EP1680269A1 - Verfahren zur herstellung eines hochfesten kunststoffmaterials sowie verwendung des kunststoffmaterials - Google Patents

Verfahren zur herstellung eines hochfesten kunststoffmaterials sowie verwendung des kunststoffmaterials

Info

Publication number
EP1680269A1
EP1680269A1 EP04790646A EP04790646A EP1680269A1 EP 1680269 A1 EP1680269 A1 EP 1680269A1 EP 04790646 A EP04790646 A EP 04790646A EP 04790646 A EP04790646 A EP 04790646A EP 1680269 A1 EP1680269 A1 EP 1680269A1
Authority
EP
European Patent Office
Prior art keywords
plastic material
stretching
plastic
fixing
crosslinking
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04790646A
Other languages
English (en)
French (fr)
Inventor
Thomas Paier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Poloplast GmbH and Co KG
Original Assignee
Poloplast GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Poloplast GmbH and Co KG filed Critical Poloplast GmbH and Co KG
Publication of EP1680269A1 publication Critical patent/EP1680269A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/04After-treatment of articles without altering their shape; Apparatus therefor by wave energy or particle radiation, e.g. for curing or vulcanising preformed articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C55/00Shaping by stretching, e.g. drawing through a die; Apparatus therefor
    • B29C55/005Shaping by stretching, e.g. drawing through a die; Apparatus therefor characterised by the choice of materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C71/00After-treatment of articles without altering their shape; Apparatus therefor
    • B29C71/02Thermal after-treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0827Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using UV radiation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0805Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation
    • B29C2035/0844Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using electromagnetic radiation using X-ray
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • B29C35/08Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation
    • B29C35/0866Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation
    • B29C2035/0877Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould by wave energy or particle radiation using particle radiation using electron radiation, e.g. beta-rays
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2023/00Use of polyalkenes or derivatives thereof as moulding material

Definitions

  • the invention relates to a method for producing a high-strength plastic material, the use of such a plastic material for producing a high-strength hollow body, a plastic hollow body made of the material described and fibers, strips, profiles, films, filaments, semi-finished products and composite materials made from this material.
  • the prior art also knows dimensionally resettable objects made of plastic, for example shrink films, shrink tubes or the like.
  • the plastic material is stretched and then cross-linked. Subsequent heating causes shrinkage due to the shape change memory of the plastic material.
  • this process is not prevented by the method according to the invention.
  • the described dimensionally resettable objects are thus designed with regard to their material in such a way that a shape change memory is impressed on them.
  • the mechanical properties, in particular the strength values are again in the order of magnitude of the plastic material originally used (base polymer).
  • the invention has for its object to provide a method for producing a high-strength plastic material which provides high strengths and physical values of the plastic with simple and inexpensive applicability. Furthermore, the task is based on creating a high-strength plastic component.
  • the plastic or plastic material is first stretched with thermal fixation, subsequently this is additionally crosslinked.
  • the plastic material is brought into the desired pre-shape, for example by extrusion. This is followed by stretching the plastic material. As a result, the molecules are oriented so that an oriented structure results. After stretching, the plastic material is fixed and crosslinked, and fixing can take place during crosslinking, before crosslinking or after crosslinking. By fixing which one too annealing, the amorphous parts of the plastic material relax while the crystallites are retained in their orientation. For this purpose, the plastic material is preferably held, clamped or prevented from changing its shape. If this stretched or stretched material is then fixed or tempered, a very uniform lamellar structure of the crystallites is created.
  • the slats are aligned perpendicular to the direction of fixation. Since fixing leads to the fact that restoring forces from the amorphous part are missing after fixing, tempering or relaxing, the plastic product is dimensionally stable even at higher temperatures. There is therefore no shrinking. The higher temperatures described here extend to the fixing temperature.
  • the stretched or stretched material was tempered or fixed without preventing it from changing its shape, the original, disordered structure that was present before stretching or stretching would be restored. This process leads to the shrinkage of the material already described in connection with the prior art.
  • the stretching can take place uniaxially or multi-axially.
  • the degree of stretching and the direction of stretching can be adapted to the respective geometry of the plastic material and the desired physical properties.
  • the plastic material according to the invention can be thread-like, strip-like or foil-like, but there are also many other geometric shapes.
  • the thermal fixation is preferably carried out by heating the plastic material to a temperature below the crystallite melting temperature and above the use temperature of the plastic part.
  • the plastic material is under tension or is mechanically clamped and prevented from changing its shape, so that the stresses introduced by the stretching process are reduced. According to the invention, this is particularly important in order to exclude the shrinking process described above in connection with the prior art.
  • the crosslinking is preferably carried out according to the invention with the introduction of energetic radiation.
  • Networking can take place with or without the addition of a kicker.
  • a kicker can be, for example, DCP (dicumyl peroxide) or TAIC (triallyl isocyanurate).
  • Other crosslinkers (radical formers, catalysts) are also possible.
  • the crosslinking by means of energetic radiation can take place, for example, by means of UV radiation, IR radiation, X-ray radiation or the like.
  • the radiation can be specifically matched to the plastic material, for example a polymer and / or the kicker, in order to activate them accordingly, as is known from photocrosslinking. It is preferred if the polymer itself is not damaged. Such damage is avoided in particular if the kickers are added to the plastics material in a suitable manner.
  • the dosing of the kicker can preferably take place in accordance with the amorphous or crystalline portion of the plastic material and the desired degree of crosslinking. This ensures that the crosslinking process is precisely controlled and that the crystalline areas of the stretched plastic material are not disturbed or destroyed.
  • PE polyethylene
  • thermoplastic blend mixture
  • 3 shows a representation in the subsequently networked state
  • 4 shows a diagram of a material according to the invention showing different parameters during different manufacturing stages
  • Fig. 6 is a diagram, analogous to Fig. 5, for a material according to the prior art, which is used for a shrink article with dimensional recovery.
  • the stretching of partially crystalline polymers creates crystalline zones which have the shape of needle crystals and / or have single-crystal platelets stacked one behind the other. Immediately after the stretching process, tensions due to stretching are still present in the amorphous areas. In the subsequent thermal fixation, these are reduced to such an extent that the finished plastic material remains largely dimensionally stable.
  • a shrinkage of 0% is ideally generated.
  • there may still be a slight shrinkage with regard to the dimensional stability of the plastic material to be achieved according to the invention which is ⁇ 2.5%, in the worst case ⁇ 5%.
  • Such a partially crystalline structure is shown in the simplified representation in FIG. 1. During the crystallization, the kickers are deposited at the phase boundaries.
  • FIG. 3 In the crosslinking of the polymer and / or the kicker shown in FIG. 3 by the initiated chemical reaction, for example by introducing energetic radiation, the amorphous regions in which the kicker has accumulated are crosslinked between and with the crystals. This state is shown in Fig. 3.
  • the networked points are identified by reference number 3. It goes without saying that the representation of FIGS. 1 to 3 only shows the processes very schematically and is only used for general explanation.
  • crosslinking reaction can also take place in the crystalline regions of the plastic material.
  • the plastic material according to the invention can be used, for example, for the production of hollow bodies, in particular tubular hollow bodies.
  • a plastic hollow body of this type is distinguished in particular by high strength properties in comparison to the plastic hollow bodies known from the prior art.
  • the crystalline regions are each illustrated with reference number 1, while the amorphous regions are indicated with reference number 2.
  • the plastic material according to the invention is thus characterized in that the crystallites are crosslinked together with the amorphous regions across the phase boundaries and the plastic material does not have any significant memory and shrinkage (shrinkage) takes on the smallest possible value. This significantly improves the physical properties. There is a significant increase in the overall strength, the temperature resistance increases and the impact strength is significantly increased. These improvements in physical values occur particularly normal (perpendicular) to the direction of stretching.
  • the tendency to splices is also reduced, which otherwise can be very pronounced in the case of highly stretched plastic fibers due to the morphology.
  • FIG. 4 shows a schematic diagram, in which different elasticity modules for a material sample according to the invention are shown in different process steps.
  • different elasticity modules for a material sample according to the invention are shown in different process steps.
  • A sample in the unstretched state
  • B sample in the stretched state
  • C sample in the stretched and crosslinked state.
  • the lh modulus of elasticity was measured on a typical cross-linkable HD-PE (polyethylene) material.
  • the degree of stretching was 400%. It can clearly be seen which significant increase in the modulus of elasticity results from the crosslinking (state C).
  • FIG. 5 shows a temperature module curve for stretching, fixing and crosslinking, the solid line illustrating the respective modulus values, while the dashed line represents the temperature curve.
  • FIG. 5 shows particularly clearly which increase in the modulus of elasticity is experienced by networking (see also FIG. 4). This modulus of elasticity is used up to the application area, i.e. until the plastic material is used.
  • FIG. 6 shows a representation analogous to FIG. 5, the same material having the corresponding parameters being processed in order to produce a shrink article as described in the introduction in connection with the prior art.
  • the same data as for the comparison sample in FIG. 5 were used.
  • the stretching temperature was 80 ° C
  • the activation took place at 120 ° C.
  • the crosslinking dose was 60 kGy. It is particularly clear here that the modulus of elasticity remains constant over the entire processing process, so that there is no increase in the modulus of elasticity or other mechanical values.

Landscapes

  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Shaping By String And By Release Of Stress In Plastics And The Like (AREA)

Abstract

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines hochfesten Kunststoffmaterials mit folgenden Arbeitsschritten: Fertigen des Kunststoffmaterials; Recken des Kunststoffmaterials: Fixieren des Kunststoffmaterials; Vernetzen des Kunststoffmaterials, sowie auf Kunststoffhohlkörper und Kunststoffprodukte, hergestellt nach dem Verfahren.

Description

Verfahren zur Herstellung eines hochfesten Kunststoffmaterials sowie Verwendung des Kunststoffmaterials
Beschreibung
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung eines hochfesten Kunststoffmaterials, die Verwendung eines derartigen Kunststoffmaterials zur Herstellung eines hochfesten Hohlkörpers, auf einen Kunststoffhohlkörper aus dem beschriebenen Material sowie auf Fasern, Bänder, Profile, Folien, Filamente, Halbzeuge und Verbundmaterialien aus diesem Material.
Aus dem Stand der Technik ist es bekannt, Kunststoffe zu recken, um deren mechanische und physikalische Eigenschaften zu verbessern. Ein derartiges Recken führt nicht unter allen Betriebsbedingungen zu einer ausreichenden Festigkeit bzw. zu ausreichenden physikalischen Eigenschaften.
Der Stand der Technik kennt auch dimensionsrückstellbare Gegenstände aus Kunststoff, beispielsweise Schrumpffolien, Schrumpfschlauche oder ähnliches. Hierbei wird das Kunststoff- material gereckt und nachfolgend vernetzt. Bei einer darauffolgenden Erwärmung erfolgt ein Schrumpfen, bedingt durch das Formänderungsgedächtnis des Kunststoffmaterials. Dieser Vorgang ist mit dem erfindungsgemäßen Verfahren jedoch nicht ver- gleichbar, da er indungsgemäß kein Schrumpfverhalten gewünscht wird, dieses im Gegenteil explizit ausgeschlossen oder auf einen Mindestwert reduziert werden soll.
Die beschriebenen dimensionsrückstellbaren Gegenstände (Schrumpfschlauche, Schrumpffolien oder ähnliches) sind somit hinsichtlich ihres Materials so ausgebildet, dass diesem ein Formänderungsgedächtnis eingeprägt ist. Nach der Formänderung sind die mechanischen Eigenschaften, insbesondere die Festigkeitswerte, wiederum in der Größenordnung des ursprünglich verwendeten Kunststoffmaterials (Basispoly eres) .
Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Herstellung eines hochfesten Kunststoffmaterials zu schaffen, welches bei einfacher und kostengünstiger Anwendbarkeit hohe Festigkeiten und physikalische Werte des Kunststoffes liefert. Weiterhin liegt die Aufgabe zugrunde, ein hochfestes Kunststoffbauteil zu schaffen.
Erfindungsgemäß werden die Aufgaben durch die Merkmale der jeweiligen unabhängigen Ansprüche gelöst, die jeweiligen Unteransprüche zeigen weitere vorteilhafte Ausgestaltungen der Erfindung.
Erfindungsgemäß erfolgt zunächst ein Recken des Kunststoffes oder Kunststoffmaterials mit thermischer Fixierung, nachfolgend wird dieses zusätzlich vernetzt.
Erfindungsgemäß ist somit vorgesehen, dass das Kunststoffmaterial in die gewünschte Vor-Form gebracht wird, beispielsweise durch Extrudieren. Anschließend folgt das Recken des Kunst- stoffmaterials. Hierdurch werden die Moleküle orientiert, so dass sich eine orientierte Struktur ergibt. Nach dem Recken wird das Kunststoffmaterial fixiert und vernetzt, wobei das Fixieren während dem Vernetzen, vor dem Vernetzen oder nach dem Vernetzen erfolgen kann. Durch das Fixieren, welches auch als Tempern bezeichnet wird, relaxieren die amorphen Anteile des Kunststoffmaterials, während jedoch die Kristallite in ihrer Ausrichtung beibehalten werden. Hierzu wird das Kunst- stoffmaterial bevorzugterweise festgehalten, eingespannt oder an einer Formänderung gehindert. Wenn dieses gereckte oder verstreckte Material anschließend fixiert oder getempert wird, entsteht somit eine sehr gleichmäßige Lamellenstruktur der Kristallite. Die Lamellen sind dabei senkrecht zur Fixierrichtung ausgerichtet. Da das Fixieren dazu führt, dass rückstellende Kräfte aus dem amorphen Anteil nach dem Fixieren, Tempern oder Relaxieren fehlen, ist das Kunststoffprodukt auch bei höheren Temperaturen dimensionsstabil. Es erfolgt somit kein Schrumpfen. Die beschriebenen höheren Temperaturen reichen dabei bis an die Fixiertemperatur.
Würde man, wie bei der Erfindung nicht vorgesehen, das gereckte oder verstreckte Material tempern oder fixieren, ohne dieses an einer Formänderung zu hindern, so würde sich wieder das ursprüngliche, ungeordnete Gefüge einstellen, welches vor der Verstreckung oder Reckung vorhanden war. Dieser Vorgang führt zu dem im Zusammenhang mit dem Stand der Technik bereits beschriebenen Schrumpfen des Materials.
Erfindungsgemäß kann das Recken einachsig oder mehrachsig erfolgen. Der Reckgrad und die Reckrichtung lassen sich der jeweiligen Geometrie des Kunststoffmaterials sowie den gewünschten physikalischen Eigenschaften anpassen.
Das erfindungsgemäße Kunststoffmaterial kann fadenförmig, streifenförmig oder folienartig ausgebildet sein, es ergeben sich jedoch auch vielfältige andere geometrische Formen. So ist es beispielsweise auch möglich, zunächst einen Hohlkörper herzustellen, diesen zu recken, zu fixieren und dann zu vernetzen. Die thermische Fixierung (Temperung) erfolgt erfindungsgemäß bevorzugterweise durch ein Erwärmen des Kunststoffmaterials auf eine Temperatur unterhalb der Kristallitschmelztemperatur und oberhalb der Gebrauchstemperatur des Kunststoffteils . Das Kunststoffmaterial steht bei diesem Prozess unter Spannung bzw. ist mechanisch eingespannt und an einer Formänderung gehindert, so dass es zum Abbau der durch den Reckprozess eingebrachten Spannungen kommt. Dies ist erfindungsgemäß besonders wichtig, um den oben stehend im Zusammenhang mit dem Stand der Technik beschriebenen SchrumpfVorgang auszuschließen.
Das Vernetzen erfolgt erfindungsgemäß bevorzugter Weise unter Einbringung energetischer Strahlung. Dabei kann das Vernetzen mit oder ohne Zugabe eines Kickers erfolgen. Ein derartiger Kicker kann beispielsweise DCP (Dicumylperoxid) oder TAIC (Triallylisocyanurat) sein. Es sind auch andere Vernetzer (Radikalbildner, Katalysatoren) möglich.
Die Vernetzung mittels energetischer Strahlung kann beispielsweise durch ÜV-Strahlung, IR-Strahlung, Röntgen-Strahlung oder Ähnliches erfolgen. Die Strahlung kann dabei speziell auf das Kunststoffmaterial, beispielsweise ein Polymer und/oder den Kicker abgestimmt sein, um diese entsprechend zu aktivieren, so wie dies aus der Photovernetzung bekannt ist. Dabei ist es bevorzugt, wenn das Polymer selbst nicht geschädigt wird. Derartige Schäden werden insbesondere dann vermieden, wenn eine geeignete Zugabe des Kickers zu dem Kunststo fmaterial erfolgt. Die Dosierung des Kickers kann bevorzugter Weise entsprechend dem amorphen Anteil bzw. dem kristallinen Anteil des Kunststoffmaterials und dem gewünschten Vernetzungsgrad erfolgen. Hierdurch wird sichergestellt, dass der Vernetzungspro- zess exakt gesteuert wird und dass die kristallinen Bereiche des gereckten Kunststoffmaterials nicht gestört oder zerstört werden. Als besonders vorteilhaft erweist es sich, wenn ein polymerer Kunststoff, beispielsweise PE (Polyethylen) oder ein thermoplastisches Blend (Mischung) verwendet wird. Erfindungsgemäß können somit alle vernetzbaren teilkristallinen Kunststoffe sowie Zellulose verwendet werden. Als Beispiele für derartige Kunststoffe sind folgende anzuführen:
PE Polyethylen (PEX = strahlungsvernetzbares PE) PA Polyamid POM Polyoximethylen PET Polyethylenterephthalat PP Polypropylen PB Polybuten TPE Thermoplastischer Elastomer
Unter Anwendung des erfindungsgemäßen Verfahrens ist es somit möglich, ganz erhebliche Steigerungen der mechanischen Eigenschaften des Kunststoffmaterials zu erzielen. So ist es beispielsweise möglich, eine Zugfestigkeit von > 100 MPa und einen E-Modul von > 3500 MPa zu erreichen. Diese hohen mechanischen Festigkeiten bleiben in dem erfindungsgemäß hergestellten Kunststoffmaterial über einen langen Zeitraum bestehen.
Nachfolgend wird die Erfindung anhand einer vereinfachten Darstellung in Verbindung mit den Figuren beschrieben. Dabei zeigt:
Fig. 1 eine vereinfachte Gefüge-Darstellung im nicht- gereckten Zustand des Kunststoffmaterials,
Fig. 2 eine Darstellung im gereckten Zustand,
Fig. 3 eine Darstellung im nachfolgend vernetzten Zustand, Fig. 4 ein Diagramm eines erfindungsgemäßen Werkstoffs in Darstellung unterschiedlicher Parameter während unterschiedlicher HerStellungsstufen,
Fig. 5 ein Diagramm zur Darstellung des Temperatur-Modul- Verlaufs für Recken, Fixieren und Vernetzen bei einem erfindungsgemäß hergestellten Kunststoffmaterial, und
Fig. 6 ein Diagramm, analog Fig. 5, bei einem Material gemäß dem Stand der Technik, welches für einen Schrumpfartikel mit Dimensionsrückstellung verwendet wird.
Durch das Recken von teilkristallinen Polymeren entstehen kristalline Zonen, welche die Gestalt von Nadelkristallen haben und/oder hintereinander gestapelte Einkristallplättchen aufweisen. Unmittelbar nach dem Reckprozess sind in den amorphen Bereichen noch Spannungen durch das Recken vorhanden. Diese werden bei der nachfolgenden thermischen Fixierung soweit verringert, dass das fertige Kunststoffmaterial weitgehend formstabil bleibt. Idealerweise wird erfindungsgemäß ein Schrumpf von 0 % erzeugt. In Abhängigkeit von den Prozessparametern und den eingesetzten Kunststoffen ergibt sich hinsichtlich der erfindungsgemäß zu erzielenden Formstabilität des Kunststoffmaterials möglicherweise dennoch ein geringer Schrumpf, der < 2,5 %, im ungünstigsten Falle < 5 % ist. Zur Verhinderung des Schrumpfes kann erfindungsgemäß auch vorgesehen sein, das Kunststoffmaterial im Verbund einzusetzen und somit zu stützen, so dass sich im Verbund entsprechend niedrige Schrumpfwerte ergeben.
Ein derartiges teilkristallines Gefüge zeigt die vereinfachte Darstellung der Fig. 1. Bei der Kristallisation wird an den Phasengrenzen der Kicker abgeschieden.
Die Fig. 2 zeigt das Gefüge in dem gereckten Zustand. Hierbei zeigt sich, dass die kristallinen Zonen jeweils durch das Recken ausgerichtet sind.
Bei dem in Fig. 3 gezeigten Vernetzen des Polymeres und/oder des Kickers durch die initiierte chemische Reaktion, beispielsweise durch Einbringung energetischer Strahlung, werden die amorphen Bereiche, in denen der Kicker sich angesammelt hat, zwischen und mit den Kristallen vernetzt. Dieser Zustand ist in Fig. 3 dargestellt. Die vernetzten Stellen sind mit dem Bezugszeichen 3 bezeichnet. Es versteht sich, dass die Darstellung der Fig. 1 bis 3 lediglich sehr schematisch die Vorgänge wiedergibt und nur zur allgemeinen Erläuterung dient.
Bei einer Vernetzung ohne Verwendung eines Kickers kann die Vernetzungsreaktion auch in den kristallinen Bereichen des Kunststoffmaterials stattfinden.
Das erfindungsgemäße Kunststoffmaterial ist beispielsweise für die Herstellung von Hohlkörpern, dabei insbesondere von röhr- för igen Hohlkörpern, verwendbar. Ein derartiger Kunststoff- hohlkörper zeichnet sich im Vergleich zu den aus dem Stand der Technik bekannten Kunststoffhohlkörpern insbesondere durch hohe Festigkeitseigenschaften aus.
Den Fig. 1 bis 3 sind die kristallinen Bereiche jeweils mit dem Bezugszeichen 1 verdeutlicht, während die amorphen Bereiche mit dem Bezugszeichen 2 angegeben sind.
Das erfindungsgemäße Kunststoffmaterial zeichnet sich somit dadurch aus, dass die Kristallite mit den amorphen Bereichen über die Phasengrenzen hinweg zusammen vernetzt sind und das Kunststoffmaterial über kein nennenswertes Formänderungsge- dächtnis verfügt und auch die Schrumpfung (Schrumpf) einen möglichst kleinen Wert annimmt. Hierdurch verbessern sich die physikalischen Eigenschaften ganz erheblich. Es liegt eine erhebliche Steigerung der Gesamtfestigkeit vor, die Temperaturbeständigkeit nimmt zu und die Schlagzähigkeit ist erheblich gesteigert. Diese Verbesserungen der physikalischen Werte treten insbesondere normal (senkrecht) zur Reckrichtung auf.
Bei dem erfindungsgemäß hergestellten Kunststoffmaterial verringert sich auch die Spliceneigung, welche ansonsten bei hochgereckten Kunststofffasern aufgrund der Morphologie sehr ausgeprägt sein kann.
Die Fig. 4 zeigt in schematischer Weise ein Diagramm, bei welchem unterschiedliche Elastizitäts-Module für eine erfindungsgemäße Werkstoffprobe bei unterschiedlichen Verfahrensschritten dargestellt sind. Hierbei bedeuten:
A: Probe im ungereckten Zustand, B: Probe im gereckten Zustand, C: Probe im gereckten und vernetzten Zustand.
Für die Darstellung der Fig. 4 wurde der lh E-Modul an einem typischen vernetzbaren HD-PE (Polyethylen) -Material gemessen. Der Reckgrad betrug 400 %. Es ist deutlich zu erkennen, welche signifikante Erhöhung des E-Moduls sich durch das Vernetzen (Zustand C) ergibt.
Die Fig. 5 zeigt einen Temperatur-Modul-Verlauf für das Recken, Fixieren und Vernetzen, wobei die durchgezogene Linie die jeweiligen E-Modul-Werte verdeutlicht, während die gestrichelte Linie den Temperaturverlauf wiedergibt. Folgende Daten lagen der Herstellung bzw. der Messung zugrunde:
Material: HD-PE zur Vernetzung (PEX, Strahlungsvernetzbares Polyethylen) Dichte: 946 kg/m3 MFI (Schmelzindex): 8,5 g/10 min Zugfestigkeit: 18 MPa Extrusion: Massetemperatur: 200°C Druck vor Düse: 42 bar Recken: Reckverhältnis: 380 % Recktemperatur: 125°C Fixieren: Temperatur: 120°C Vernetzung: Mittels 10 MeV Rhodotron-Elektronenstahl Anlage Wellenlänge: 510 n Dosis: 80 kGy
Aus Fig. 5 ist somit besonders deutlich ersichtlich, welche Steigerung der E-Modul durch das Vernetzen erfährt (siehe auch Fig. 4). Dieser E-Modul wird bis zum Einsatzbereich, d.h. bis zur Verwendung des KunstStoffmaterials, beibehalten.
Die Fig. 6 zeigt eine analoge Darstellung wie Fig. 5, wobei dasselbe Material mit den entsprechenden Parametern verarbeitet wurde, um einen Schrumpfartikel zu erzeugen, wie er einleitend im Zusammenhang mit dem Stand der Technik beschrieben wurde. Im Einzelnen wurden die gleichen Daten wie bei der Vergleichsprobe in Fig. 5 zugrunde gelegt. Die Recktemperatur betrug jedoch 80°C, die Aktivierung erfolgte bei 120°C. Die Vernetzungs-Dosis betrug 60 kGy. Hierbei ist insbesondere deutlich ersichtlich, dass der E-Modul über den gesamten Verarbei- tungsprozess konstant bleibt, so dass sich keinerlei Erhöhung des E-Moduls oder sonstiger mechanischer Werte ergibt.

Claims

Ansprüche
1. Verfahren zur Herstellung eines hochfesten Kunststoffmaterials mit folgenden Arbeitsschritten: Fertigen des Kunststoffmaterials, Recken des Kunststoffmaterials, Fixieren des Kunststoffmaterials, Vernetzen des Kunststoffmaterials.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass eine Dimensionsänderung des Kunststoffmaterials beim Fixieren unterbunden wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass das Fixieren so erfolgt, dass die amorphen Anteile des Kunststoffmaterials relaxieren, die Kristallite des Kunststoffmaterials jedoch ihre Ausrichtung beibehalten.
4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Arbeitsschritte und insbesondere die Temperaturführung so gewählt werden, dass das fertige Kunststoffmaterial einen Schrumpfwert < 5 %, bevorzugt < 2,5 % aufweist.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das die Arbeitsschritte und insbesondere die Temperaturführung so gewählt werden, dass das fertige Kunststoffmaterial eine Zugfestigkeit > 100 MPa aufweist.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass die Arbeitsschritte und insbesondere die Temperaturführung so gewählt werden, dass das fertige Kunststoffmaterial einen. E-Modul > 3500 MPa aufweist.
7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Fixieren während dem Vernetzen erfolgt.
8. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass das Fixieren nach dem Vernetzen erfolgt.
9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Recken einachsig erfolgt.
10. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das Recken mehrachsig erfolgt.
11. Verfahren nach einem der Ansprüche 1 bis 10, dadurch gekennzeichnet, dass dem Kunststoffmaterial ein Kicker beigegeben ist.
12. Verfahren nach einem der Ansprüche 1. bis 11, dadurch gekennzeichnet, dass das Vernetzen unter Einwirkung energetischer Strahlung erfolgt.
13. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass als energetische Strahlung UV-Strahlung verwendet wird.
14. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass als energetische Strahlung Röntgenstrahlung verwendet wird.
15. Verfahren nach Anspruch 12, dadurch gekennzeichnet, dass als energetische Strahlung IR-Strahlung verwendet wird.
16. Verfahren nach einem der Ansprüche 1 bis 15, dadurch gekennzeichnet, dass als Kunststoffmaterial ein thermoplastisches Blend verwendet wird.
17. Verfahren nach einem der Ansprüche 1 bis 16, dadurch gekennzeichnet, dass die einzelnen Arbeitsschritte (Recken, Fixieren, Vernetzen) mehrstufig ablaufen.
18. Verfahren nach einem der Ansprüche 1 bis 17, dadurch gekennzeichnet, dass das Verfahren kaskadenartig wiederholt wird.
19. Verwendung eines Kunststoffmaterials, hergestellt nach einem der Ansprüche 1 bis 18 zur Herstellung eines Hohlkörpers .
20. Verwendung nach Anspruch 19 zur Herstellung eines rohrför- migen Hohlkörpers.
21. Kunststoffhohlkörper aus einem Kunststoffmaterial, hergestellt nach einem der Ansprüche 1 bis 18.
22. Kunststoffhohlkörper nach Anspruch 21, dadurch gekennzeichnet, dass dieser rohrförmig ausgebildet ist.
23. Verwendung eines Kunststoffmaterials, hergestellt nach einem der Ansprüche 1 bis 18 zur Herstellung von Fasern, Bändern, Profilen, Folien, Filamenten, Halbzeugen und/oder Verbundmaterialien.
24. Kunststoffkörper in Form einer Faser, eines Bandes, einer Folie, eines Profils oder eines Filaments, hergestellt nach einem Verfahren nach einem der Ansprüche 1 bis 18.
EP04790646A 2003-11-06 2004-10-19 Verfahren zur herstellung eines hochfesten kunststoffmaterials sowie verwendung des kunststoffmaterials Withdrawn EP1680269A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10351829 2003-11-06
PCT/EP2004/011831 WO2005046974A1 (de) 2003-11-06 2004-10-19 Verfahren zur herstellung eines hochfesten kunststoffmaterials sowie verwendung des kunststoffmaterials

Publications (1)

Publication Number Publication Date
EP1680269A1 true EP1680269A1 (de) 2006-07-19

Family

ID=34584905

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04790646A Withdrawn EP1680269A1 (de) 2003-11-06 2004-10-19 Verfahren zur herstellung eines hochfesten kunststoffmaterials sowie verwendung des kunststoffmaterials

Country Status (2)

Country Link
EP (1) EP1680269A1 (de)
WO (1) WO2005046974A1 (de)

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1308912A (en) * 1969-07-21 1973-03-07 Courtaulds Ltd Crimped polyamide yarn
SE8206483L (sv) * 1982-11-15 1984-05-16 Uponor Ab Sett for orientering av materialet i ror av plast
US4894107A (en) * 1985-05-16 1990-01-16 American National Can Company Process for making multiple layer polymeric films
JPS62148239A (ja) * 1985-12-23 1987-07-02 Matsushita Electric Works Ltd 延伸硬化組成物の製法
JPS6372709A (ja) * 1986-09-12 1988-04-02 Mitsubishi Cable Ind Ltd 水架橋ポリオレフイン成形品及びその製造方法
US5286762A (en) * 1988-07-23 1994-02-15 Idemitsu Kosan Company Limited Styrene-based polymer moldings and process for production thereof
JPH02253924A (ja) * 1989-03-28 1990-10-12 Unitika Ltd 耐熱性フッ素系重合体2軸配向フィルムおよびその製造方法
JPH02301419A (ja) * 1989-05-17 1990-12-13 Unitika Ltd 耐熱性ポリエステル2軸配向フィルム及びその製造方法
JP2003237822A (ja) * 2002-02-15 2003-08-27 Sekisui Jushi Co Ltd 熱可塑性樹脂バンドおよびその製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005046974A1 *

Also Published As

Publication number Publication date
WO2005046974A1 (de) 2005-05-26

Similar Documents

Publication Publication Date Title
DE2537278C3 (de) Verfahren und Vorrichtung zur Herstellung eines Faservlieses
EP0391887B1 (de) Monoaxial verstreckter Formkörper aus Polytetrafluoräthylen
DE2426193C2 (de) Verfahren zur Herstellung offenzelliger mikroporöser Polypropylenfolien
EP1112167B1 (de) Verfahren zur herstellung einer biaxial orientierten opaken folie aus einem geschäumten orientierbaren thermoplastischen polymer
DD297600A5 (de) Stoff aus thermoplastischen fasern und kontinuierlichen verstaerkungsfasern
DE2528370A1 (de) Verfahren zum herstellen von simultan in beiden richtungen gereckten folien aus kunststoff zum durchfuehren des verfahrens und kunststofffolie hergestellt nach dem verfahren
EP0848643B1 (de) Verfahren zur herstellung von polymer-hohlfadenmembranen
EP0241776B1 (de) Verfahren zur Herstellung eines Kunststoffteils mit Formgedächtnis und Vorrichtung zur Durchführung dieses Verfahrens, sowie Kunststoffteile die nach diesem Verfahren hergestellt sind
DE2550664C3 (de) Verfahren zum Herstellen eines druckmittelfiihrenden Schlauches
AT404731B (de) Verfahren zur herstellung cellulosischer flachfolien und ihre verwendung
EP3098059B1 (de) Verfahren zur herstellung eines orientierten polymers
EP1680269A1 (de) Verfahren zur herstellung eines hochfesten kunststoffmaterials sowie verwendung des kunststoffmaterials
DE2556130A1 (de) Verfahren zur herstellung von fibrillierten polytetrafluoraethylenprodukten
DE2328639C3 (de) Verfahren zur Herstellung monoaxial verstreckter Folienbändchen aus Polypropylen
DE4330508C2 (de) Verfahren zur Herstellung eines Polyolefin-Werkstoffs
CH528611A (de) Folienförmiger, extrudierter Faserartikel und Verfahren zu dessen Herstellung
WO2006072310A1 (de) Vernetzungsverfahren zur herstellung von dampfsterilisierbaren mehrschichtigen portschläuchen
EP1748874A1 (de) Verfahren zur herstellung von faserhaltigen kunststoffgranulaten
DE3903436C2 (de) Verfahren zur Herstellung von Kunststoffrohren
EP0133188A1 (de) Verfahren zur Herstellung eines warmverformten Mehrlagenkunststoffverbundes, sowie Vorrichtung zur Durchführung des Verfahrens
DE3207502A1 (de) Erzeugnis aus vinylidenfluoridharz und verfahren zur herstellung desselben
DE102007041268B4 (de) Verfahren zur Herstellung eines Verbundwerkstoffes sowie Verbundwerkstoff
EP1592544A1 (de) Verfahren zum herstellen einer kunststoff-folie
DE2611134B2 (de) Verfahren und Vorrichtung zum Herstellen einer Folie aus thermisch instabilen thermoplastischen Kunststoffen und Verwendung dieser Folie
DE1194560B (de) Verfahren und Vorrichtung zum Verstrecken von Blasfolien in Laengs- und Querrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060309

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT DE

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT DE

17Q First examination report despatched

Effective date: 20091030

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20101012