an actual torque 124 based on the actual speed 8, the actual delivery volume 40 and the actual outlet pressure 8.
  • the calculation is carried out using a map of the control element 122.
  • the map is dependent on the actual outlet pressure 52 , which is supplied to the control element 122.
  • the control element 122 is supplied with the actual delivery volume 40 .
  • the characteristics map can then depend on the actual delivery volume 40 as an alternative or in addition.
  • actual torque 124 is formed from actual speed 8 and from actual outlet pressure 52 and/or from actual delivery volume 40 .
  • the actual torque 124 is then fed to a filter 126 in the form of a PT1 element before it reaches the control element 118 .
  • the actual delivery volume 40 is fed to a filter 99 in the form of a PT1 element before it is fed to the control element 98 .
  • the minimum value generator 80 uses the manipulated variables 72, 75 and 78 to form the desired delivery volume adjustment speed 82. This is fed to a control element 128. With this, the dynamics of the pressure medium supply arrangement 1 can be influenced.
  • a delivery volume adjustment speed specification 130 is provided as a further input variable for the control element 128, which is adjustable.
  • the setpoint delivery volume adjustment speed 82 output from the minimum value generator 80 can be limited and/or influenced in such a way that the higher the size 130 is, the faster the swash plate of the axial piston machine 2 can be pivoted and vice versa.
  • the dynamics of the pressure medium supply arrangement 1 can be influenced by adjusting the delivery volume adjustment speed specification 130 and/or by adjusting the target pressure gradient 102 .
  • this allows the pressure medium supply arrangement 1 to be adapted to different work machines and/or to different conditions of use and/or to different purposes in a simple and cost-effective manner.
  • the final target delivery volume adjustment speed 132 is fed to the second control loop 96 as an input variable.
  • This has a control element 134 in the form of a PI element.
  • Actual delivery volume adjustment speed 84 is provided as a further input variable for control element 134 . This is based on the actual delivery volume 40 which is derived in a control element 136 .
  • the derivation, ie the actual delivery volume adjustment speed, is then fed to a filter 138 in the form of a PT1 filter.
  • a control element 140 in the form of an inverted PT1 filter is then provided before the actual variable 84 is fed to the control element 134 .
  • the control element 134 of the second control loop 96 indicates the manipulated variable 18 for the pilot valve 14 as the output variable 1 on. This is fed to a summing element 142 .
  • a pre-control value 144 is provided as a further input variable for summing element 142 .
  • This is an output variable of a control element 150, which has the actual output pressure 52 as an input variable.
  • the pilot control value 144 is then determined on the basis of the actual outlet pressure 52 .
  • the summing element 142 then links the manipulated variable 18 and the pilot value 144, with which a neutral current of the pilot valve is pilot-controlled. A pressure-dependent specification of a neutral signal value for the pilot valve 14 thus takes place 1 . This has the advantage that the controller 20 is relieved of this control task.
  • a final manipulated variable 146 for the pilot valve 14 is then provided as the output variable of the summing element 142 .
  • the summing element 142 has an in 3 not shown control element is downstream, which has the manipulated variable 146 as an input variable.
  • a low-frequency signal is superimposed on this by the control element, so that the valve slide of the pilot valve 14 is constantly in axial oscillating movement, in order to prevent the valve slide from getting stuck.
  • the final manipulated variable for the pilot valve 14 is then provided as the output variable of the control element.
  • the superimposition of the low-frequency signal can be referred to as "dithering".
  • the purpose of the dither is to reduce the hysteresis of the pilot valve 14 by maintaining a small movement of the valve spool. This movement must not be too large in order to avoid effects on the system (e.g.
  • pilot valve 14 vibrates too violently so that the swivel angle or pressure also sees this vibration).
  • the dither (frequency and amplitude) is optimized in such a way that the hysteresis is minimal and the system is not is stimulated.
  • a low frequency leads to a long period of the superimposed "sine signal". This creates the problem that this period can run in the opposite direction to the desired signal. You get a delayed reaction if the superimposed dither runs in the opposite direction to the target signal, which can be disadvantageous in pump control.
  • FIG. 4 shows a working-point-dependent control parameter for controller 20.
  • This is, for example, an amplification factor Kp of controller 90 for the output pressure of axial piston machine 2.
  • Amplification factor Kp is supplied to controller 20 via control element 110, for example.
  • the amplification factor Kp can be calculated via a control element 152 as a function of a temperature 154 of a pressure medium of the pressure medium supply arrangement 1. The temperature is picked up, for example, via a sensor from the pressure medium in the pressure line 24 .
  • the amplification factor Kp is then determined, for example, using a characteristic diagram. Alternatively or additionally, the amplification factor can depend on the actual speed 8 via a control element 156 .
  • the amplification factor Kp is also determined using a characteristic diagram.
  • a control element 158 is provided, via which the amplification factor Kp can be determined via the actual outlet pressure 52, it also being possible for this to take place via a characteristic diagram.
  • the amplification factor Kp can be determined via a control element 160 based on the target pressure gradient 102 .
  • the setpoint pressure gradient 102 can be derived from the setpoint outlet pressure 74 via a control element 162 . If the amplification factor Kp is determined via a number of control elements 152, 156, 158, 160, it can be linked via a respective output-side control element 164 and then finally output as the output variable of the control element 164.
  • the amplification factor Kp can be determined via the actual outlet pressure 52 using the control elements 152, 156, 158, 160 shown.
  • a control element 166 is provided for this purpose, in which the amplification factor Kp is then determined based on the actual outlet pressure 52 via a characteristic diagram. In this case, the greater the actual outlet pressure, the greater the gain factor Kp.
  • the amplification factor Kp can also be used for the controller 88 and/or 92 as an alternative or in addition to the controller 90 .
  • the transit times of at least one signal or a part of the signals or all signals of the control loops 94 and 96 be adjusted over time 3 is provided, wherein in particular a phase position of the signal or signals is adjustable. This can be done via the control element 106 and/or 120, for example.
  • pilot control value 144 can be determined, preferably on a model basis, taking into account flow forces in pilot valve 14 and/or a magnet characteristic of actuator 16 and/or a control edge characteristic of the valve slide of pilot valve 14 and/or a spring stiffness of valve spring 22.
  • a crawler excavator is shown according to Figure 6b a pressure medium supply arrangement, see 1 , having.
  • This has the axial piston machine 2, which is driven by the drive unit 4 in the form of a diesel engine.
  • the pressure medium supply to hydraulic cylinders 168 and 170, to hydraulic machines 172, 174 for moving the crawler excavator and to a hydraulic auxiliary drive 176 is controlled via the main control valve 26.
  • the crawler excavator has various input means 178 for an operator, which are connected to a CAN bus 180 .
  • pressure sensors 182 , 184 are connected to the CAN bus 180 . These pick up the actual outlet pressure of the axial piston machine 2 .
  • a safety valve is provided on the input side of each of the hydraulic cylinders 168, 170, which protect the hydraulic cylinders 168, 170 in the event of a rupture of an inlet line.
  • required input variables are detected and, in particular, pilot valve 14 is controlled via controller 20 .
  • the main control valve 26 is controlled as a function of the signals from the input means 178 detected via the CAN bus 180 .
  • FIG. 7a shows a telehandler with one of the pressure medium supply arrangement according to FIG Figure 7b .
  • This has two axial piston machines 2 and 186, which are driven by the drive unit 4 in the form of a diesel unit via a common drive shaft. Pilot valves of the axial piston machine 2, 186 are controlled via the controller 20 as explained above.
  • the axial piston machine 186 serves to supply pressure medium to a wheel brake 188, a steering system 190 and a pilot oil supply 192.
  • the pilot oil supply 192 is provided for the main control valve 26 or the main control valve block.
  • the supply of pressure medium to hydraulic cylinders 168, 170, 194, 196 is controlled via this.
  • a hydraulic machine 198 used and the hydraulic auxiliary motor 176 are controlled via the main control valve 26 .
  • input means 178 are also provided here, which are connected to the controller 20, for example, by the CAN bus 180.
  • a communication device 200 is provided in order to communicate wirelessly, for example via radio or WiFi, with a server and/or with a computer.
  • input variables for the controller 20 can then be adjusted via the communication device 200 and/or software can be expanded or updated.
  • FIG 8a is a compact excavator with a pressure medium supply arrangement according to Figure 8b shown.
  • the axial piston machine 2 can be seen, which is driven by the drive unit 4 in the form of a diesel unit.
  • the controller 20 is shown, which is connected, for example, to a pressure sensor 202 that picks up the actual outlet pressure of the axial piston machine 2 .
  • the controller 20 is connected to a pressure sensor 204 which picks up the highest load pressure via the main control valve 26 or the main control block.
  • the controller 20 is connected to the controller 20 with a displacement pickup 206 for the pivoting angle of the swash plate of the axial piston machine 2 .
  • the pilot valve 14 is connected to the controller 20 .
  • Five hydraulic cylinders 208 are connected to the main control valve 26 . Furthermore, the hydraulic machines 172, 174 and the hydraulic auxiliary motor 176 are connected. Optionally, the pilot oil supply 192 can be provided. Input means 178 can control the main control valve 26 hydraulically, for example, or can be connected to the pressure medium supply arrangement via the CAN bus 180 .
  • FIG. 9a and 9b is the possibility of using the pressure medium supply arrangement 1 1 shown for a fan system.
  • the axial piston machine 2 is provided, which is driven by the drive unit 4, for example in the form of a diesel unit.
  • the actual outlet pressure of the axial piston machine 2 is picked up via the pressure sensor 50 .
  • a fan motor in the form of a hydraulic machine 210 is driven via the axial piston machine 2 .
  • the coolant of a cooling circuit is then cooled via the air flow.
  • the pilot valve 14 can be controlled via the controller 20 .
  • One or more temperatures picked up by sensors can be supplied to the controller 20 for example via the CAN bus 180 .
  • the temperature can be, for example, a temperature of the coolant in a coolant line 214 and/or a temperature of the drive unit 4 and/or a temperature of the pressure medium. It is also conceivable to supply further input variables to the controller 20, as explained above.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Operation Control Of Excavators (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Control Of Positive-Displacement Pumps (AREA)

Claims (15)

  1. Agencement d'alimentation en fluide sous pression hydraulique, pour un circuit hydraulique ouvert, avec une machine hydraulique (2), avec un mécanisme de réglage (12) qui présente un cylindre de réglage (34) avec un piston de réglage (36) pour le réglage d'un volume déplacé de la machine hydraulique (2) et qui présente une soupape pilote (14) commandable de manière électriquement proportionnelle, un flux entrant et/ou un flux sortant pouvant être commandé par l'intermédiaire de la soupape pilote (14) dans une chambre de commande (32) du cylindre de réglage (34) délimitée par le piston de réglage (36), afin de charger le piston de réglage (36) en fluide sous pression pour la commande, et une commande électronique (20) étant prévue, qui présente en tant que grandeurs d'entrée au moins une pression de sortie de consigne (74) de la machine hydraulique (2) et/ou un volume déplacé de consigne ou un angle de pivotement de consigne (70) de la machine hydraulique (2) et qui présente en tant que grandeur de sortie une grandeur de réglage pour la soupape pilote (14), la commande (20) présentant un premier circuit de régulation (60) pour une pression de sortie réelle (52) de la machine hydraulique (2) et/ou pour un volume déplacé réel ou un angle de pivotement réel (40) de la machine hydraulique (2), caractérisé en ce que la commande (20) présente un deuxième circuit de régulation (62) subordonné au premier circuit de régulation (60) pour une vitesse de réglage du volume déplacé ou une vitesse de réglage de l'angle de pivotement de la machine hydraulique (2), qui présente en tant que grandeur d'entrée une vitesse de réglage du volume déplacé réelle ou une vitesse de réglage de l'angle de pivotement réelle (84) de la machine hydraulique et qui présente en tant que grandeur de sortie la grandeur de réglage (18) pour la soupape pilote (14), une valeur de réglage (82) provenant du premier circuit de régulation (60) sous forme d'une vitesse de réglage du volume déplacé de consigne ou d'une vitesse de réglage de l'angle de pivotement de consigne (82) étant amenée au deuxième circuit de régulation (62).
  2. Agencement d'alimentation en fluide sous pression selon la revendication 1, dans lequel le premier circuit de régulation (60) de la commande (20) est configuré pour un couple de rotation réel (8) de la machine hydraulique (2), et dans lequel un couple de rotation de consigne (76) et le couple de rotation réel (8) sont prévus en tant que grandeurs d'entrée pour la commande (20).
  3. Agencement d'alimentation en fluide sous pression selon la revendication 1 ou 2, dans lequel le premier circuit de régulation (60) délivre respectivement une grandeur de réglage pour la pression de sortie réelle (52) de la machine hydraulique (2) et/ou pour le volume déplacé réel ou l'angle de pivotement réel (40) de la machine hydraulique (2) et/ou pour le couple de rotation réel (8) de la machine hydraulique (2), la commande (20) présentant une régulation de remplacement qui a un générateur de valeur minimale (80) pour les grandeurs de réglage délivrées (72, 75, 78).
  4. Agencement d'alimentation en fluide sous pression selon la revendication 3, dans lequel le premier circuit de régulation (60) pour la pression de sortie réelle (52) de la machine hydraulique (2) et/ou pour le volume déplacé réel ou l'angle de pivotement réel (40) de la machine hydraulique (2) et/ou pour le couple de rotation réel (8) de la machine hydraulique (2) a un régulateur (110) avec une composante I, dans lequel, en cas de non-activité du régulateur (110) présentant la composante I ou des régulateurs (110) présentant la composante I, la composante I est gelée ou partiellement ou totalement réduite.
  5. Agencement d'alimentation en fluide sous pression selon l'une quelconque des revendications 1 à 4, dans lequel un gradient de pression de consigne (102) est prévu en tant que grandeur d'entrée pour la régulation de la pression de sortie réelle (52) dans le premier circuit de régulation (60).
  6. Agencement d'alimentation en fluide sous pression selon la revendication 5, dans lequel le gradient de pression de consigne (102) est réglable pour adapter la dynamique de régulation de l'agencement d'alimentation en fluide sous pression.
  7. Agencement d'alimentation en fluide sous pression selon la revendication 5 ou 6, dans lequel le gradient de pression de consigne (102) est utilisé pour limiter la variation de la pression de sortie de consigne.
  8. Agencement d'alimentation en fluide sous pression selon l'une quelconque des revendications précédentes, dans lequel une prescription de vitesse de réglage du volume déplacé ou une prescription de vitesse de réglage de l'angle de pivotement (130) est prévue en tant que grandeur d'entrée pour la commande (20), qui est réglable pour adapter la dynamique de régulation de l'agencement d'alimentation en fluide sous pression.
  9. Agencement d'alimentation en fluide sous pression selon la revendication 8, dans lequel la prescription de vitesse de réglage du volume déplacé ou la vitesse de réglage de l'angle de pivotement (130) est amenée à un organe de régulation (128) qui présente en tant qu'autre grandeur d'entrée la valeur de réglage du premier circuit de régulation (60) sous la forme de la vitesse de réglage du volume déplacé de consigne ou de la vitesse de réglage de l'angle de pivotement de consigne (82), et dans lequel l'organe de régulation (128) délivre en tant que grandeur de sortie une vitesse de réglage du volume déplacé de consigne définitive (132) pour le deuxième circuit de régulation (96), qui est limitée par la prescription de vitesse de réglage du volume déplacé (130).
  10. Agencement d'alimentation en fluide sous pression selon l'une quelconque des revendications précédentes, dans lequel la pression de charge réelle la plus élevée (56) de consommateurs (168, 170) qui sont alimentés par l'agencement d'alimentation en fluide sous pression est saisie en tant que pression de détection de charge réelle (LS) (56) et est amenée à la commande (20) en tant que grandeur d'entrée, et dans lequel une différence de pression de consigne (100) est prévue en tant que grandeur d'entrée pour la commande (20), dans lequel une pression de consigne pour la commande (20) est déterminée à partir de la pression LS réelle (56) et de la différence de pression de consigne (100), laquelle est prévue en tant que grandeur d'entrée pour le premier circuit de régulation (60), et/ou dans lequel des pressions LS réelles (56) d'une partie des consommateurs (168, 170) ou de tous les consommateurs (168, 170) sont saisies par des moyens correspondants, et dans lequel une génération de valeur maximale ou une priorisation des pressions LS réelles (56) a lieu dans la commande (20).
  11. Agencement d'alimentation en fluide sous pression selon l'une quelconque des revendications précédentes, dans lequel un filtre (99, 112, 114, 126, 138) est prévu pour au moins une grandeur d'entrée ou pour une partie des grandeurs d'entrée ou pour toutes les grandeurs d'entrée de la commande (20).
  12. Agencement d'alimentation en fluide sous pression selon l'une quelconque des revendications précédentes, dans lequel un ou un facteur d'amplification respectif (Kp) est prévu pour le premier circuit de régulation (60) pour la régulation de la pression de sortie réelle (52) de la machine hydraulique (2) et/ou pour la régulation du volume déplacé réel (40) de la machine hydraulique (2) et/ou la régulation du couple de rotation réel (8) de la machine hydraulique (2), dans lequel le facteur d'amplification (Kp) dépend d'une température réelle (154) et/ou de la vitesse de rotation réelle (8) de la machine hydraulique (2) et/ou de la pression de sortie réelle (52) de la machine hydraulique (2) et/ou du gradient de pression de consigne (102) de la machine hydraulique (2).
  13. Agencement d'alimentation en fluide sous pression selon l'une quelconque des revendications précédentes, dans lequel un courant neutre de la soupape pilote (14) est précommandé.
  14. Agencement d'alimentation en fluide sous pression selon l'une quelconque des revendications précédentes, dans lequel un tiroir de soupape de la soupape pilote (14) est commandé de telle sorte que celui-ci exécute temporairement ou en permanence un mouvement oscillant axial, dans lequel la fréquence et l'amplitude du mouvement oscillant peuvent être commandées en fonction de la pression de sortie réelle.
  15. Procédé avec un agencement d'alimentation en fluide sous pression hydraulique selon l'une quelconque des revendications précédentes, dans lequel la soupape pilote (14) est commandée par les premier et deuxième circuits de régulation (60, 62) .
EP20186955.9A 2019-07-26 2020-07-21 Agencement d'alimentation en milieu de pression hydraulique pour une machine de travail mobile et procédé Active EP3770428B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102019120329 2019-07-26
DE102019219451.6A DE102019219451A1 (de) 2019-07-26 2019-12-12 Hydraulische Druckmittelversorgungsanordnung für eine mobile Arbeitsmaschine und Verfahren

Publications (2)

Publication Number Publication Date
EP3770428A1 EP3770428A1 (fr) 2021-01-27
EP3770428B1 true EP3770428B1 (fr) 2023-04-19

Family

ID=71738068

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20186955.9A Active EP3770428B1 (fr) 2019-07-26 2020-07-21 Agencement d'alimentation en milieu de pression hydraulique pour une machine de travail mobile et procédé

Country Status (1)

Country Link
EP (1) EP3770428B1 (fr)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102021208083A1 (de) 2021-07-27 2023-02-02 Robert Bosch Gesellschaft mit beschränkter Haftung Hydromaschine mit Steuereinheit und Verfahren zur Steuerung einer Hydromaschine
DE102021208118A1 (de) 2021-07-28 2023-02-02 Robert Bosch Gesellschaft mit beschränkter Haftung Hydrostatischer Fahrantrieb für ein seitengelenktes Fahrzeug und hydrostatischer Antrieb für eine seitengelenkte mobile Arbeitsmaschine
DE102022200249A1 (de) 2022-01-12 2023-07-13 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren zum Bestimmen einer Pumpenbetriebsgröße zum Ansteuern einer Hydraulikanordnung, Verfahren zum Bestimmen einer Abbildungsfunktion und Maschine
DE102022200396A1 (de) 2022-01-14 2023-07-20 Robert Bosch Gesellschaft mit beschränkter Haftung Verfahren mit einer hydraulischen Druckmittelversorgungsanordnung und hydraulische Druckmittelversorgungsanordnung
DE102023202043B3 (de) 2023-03-07 2024-03-21 Baumüller Nürnberg GmbH Verfahren zum Betrieb eines Hydrauliksystems einer Industriemaschine

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4801247A (en) 1985-09-02 1989-01-31 Yuken Kogyo Kabushiki Kaisha Variable displacement piston pump
DE3532931C3 (de) * 1985-09-14 1993-09-30 Rexroth Mannesmann Gmbh Hydraulische Antriebsvorrichtung
KR920010875B1 (ko) 1988-06-29 1992-12-19 히다찌 겐끼 가부시기가이샤 유압구동장치
DE58905978D1 (de) * 1989-02-06 1993-11-25 Vickers Systems Gmbh Elektrohydraulisches Antriebssystem.
EP0440802B1 (fr) 1989-07-27 1995-10-18 Hitachi Construction Machinery Co., Ltd. Dispositif pour la commande d'une pompe hydraulique
US5182908A (en) 1992-01-13 1993-02-02 Caterpillar Inc. Control system for integrating a work attachment to a work vehicle
US5267441A (en) 1992-01-13 1993-12-07 Caterpillar Inc. Method and apparatus for limiting the power output of a hydraulic system
US5967756A (en) 1997-07-01 1999-10-19 Caterpillar Inc. Power management control system for a hydraulic work machine
DE10312698A1 (de) 2003-03-21 2004-09-30 Bosch Rexroth Ag Einrichtung zur ablösenden Regelung von Druck und Förderstrom eines hydraulischen Druckmittels
DE10352851A1 (de) * 2003-11-10 2005-06-23 Aft Atlas Fahrzeugtechnik Gmbh Verdrehwinkelregelung
KR101588335B1 (ko) 2012-05-18 2016-01-25 주식회사 두산 유압제어 시스템
DE102016222139A1 (de) * 2016-11-11 2018-05-17 Robert Bosch Gmbh Verfahren zum Betreiben einer Axialkolbenmaschine in Schrägscheibenbauweise

Also Published As

Publication number Publication date
EP3770428A1 (fr) 2021-01-27

Similar Documents

Publication Publication Date Title
EP3770428B1 (fr) Agencement d'alimentation en milieu de pression hydraulique pour une machine de travail mobile et procédé
EP3770419B1 (fr) Dispositif d'alimentation en milieux de pression hydraulique, procédé et machine de travail mobile
DE102019219451A1 (de) Hydraulische Druckmittelversorgungsanordnung für eine mobile Arbeitsmaschine und Verfahren
EP3770431B1 (fr) Agencement et procédé d'alimentation en moyen de pression hydraulique
EP1642035B1 (fr) Systeme hydraulique
EP0856107B1 (fr) Regulation de puissance avec detection de charge
DE60317399T2 (de) Regelbare Verdrängerpump sowie Steursystem dafür
EP1588057B1 (fr) Systeme hydraulique pour entrainements lineaires commandes par des elements deplaceurs
DE10250586A1 (de) Elektrohydraulisches Ventilsteuersystem und Steuerverfahren
EP3587795B1 (fr) Transmission hydrostatique à limitation de pression et procédé d'étalonnage de la limitation de pression
WO2004074686A1 (fr) Procede de commande d'un systeme hydraulique d'une machine motrice mobile
EP3726053B1 (fr) Pompe à piston axial pour un entraînement hydrostatique, entraînement hydrostatique pourvu de piston axial ainsi que procédé de commande
EP1065379B1 (fr) Alimentation en pression avec pompe à capacité variable et motorisation électrique réglable
DE102013008793A1 (de) Elektrohydraulische Pumpenverstellung für eine Verstellpumpe im offenen Hydraulikkreislauf
DE102018211586A1 (de) Radantriebsanordnung für einen hydrostatischen Fahrantrieb und hydrostatischer Fahrantrieb
DE102020208756A1 (de) Hydraulisches System, Verfahren und Verwendung des hydraulischen Systems
WO2016096565A1 (fr) Circuit pour commander un consommateur rotatif
EP4141293A1 (fr) Procédé avec un entraînement hydrostatique, machine hydraulique pour l'alimentation en fluide sous pression et entraînement hydrostatique utilisant celui-ci
DE102021202739A1 (de) Hydraulische Druckmittelversorgungsanordnung, Verfahren mit einer hydraulischen Druckmittelversorgungsanordnung und mobile Arbeitsmaschine
WO2023135112A1 (fr) Procédé avec un agencement d'alimentation en fluide sous pression hydraulique et agencement d'alimentation en fluide sous pression hydraulique
DE102013213883A1 (de) Verfahren und System zum Regeln eines Schwenkwinkels
CN102713313A (zh) 具有伺服泵和旁通阀的液压系统
EP4124784A1 (fr) Machine hydraulique pourvue d'unité de commande et procédé de commande d'une machine hydraulique
WO2023016855A1 (fr) Procédé de fonctionnement à faible bruit d'un système hydraulique à entraînement électrique
DE102009021323A1 (de) Elektrohydraulisches Reglersystem

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN PUBLISHED

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: REQUEST FOR EXAMINATION WAS MADE

17P Request for examination filed

Effective date: 20210727

RBV Designated contracting states (corrected)

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20230124

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502020003016

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1561359

Country of ref document: AT

Kind code of ref document: T

Effective date: 20230515

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230509

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG9D

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230821

Ref country code: NO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230719

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20230731

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230819

Ref country code: HR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230720

Ref country code: AL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20230724

Year of fee payment: 4

Ref country code: FR

Payment date: 20230724

Year of fee payment: 4

Ref country code: DE

Payment date: 20230922

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502020003016

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SM

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230721

26N No opposition filed

Effective date: 20240122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230721

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20230419