EP1679277B1 - Method and device for the operation of a workstation of a textile machine producing crosswound bobbins - Google Patents

Method and device for the operation of a workstation of a textile machine producing crosswound bobbins Download PDF

Info

Publication number
EP1679277B1
EP1679277B1 EP20050027303 EP05027303A EP1679277B1 EP 1679277 B1 EP1679277 B1 EP 1679277B1 EP 20050027303 EP20050027303 EP 20050027303 EP 05027303 A EP05027303 A EP 05027303A EP 1679277 B1 EP1679277 B1 EP 1679277B1
Authority
EP
European Patent Office
Prior art keywords
thread
thread guide
angle sensor
sensor element
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP20050027303
Other languages
German (de)
French (fr)
Other versions
EP1679277A2 (en
EP1679277A3 (en
Inventor
Franz-Josef Flamm
Jochen Cüppers
Alexander Marx
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Oerlikon Textile GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Textile GmbH and Co KG filed Critical Oerlikon Textile GmbH and Co KG
Publication of EP1679277A2 publication Critical patent/EP1679277A2/en
Publication of EP1679277A3 publication Critical patent/EP1679277A3/en
Application granted granted Critical
Publication of EP1679277B1 publication Critical patent/EP1679277B1/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2827Traversing devices with a pivotally mounted guide arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2884Microprocessor-controlled traversing devices in so far the control is not special to one of the traversing devices of groups B65H54/2803 - B65H54/325 or group B65H54/38
    • B65H54/2887Microprocessor-controlled traversing devices in so far the control is not special to one of the traversing devices of groups B65H54/2803 - B65H54/325 or group B65H54/38 detecting the position of the yarn guide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H54/00Winding, coiling, or depositing filamentary material
    • B65H54/02Winding and traversing material on to reels, bobbins, tubes, or like package cores or formers
    • B65H54/28Traversing devices; Package-shaping arrangements
    • B65H54/2884Microprocessor-controlled traversing devices in so far the control is not special to one of the traversing devices of groups B65H54/2803 - B65H54/325 or group B65H54/38
    • B65H54/289Microprocessor-controlled traversing devices in so far the control is not special to one of the traversing devices of groups B65H54/2803 - B65H54/325 or group B65H54/38 stopping the yarn guide in a predetermined position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2553/00Sensing or detecting means
    • B65H2553/20Sensing or detecting means using electric elements
    • B65H2553/22Magnetic detectors, e.g. Hall detectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2557/00Means for control not provided for in groups B65H2551/00 - B65H2555/00
    • B65H2557/60Details of processes or procedures
    • B65H2557/61Details of processes or procedures for calibrating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H2701/00Handled material; Storage means
    • B65H2701/30Handled filamentary material
    • B65H2701/31Textiles threads or artificial strands of filaments

Definitions

  • the invention relates to a method for operating a workstation of a cross-wound textile machine according to the preamble of claim 1 and to an apparatus for carrying out the method according to claim 4.
  • devices have proven to be very suitable for a fast and positionally precise thread switching whose parallel to the axis of rotation of the cheese displaceable yarn guide is connected via a traction means with a reversible single drive or facilities that work with a so-called finger thread guide or wiper, that is, yarn guide, which have a finger-like thread-laying lever which is pivotable about a substantially perpendicular to the cheese axis arranged axis over a certain angular range.
  • a workstation of a cheese-producing textile machine in which a rotatably held in a creel sleeve by a drive roller having a separate drive, can be rotated.
  • the job also has a traversing yarn guide, which is fixed to an endless belt and can be guided back and forth by a defined controllable single drive within a changeable in its length traverse stroke.
  • the single drive of the traversing yarn guide is coupled with an angle encoder, which detects the rotor position of the electric motor and reports to a controller.
  • the WO 00/24663 describes a Fadenchangier adopted with a finger thread guide, the drive to a sensor device, a so-called rotary encoder is connected, which monitors the movement of the finger thread guide. It is stated in this patent application that in order to check the system state and if necessary to correct the rotary encoder, it is occasionally returned to a reference point.
  • the Faden enteringarm can also be brought into contact with a mechanical stop, wherein the corresponding output signal of the encoder is evaluated to give a reference for the positioning.
  • the Fadenchangier worn is designed as a finger thread guide, which is acted upon by an electromagnetic drive.
  • the electromagnetic drive of the thread guide drive is controlled by a microprocessor, which controls the current strength and the current direction according to a predetermined program angle and time-dependent that results on the Traversierbreite the respectively desired laying angle of the thread or that set the traverse width or the traversing points targeted can be.
  • an infrared light barrier is used, which scans marks arranged coaxially to the oscillating axis.
  • such optical sensor devices are not entirely unproblematic due to the known in spinners and winders often heavily loaded with dust and fluff air. That is, such optical sensor devices require to work largely trouble-free, a relatively high cleaning costs.
  • the post-published DE 103 54 587 describes a job of a cheese-producing textile machine, which has a creel for holding a rotatable package and a finger thread guide for traversing a supplied thread has.
  • the electromotive single drive of the finger thread guide is equipped with an angle sensor which is connected to a workstation computer and has a pivotally mounted permanent magnet and a stationary Hall IC element.
  • Such an angle sensor has several advantages.
  • the relatively inexpensive analog Hall IC element which is influenced by the magnetic flux of a pivotally mounted permanent magnet, generates, for example, voltage values which are proportional to the angular position of the permanent magnets and thus to the angular position of the finger thread guide and which can be well processed by the workstation computer.
  • the winding head module in this case has a single-motor driven coil drive roller and also a single-motor driven Fadenchangier affection.
  • the Fadenchangier noticed equipped with a finger thread guide is equipped with an angle sensor, which is designed as a Hall effect sensor.
  • the Hall effect sensor which detects the passage of the finger thread guide through the center of the thread-passing area, is protected within a plastic housing.
  • the present invention seeks to develop a method and a device that allows the proper operation of a job of a cheese-producing textile machine over a longer period.
  • a measured value is generated by the sensor element in these defined positions.
  • the determined measured values are compared in the workstation computer and / or processed to calculate a correction characteristic of the sensor element.
  • the correction characteristic curve calculated by the workstation calculator characterizes the measured value curve of the electrical voltage that the sensor element generates at this time when the thread guide oscillates between its reversal points.
  • the workstation computer assigns during the winding process according to the correction characteristic of each voltage generated by the sensor element to the associated position of the thread guide, which is then used to control the thread guide.
  • the determined correction characteristic as set forth in claim 3, at least until the next adjustment use. This means that during the next adjustment, the correction characteristic curve is recalculated by the workstation computer based on the measured values then available and, if the calculation results, replaced by a new correction characteristic curve.
  • the apparatus for performing the method according to the invention in an advantageous embodiment, acted upon by a single drive Fadenchangier worn, equipped with a Hall IC element angle sensor and a workstation on.
  • the angle sensor supplies in each case a measured value proportional to the position of a thread guide.
  • means are provided which allow positioning of the thread guide in defined positions.
  • the workstation computer is designed so that it immediately associates each electrical voltage generated by the Hall IC element of the angle sensor with an associated position of the yarn guide. In this way, the workstation computer is able to optimally control the thread guide, in particular as regards its reversal points.
  • the thread guide as described in claim 6, designed as a finger thread guide
  • the thread-laying lever is positioned by applying two stops each in defined angular positions.
  • a measured value generated by the Hall IC element of the angle sensor is detected in these so-called adjustment positions and used in the workstation computer for calculating a correction characteristic curve of the angle sensor.
  • This correction characteristic curve calculated by the workstation computer characterizes the instantaneous course of the electrical voltage generated by the angle sensor at this time during the traversing of the thread-laying lever. That is, by the workstation computer are considered in determining the respective angular position of the thread-laying lever error influences resulting from the construction principle of the angle sensor, for example due to a certain aging of the permanent magnets.
  • the coverable by the angle sensor during its calibration range between + 40 ° and -40 °. That is, this area is slightly larger than the working range of the finger thread guide whose thread-laying lever covers a range between + 37.5 ° and -37.5 ° during the winding operation.
  • Such a generous dimensioning of the area which can be covered by calibration ensures that the installation tolerances occurring, for example, during assembly of the thread guide drive can be reliably compensated for.
  • the positioning of defined stops at + 39 ° and -39 ° also makes it possible in a simple way to balance the measured values provided by the angle sensor with known angular positions of the thread-laying lever of the thread guide.
  • the angle sensor has a resolution of 0.024 ° (claim 8). Such a high resolution of the angle sensor allows a precise approach of the thread reversal points in the thread switching and thus a homogeneous coil structure.
  • FIG. 1 is a schematic side view of the workstation 2 of a cheese-producing textile machine, in the present case of a so-called cross-winding machine 1 shown.
  • the spinning stations 3 produced on a ring spinning machine are rewound to large-volume cheeses 5 on the work stations 2 of such automatic packages 1.
  • the cheeses 5 are automatically after their completion, for example by means of a (not shown) working service units on a machine-length cross-bobbin transport device 7 and transported to a machine end side arranged Spulenverladestation or the like.
  • Such spooling machines 1 generally also have a bobbin and tube transport system 6, in which, on transport plates 11, the spinning cops 3 or empty tubes circulate.
  • the bobbin and tube transport system 6 are in Fig. 1 only the Kopszu 1500 zone 24, the reversibly driven storage section 25, one of the leading to the winding units 2 transverse transport sections 26 and the sleeve return path 27 shown.
  • the individual jobs 2 also have, as known and therefore only hinted, various facilities that ensure the proper operation of such jobs.
  • One of these devices is, for example, the winding device 4.
  • the winding device 4 has a coil frame 8 movably mounted about a pivot axis 12.
  • the cheese 5 is located during the winding process with its surface on a drive drum 9 and is driven by this single-motor actuated drive drum 9 via frictional engagement.
  • the corresponding drive carries the reference number 33.
  • Fadenchangier listening 10 For traversing the thread 16 during the winding process a Fadenchangier listening 10 is provided. Such in the FIG. 1 only schematically indicated Fadenchangier noticed 10 has, for example, a The thread-laying lever 45 traverses, acted upon by an electromechanical drive 14, the thread 16 between the two end faces of the cheese 5.
  • the drive 14 of the thread guide 13 is, for example via a (not shown) console on Spulstellengephase 34 of the relevant job 2.
  • both the drive 14 of the thread guide 13 and the drive 33 of the drive drum 9 via control lines 15 and 35 are connected to the workstation computer 28.
  • the drive 14 has a motor shaft 17, on which the finger-like thread laying lever 45 is arranged rotationally fixed.
  • a removable cap 18 On the side opposite the yarn guide 13 side of the motor shaft 17 is protected by a removable cap 18, an angle sensor 19 is mounted, the structure will be explained below.
  • a plastic molded part 31 is fixed, which has both a mounting hole 36 for a sensor carrier 23 and a bearing pin 37 for a stocked with an electronic circuit board 32 38.
  • the electronic circuit 32 may include, for example, a memory chip and an electronic control device.
  • a Hall-IC element 29 is stationary, which corresponds to a permanent magnet 20, which is rotatably connected via a support ring 21 and a bolt 22 with the motor shaft 17 of the drive 14.
  • FIG. 3 shows a rear view of the drive 14, that is, a view of the angle sensor 19 according to section III-III of FIG. 2 .
  • the permanent magnet 20 is formed as a two-pole radially magnetized ring magnet whose poles N, S in the illustrated center position of the yarn guide 13, that is, in the angular position 0 °, with respect to the stationary arranged Hall IC element 29 are arranged orthogonal. That is, when the yarn guide 13 assumes an angular position 0 °, the poles N, S of the magnetic ring 20 are aligned at right angles to the Hall IC element.
  • the Fig. 4 shows a view of the Fadenchangier adopted 10 in accordance with the direction of the arrow X of Fig. 1 during an adjustment of the angle sensor 19.
  • stops 40 and 41 each defining a predetermined, exact angular position of the thread-laying lever 45.
  • the stops 40, 41 are preferably positioned so that the fitting during adjustment at the stop 40 thread-laying lever 45 has exactly an angular position of -39 °, while the angular position of the thread-laying lever 45 at the stop 41 is exactly + 39 °.
  • the electrical voltage V initiated by the Hall IC element 29 when the thread-laying lever 45 abuts against the stop 40 or 41 is processed in the electronic circuit 32 of the angle sensor 19 and via a data and control line 15 to the workstation computer 28 forwarded therefrom, if necessary, calculates a correction characteristic curve, by means of which each measured value can be assigned to a specific angular position of the thread-laying lever 45.
  • characteristic curves 42, 43 are shown on the basis of a coordinate system which indicate the electrical voltage profile generated by the programmable Hall IC element 29 and dependent on the angular positions of the thread-laying lever 45 and thus on the angular positions of the permanent magnet 20.
  • the abscissa of the coordinate system while the area covered by the thread-laying lever 45 during the Fadenchang ist area is shown in degrees, while the ordinate of the coordinate system shows the voltage generated by the Hall-IC element 29 in volts. That is, the voltage V which generates the Hall IC element 29 from the magnetic flux of the permanent magnets 20, their angular position and a device constants.
  • characteristic curve 43 is according to characteristic curve 43 at an angular position of the thread-laying lever 45 of -39 ° at the angle sensor 19, for example, a voltage of 0.71 V at.
  • the corresponding voltage at the angle sensor 19 is 4.83 V.
  • the voltage curve in the covered by the thread-laying lever 45 trailing range between -39 ° and + 39 ° is largely linear.
  • the angle sensor 19 consequently produces a voltage of, for example, 2.76 volts.
  • the characteristic curve 42 shows the voltage curve determined during a later adjustment of the angle sensor 19.
  • the electrical voltage generated by the angle sensor 19 in this adjustment at an angular position of the thread-laying lever 45 of -39 ° is 0.56 V.
  • At an angular position of the thread-laying lever 45 of + 39 ° 4.47 V are generated. Since the characteristic 42 has a largely linear course, it results for the middle position 0 ° of the thread-laying lever 45 at the angle sensor 19, a voltage of for example 2.48 volts.
  • the angle sensor 19 Before starting the thread guide drive 14 in the workplace 2, the angle sensor 19 must first be calibrated. In this calibration, the angle sensor 19 on the fully assembled drive 14 can be followed by various methods that in the post-published DE 103 54 587 are described in relative detail.
  • the thread-laying lever 45 is successively positioned in defined angular positions by means of a simple mechanical device, for example two stops 40, 41, thereby detecting the electrical voltage generated in the Hall IC element 29 due to the magnetic flux of the permanent magnet 20.
  • the workstation computer 28 of the relevant winding unit 2 calculates a first characteristic curve for the angle sensor 19 on the basis of the known positions of the thread-laying lever 45 and the detected measured values of the angle sensor. This first characteristic curve is in the coordinate system of FIG Fig. 5 marked with the reference number 43. As in Fig.
  • each point of the characteristic 43 is associated with a certain angular position of the thread-laying lever 45 and a corresponding measured value of the angle sensor 19.
  • the associated measured value of the angle sensor is, for example, 2.76 V.
  • the balancing method according to the invention runs as follows:
  • the characteristic of the angle sensor 19 changes in principle over time, for example due to the aging of the permanent magnets 20 of the angle sensor 19, by temperature drift or the like, corresponds to a reading of, for example, 2.76 V only a certain time exactly an angular position of 0 ° the thread-laying lever 45. In order to be able to ensure exact measured values of the angle sensor 19 over a longer period of time, the angle sensor 19 is therefore adjusted from time to time.
  • the magnetic characteristic of the permanent magnet 20 is re-measured. This can be done in an external calibration device or in the workplace.
  • the determined correction values are then stored either in the workstation computer 28 of the winding unit or in an additional memory chip (not shown) of the electronic circuit 32 of the angle sensor 19.
  • correction characteristic line 42 shown as an exemplary embodiment corresponds to a measured value of, for example, 0.56 V of an angular position of the thread-laying lever 45 of -39 °. In the center position 0 ° of the thread-laying lever 45, a measured value of 2.48 V is present at the angle sensor 19, while the measured value of the angle sensor 19 is 4.47 V at an angular position of + 39 ° of the thread-laying lever 45.
  • the correction characteristic 42 of the angle sensor 19 remains relevant until the next adjustment and is then optionally replaced by a new correction characteristic, which is also determined by a corresponding adjustment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Winding Filamentary Materials (AREA)
  • Spinning Or Twisting Of Yarns (AREA)
  • Looms (AREA)
  • Replacing, Conveying, And Pick-Finding For Filamentary Materials (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Betreiben einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine gemäß dem Oberbegriff des Anspruches 1 sowie eine Vorrichtung zum Durchführen des Verfahrens nach Anspruch 4.The invention relates to a method for operating a workstation of a cross-wound textile machine according to the preamble of claim 1 and to an apparatus for carrying out the method according to claim 4.

Um eine Textilspule herzustellen, ist es bekanntlich erforderlich, einerseits die betreffende Textilspule in Rotation zu versetzen und andererseits den auf die Spule auflaufenden Faden längs der Spulenachse zu traversieren. Durch relativ schnelles Traversieren des Fadens kann dabei eine sogenannte Kreuzbewicklung erstellt werden.
Derartige Kreuzspulen zeichnen sich nicht nur durch einen verhältnismäßig stabilen Spulenkörper, sondern auch durch ein gutes Ablaufverhalten aus.
Hinsichtlich der Wicklung solcher Kreuzspulen unterscheidet man dabei zwischen der Wicklungsart "Wilde Wicklung" und der Wicklungsart "Präzisionswicklung" bzw. "Stufen-Präzisionswicklung".
In order to produce a textile bobbin, it is known that it is necessary, on the one hand, to set the relevant textile bobbin in rotation and, on the other hand, to traverse the thread running on the bobbin along the bobbin axis. By relatively fast traversing of the thread can be created a so-called Kreuzbewicklung.
Such cheeses are characterized not only by a relatively stable bobbin, but also by a good flow behavior.
With regard to the winding of such cheeses, a distinction is made between the winding type "wild winding" and the winding type "precision winding" or "step precision winding".

Insbesondere im Zusammenhang mit der Wicklungsart "Wilde Wicklung" sind dabei oft sogenannte Fadenführungstrommeln im Einsatz, die nicht nur den auflaufenden Faden traversieren sondern auch gleichzeitig einen Umfangsantrieb für die Kreuzspule bilden.In particular, in connection with the winding type "wild winding" are often so-called thread guide drums in use, not only traversing the incoming thread but also simultaneously form a peripheral drive for the cross-wound bobbin.

Zur Erzeugung einer Präzisions- oder Stufen-Präzisionswicklung sind solche Fadenführungstrommeln allerdings nicht einsetzbar, da bei der Herstellung dieser Wicklungsarten der Antrieb der Kreuzspule und der Antrieb der Fadenchangiereinrichtung getrennt sein müssen.
Das heißt, bei der Herstellung einer Kreuzspule in der Wicklungsart Präzisions- oder Stufen-Präzisionswicklung wird die Kreuzspule durch einen separaten Spulenantrieb angetrieben und der auflaufende Faden durch eine zusätzliche, separat angetriebene Fadenchangiereinrichtung verlegt.
However, such thread guide drums are not applicable to produce a precision or stepped precision winding, since in the production of these types of winding of the drive Cheese and drive the Fadenchangiereinrichtung must be separated.
That is, in the manufacture of a cheese in the winding type precision or step precision winding the cheese is driven by a separate spool drive and laid the incoming thread through an additional, separately driven Fadenchangiereinrichtung.

Als sehr geeignet für eine schnelle und positionsgenaue Fadenchangierung haben sich dabei beispielsweise Einrichtungen erwiesen, deren parallel zur Rotationsachse der Kreuzspule verschiebbarer Fadenführer über ein Zugmittel mit einem reversierbaren Einzelantrieb verbunden ist oder Einrichtungen, die mit einem sogenannten Fingerfadenführer oder Wischer arbeiten, das heißt, Fadenführer, die einen fingerartigen Fadenverlegehebel aufweisen, der um eine im wesentlichen senkrecht zur Kreuzspulenachse angeordnete Achse über einen bestimmten Winkelbereich schwenkbar ist.For example, devices have proven to be very suitable for a fast and positionally precise thread switching whose parallel to the axis of rotation of the cheese displaceable yarn guide is connected via a traction means with a reversible single drive or facilities that work with a so-called finger thread guide or wiper, that is, yarn guide, which have a finger-like thread-laying lever which is pivotable about a substantially perpendicular to the cheese axis arranged axis over a certain angular range.

In der DE 100 21 963 A1 ist eine Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine beschrieben, bei der eine in einem Spulenrahmen drehbar gehaltene Hülse durch eine Antriebswalze, die einen separaten Antrieb aufweist, rotiert werden kann.
Die Arbeitsstelle weist außerdem einen Changierfadenführer auf, der an einem Endlosriemen festgelegt und durch einen definiert ansteuerbaren Einzelantrieb innerhalb eines in seiner Länge veränderbaren Changierhubes hin- und hergeführt werden kann.
Der Einzelantrieb des Changierfadenführers ist dabei mit einem Winkelgeber gekoppelt, der die Rotorstellung des ElektroMotors erfasst und an eine Steuerung meldet.
In the DE 100 21 963 A1 a workstation of a cheese-producing textile machine is described in which a rotatably held in a creel sleeve by a drive roller having a separate drive, can be rotated.
The job also has a traversing yarn guide, which is fixed to an endless belt and can be guided back and forth by a defined controllable single drive within a changeable in its length traverse stroke.
The single drive of the traversing yarn guide is coupled with an angle encoder, which detects the rotor position of the electric motor and reports to a controller.

In der DE 100 21 963 A1 sind allerdings keine näheren Hinweise über die genaue Bauart und die Funktionsweise des eingesetzten Winkelgebers enthalten.In the DE 100 21 963 A1 However, no detailed information about the exact design and operation of the angle encoder used are included.

Die WO 00/24663 beschreibt eine Fadenchangiereinrichtung mit einem Fingerfadenführer, dessen Antrieb an eine Sensoreinrichtung, einen so genannten Drehgeber, angeschlossen ist, die den Bewegungsablauf des Fingerfadenführers überwacht. In dieser Patentanmeldung ist ausgeführt, dass, um den Systemzustand zu kontrollieren und gegebenenfalls den Drehgeber zu korrigieren, gelegentlich an einen Referenzpunkt zurückgefahren wird.The WO 00/24663 describes a Fadenchangiereinrichtung with a finger thread guide, the drive to a sensor device, a so-called rotary encoder is connected, which monitors the movement of the finger thread guide. It is stated in this patent application that in order to check the system state and if necessary to correct the rotary encoder, it is occasionally returned to a reference point.

Zum Referieren des Drehgebers können dabei verschiedene berührungslos arbeitende Sensoren Verwendung finden.To refer to the encoder while various non-contact sensors can be used.

Allerdings kann der Fadenführerarm auch in Berührung mit einem mechanischen Anschlag gebracht werden, wobei das entsprechende Ausgangssignal des Drehgebers ausgewertet wird, um eine Referenz für die Positionierung zu geben.However, the Fadenführerarm can also be brought into contact with a mechanical stop, wherein the corresponding output signal of the encoder is evaluated to give a reference for the positioning.

Auch durch die DE 198 58 548 A1 ist eine Arbeitsstelle für eine Kreuzspulen herstellende Textilmaschine bekannt, bei der der Spulenantrieb und die Fadenchangiereinrichtung getrennte Antriebe aufweisen.
Die Fadenchangiereinrichtung ist dabei als Fingerfadenführer ausgebildet, der durch einen elektromagnetischen Antrieb beaufschlagt ist.
Der elektromagnetische Antrieb des Fadenführerantriebes wird dabei durch einen Mikroprozessor angesteuert, der die Stromstärke und die Stromrichtung nach einem vorgebbaren Programm winkel- und zeitabhängig so steuert, dass sich über die Traversierbreite der jeweils gewünschte Verlegewinkel des Fadens ergibt beziehungsweise dass die Traversierbreite oder die Traversierendpunkte gezielt eingestellt werden können.
Zur Erfassung des Momentanwinkels kommt dabei eine Infrarotlichtschranke zum Einsatz, die koaxial zur Schwingachse angeordnete Markierungen abtastet.
Derartige optische Sensoreinrichtungen sind aufgrund der bekanntermaßen in Spinnereien und Spulereien oft erheblich mit Staub und Flusen belasteten Luft allerdings nicht ganz unproblematisch.
Das heißt, solche optischen Sensoreinrichtungen erfordern, um weitestgehend störungsfrei zu arbeiten, einen relativ hohen Reinigungsaufwand.
Also by the DE 198 58 548 A1 is a job for a cheese-producing textile machine known in which the reel drive and the Fadenchangiereinrichtung have separate drives.
The Fadenchangiereinrichtung is designed as a finger thread guide, which is acted upon by an electromagnetic drive.
The electromagnetic drive of the thread guide drive is controlled by a microprocessor, which controls the current strength and the current direction according to a predetermined program angle and time-dependent that results on the Traversierbreite the respectively desired laying angle of the thread or that set the traverse width or the traversing points targeted can be.
For detecting the instantaneous angle, an infrared light barrier is used, which scans marks arranged coaxially to the oscillating axis.
However, such optical sensor devices are not entirely unproblematic due to the known in spinners and winders often heavily loaded with dust and fluff air.
That is, such optical sensor devices require to work largely trouble-free, a relatively high cleaning costs.

Die nachveröffentlichte DE 103 54 587 beschreibt eine Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine, die über einen Spulenrahmen zum Haltern einer rotierbaren Auflaufspule sowie einen Fingerfadenführer zum Traversieren eines zugeführten Fadens verfügt.
Der elektromotorische Einzelantrieb des Fingerfadenführers ist dabei mit einem Winkelsensor ausgestattet, der an einen Arbeitsstellenrechner angeschlossen ist und einen schwenkbar gelagerten Permanentmagneten sowie ein stationäres Hall-IC-Element aufweist.
Ein solcher Winkelsensor hat dabei mehrere Vorteile.
Das verhältnismäßig kostengünstige analoge Hall-IC-Element, das durch den Magnetfluss eines schwenkbar gelagerten Permanentmagneten beeinflusst wird, generiert beispielsweise Spannungswerte, die proportional zur Winkelstellung der Permanentmagneten und damit zur Winkelstellung des Fingerfadenführers liegen und die vom Arbeitsstellenrechner gut verarbeitet werden können.
Diese beim Traversieren des Fadenverlegehebels des Fadenführers abgegebenen Spannungssignale weisen in dem vom Fingerfadenführer abgedeckten Bereich zwischen etwa -40° und +40° außerdem einen nahezu linearen Verlauf auf.
Da solche Winkelsensoren kontaktlos und damit verschleißfrei arbeiten, zeichnen sie sich des Weiteren durch eine lange Lebensdauer aus.
Positiv ist auch, dass derartige Winkelsensoren nur ein relativ geringes Trägheitsmoment aufweisen und deshalb bei hohen Changiergeschwindigkeiten zuverlässig einsetzbar sind.
The post-published DE 103 54 587 describes a job of a cheese-producing textile machine, which has a creel for holding a rotatable package and a finger thread guide for traversing a supplied thread has.
The electromotive single drive of the finger thread guide is equipped with an angle sensor which is connected to a workstation computer and has a pivotally mounted permanent magnet and a stationary Hall IC element.
Such an angle sensor has several advantages.
The relatively inexpensive analog Hall IC element, which is influenced by the magnetic flux of a pivotally mounted permanent magnet, generates, for example, voltage values which are proportional to the angular position of the permanent magnets and thus to the angular position of the finger thread guide and which can be well processed by the workstation computer.
These delivered during traversing the thread-laying lever of the thread guide voltage signals have in the area covered by the finger thread guide range between about -40 ° and + 40 ° also has a nearly linear course.
Since such angle sensors work contactless and thus wear-free, they are also characterized by a long service life.
It is also positive that such angle sensors have only a relatively low moment of inertia and therefore can be used reliably at high traversing speeds.

In der EP 1 125 877 A1 ist ein Spulkopfmodul für eine Rotorspinnmaschine beschrieben.In the EP 1 125 877 A1 a winding head module for a rotor spinning machine is described.

Der Spulkopfmodul weist dabei eine einzelmotorisch angetriebene Spulenantriebswalze sowie eine ebenfalls eine einzelmotorisch angetriebene Fadenchangiereinrichtung auf.The winding head module in this case has a single-motor driven coil drive roller and also a single-motor driven Fadenchangiereinrichtung.

Die mit einem Fingerfadenführer ausgestattete Fadenchangiereinrichtung ist mit einem Winkelsensor ausgerüstet, der als Hall-Effekt-Sensor ausgebildet ist.The Fadenchangiereinrichtung equipped with a finger thread guide is equipped with an angle sensor, which is designed as a Hall effect sensor.

Der Hall-Effekt-Sensors, der jeweils den Durchgang des Fingerfadenführers durch die Mitte des Fadenchangierbereiches detektiert, ist geschützt innerhalb eines Kunststoffgehäuses angeordnet.The Hall effect sensor, which detects the passage of the finger thread guide through the center of the thread-passing area, is protected within a plastic housing.

Nachteilig bei diesen an sich bewährten Winkelsensoren ist allerdings, dass sich im Laufe der Zeit prinzipbedingt Fehlereinflüsse einstellen.
Zu diesen prinzipbedingten Fehlereinflüssen müssen beispielsweise die Temperaturtrift oder der Alterungsprozess der Permanentmagnete gerechnet werden.
A disadvantage of these proven per se angle sensors, however, that set in the course of time inherent error influences.
For example, the temperature drift or the aging process of the permanent magnets must be calculated for these principle-related fault influences.

Ausgehend vom vorgenannten Stand der Technik liegt der Erfindung die Aufgabe zugrunde, ein Verfahren bzw. eine Vorrichtung zu entwickeln, das/die einen ordnungsgemäßen Betrieb einer Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine über einen längeren Zeitraum ermöglicht. Insbesondere soll dabei sichergestellt werden, dass die Messwerte des Winkelsensors des Fadenführers über die gesamte Lebensdauer der Einrichtung hochpräzise bleiben.Based on the aforementioned prior art, the present invention seeks to develop a method and a device that allows the proper operation of a job of a cheese-producing textile machine over a longer period. In particular, it should be ensured that the measured values of the angle sensor of the thread guide remain highly precise over the entire service life of the device.

Diese Aufgabe wird erfindungsgemäß durch ein Verfahren gelöst, wie es im Anspruch 1 beschrieben ist bzw. durch eine Vorrichtung gemäß Anspruch 4.This object is achieved by a method as described in claim 1 or by a device according to claim 4.

Vorteilhafte Ausgestaltungen des erfindungsgemäßen Verfahrens bzw. der zugehörigen Vorrichtung sind Gegenstand der Unteransprüche.Advantageous embodiments of the method and the associated device are the subject of the dependent claims.

Durch das erfindungsgemäße Verfahren wird zuverlässig verhindert, dass prinzipbedingte Fehlereinflüsse, wie beispielsweise die Temperaturdrift oder der Alterungsprozess der Permanentmagnete, die Messwerte des Winkelsensors mit der Zeit schleichend und damit unbemerkt verfälschen können.
Das heißt, durch einen periodischen und/oder ereignisbezogenen Abgleich der von einem Sensorelement gelieferten Messwerte mit definierten Positionen des Fadenführers, werden Fehlereinflüsse sicher erkannt und beispielsweise durch den Arbeitsstellenrechner entsprechend berücksichtigt, wobei zur Ermittlung entsprechender Messwerte des Sensorelementes der Fadenführer zunächst nacheinander in zwei bestimmte, definierte Positionen gefahren wird.
By means of the method according to the invention, it is reliably prevented that principle-related fault influences, such as, for example, the temperature drift or the aging process of the permanent magnets, can gradually falsify the measured values of the angle sensor over time and thus unnoticed.
In other words, due to a periodic and / or event-related comparison of the measured values supplied by a sensor element with defined positions of the thread guide, error influences are reliably detected and correspondingly taken into account, for example by the workstation computer, whereby the thread guide is first successively determined in two to determine corresponding measured values of the sensor element. defined positions is driven.

In diesen definierten Positionen wird dann vom Sensorelement jeweils ein Messwert generiert. Die ermittelten Messwerte werden im Arbeitsstellenrechner verglichen und/oder zur Berechnung einer Korrekturkennlinie des Sensorelementes verarbeitet.
Die vom Arbeitsstellenrechner berechnete Korrekturkennlinie charakterisiert dabei den Messwertverlauf der elektrischen Spannung, die das Sensorelement zu diesem Zeitpunkt generiert, wenn der Fadenführer zwischen seinen Umkehrpunkten changiert.
In each case, a measured value is generated by the sensor element in these defined positions. The determined measured values are compared in the workstation computer and / or processed to calculate a correction characteristic of the sensor element.
The correction characteristic curve calculated by the workstation calculator characterizes the measured value curve of the electrical voltage that the sensor element generates at this time when the thread guide oscillates between its reversal points.

Wie im Anspruch 2 dargelegt, ordnet der Arbeitsstellenrechner dabei während des Spulvorganges entsprechend der Korrekturkennlinie jeder vom Sensorelement generierten Spannung die zugehörige Position des Fadenführers zu, die dann zur Steuerung des Fadenführers verwendet wird.As explained in claim 2, the workstation computer assigns during the winding process according to the correction characteristic of each voltage generated by the sensor element to the associated position of the thread guide, which is then used to control the thread guide.

In vorteilhafter Ausgestaltung findet die ermittelte Korrekturkennlinie, wie im Anspruch 3 dargelegt, wenigstens bis zum nächsten Abgleich Verwendung.
Das heißt, beim nächsten Abgleich wird die Korrekturkennlinie anhand der dann vorliegenden Messwerte durch den Arbeitsstellenrechner neu berechnet und, falls die Berechnung dies ergibt, durch eine neue Korrekturkennlinie ersetzt.
In an advantageous embodiment, the determined correction characteristic, as set forth in claim 3, at least until the next adjustment use.
This means that during the next adjustment, the correction characteristic curve is recalculated by the workstation computer based on the measured values then available and, if the calculation results, replaced by a new correction characteristic curve.

Nach Anspruch 4 weist die Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens in vorteilhafter Ausführungsform eine durch einen Einzelantrieb beaufschlagte Fadenchangiereinrichtung, einen mit einem Hall-IC-Element ausgerüsteten Winkelsensor sowie einen Arbeitsstellenrechner auf. Der Winkelsensor liefert dabei jeweils einen zur Position eines Fadenführers proportionalen Messwert.
Außerdem sind Mittel vorgesehen, die eine Positionierung des Fadenführers in definierten Stellungen ermöglichen.
According to claim 4, the apparatus for performing the method according to the invention in an advantageous embodiment, acted upon by a single drive Fadenchangiereinrichtung, equipped with a Hall IC element angle sensor and a workstation on. The angle sensor supplies in each case a measured value proportional to the position of a thread guide.
In addition, means are provided which allow positioning of the thread guide in defined positions.

Das heißt, es sind exakt definierte Stellungen vorhanden, in denen ein Abgleich der vom Winkelsensor gelieferten Messwerte mit bekannten Fadenführerpositionen gemacht werden kann.This means that there are exactly defined positions in which an adjustment of the measured values supplied by the angle sensor with known thread guide positions can be made.

Wie im Anspruch 5 beschrieben, ist der Arbeitsstellenrechner dabei so ausgebildet, dass er jede vom Hall-IC-Element des Winkelsensors generierte elektrische Spannung sofort mit einer zugehörigen Position des Fadenführers verknüpft.
Auf diese Weise ist der Arbeitsstellenrechner in der Lage, den Fadenführer, insbesondere was dessen Umkehrpunkte betrifft, optimal anzusteuern.
As described in claim 5, the workstation computer is designed so that it immediately associates each electrical voltage generated by the Hall IC element of the angle sensor with an associated position of the yarn guide.
In this way, the workstation computer is able to optimally control the thread guide, in particular as regards its reversal points.

In vorteilhafter Ausführungsform ist der Fadenführer, wie im Anspruch 6 beschrieben, als Fingerfadenführer ausgebildet, dessen Fadenverlegehebel durch Anlegen an zwei Anschläge jeweils in definierten Winkelstellungen positionierbar ist.
In diesen sogenannten Abgleichstellungen wird jeweils ein vom Hall-IC-Element des Winkelsensors generierter Messwert erfasst und im Arbeitsstellenrechner zur Berechnung einer Korrekturkennlinie des Winkelsensors verwendet.
Diese vom Arbeitsstellenrechner berechnete Korrekturkennlinie charakterisiert den augenblicklichen Verlauf der vom Winkelsensor zu diesem Zeitpunkt bei der Changierung des Fadenverlegehebels generierte elektrischen Spannung.
Das heißt, durch den Arbeitsstellenrechner werden bei der Ermittlung der jeweiligen Winkelstellung des Fadenverlegehebels Fehlereinflüsse, die sich aus dem Bauprinzip des Winkelsensors beispielsweise aufgrund einer gewissen Alterung der Permanentmagnete ergeben, berücksichtigt.
In an advantageous embodiment, the thread guide, as described in claim 6, designed as a finger thread guide, the thread-laying lever is positioned by applying two stops each in defined angular positions.
In each case, a measured value generated by the Hall IC element of the angle sensor is detected in these so-called adjustment positions and used in the workstation computer for calculating a correction characteristic curve of the angle sensor.
This correction characteristic curve calculated by the workstation computer characterizes the instantaneous course of the electrical voltage generated by the angle sensor at this time during the traversing of the thread-laying lever.
That is, by the workstation computer are considered in determining the respective angular position of the thread-laying lever error influences resulting from the construction principle of the angle sensor, for example due to a certain aging of the permanent magnets.

Wie im Anspruch 7 beschrieben, liegt in bevorzugter Ausführungsform der durch den Winkelsensor bei dessen Kalibrierung abdeckbare Bereich zwischen +40° und -40°.
Das heißt, dieser Bereich ist etwas größer als der Arbeitsbereich des Fingerfadenführers, dessen Fadenverlegehebel während des Spulbetriebes einen Bereich zwischen +37.5° und -37,5° abdeckt.
Durch eine solche großzügige Dimensionierung des durch Kalibrierung abdeckbaren Bereiches ist sichergestellt, dass die zum Beispiel bei der Montage des Fadenführerantriebes auftretenden Einbautoleranzen sicher ausgeglichen werden können.
Die Positionierung von definierten Anschlägen bei +39° und -39° ermöglicht außerdem auf einfache Weise einen Abgleich der vom Winkelsensor gelieferten Messwerte mit bekannten Winkelstellungen des Fadenverlegehebels des Fadenführers.
Das heißt, bei Anlage des Fadenverlegehebels an diesen Anschlägen ist gewährleistet, dass die vom Winkelsensor generierten Messwerte stets die selbe Winkelstellung betreffen und dass Abweichungen bei diesen Messwerten auf prinzipbedingte Fehlereinflüsse des Winkelsensors zurückzuführen sind, die vom Arbeitsstellenrechner bei der Berechnung einer Korrekturkennlinie berücksichtigt werden.
As described in claim 7, lies in a preferred embodiment, the coverable by the angle sensor during its calibration range between + 40 ° and -40 °.
That is, this area is slightly larger than the working range of the finger thread guide whose thread-laying lever covers a range between + 37.5 ° and -37.5 ° during the winding operation.
Such a generous dimensioning of the area which can be covered by calibration ensures that the installation tolerances occurring, for example, during assembly of the thread guide drive can be reliably compensated for.
The positioning of defined stops at + 39 ° and -39 ° also makes it possible in a simple way to balance the measured values provided by the angle sensor with known angular positions of the thread-laying lever of the thread guide.
This means that when the thread-laying lever is applied to these stops, it is ensured that the measured values generated by the angle sensor always relate to the same angular position and that deviations in these measured values are due to inherent error influences of the angle sensor, which are taken into account by the workstation computer when calculating a correction characteristic curve.

In weiterer vorteilhafter Ausgestaltung ist vorgesehen, dass der Winkelsensor eine Auflösung von 0,024° aufweist (Anspruch 8).
Eine solche hohe Auflösung des Winkelsensors ermöglicht ein präzises Anfahren der Fadenumkehrpunkte bei der Fadenchangierung und damit einen homogenen Spulenaufbau.
In a further advantageous embodiment, it is provided that the angle sensor has a resolution of 0.024 ° (claim 8).
Such a high resolution of the angle sensor allows a precise approach of the thread reversal points in the thread switching and thus a homogeneous coil structure.

Die Erfindung wird nachfolgend anhand eines in den Zeichnungen dargestellten Ausführungsbeispieles näher erläutert.The invention will be explained in more detail with reference to an embodiment shown in the drawings.

Es zeigt:

Fig. 1
schematisch eine Arbeitsstelle einer Kreuzspulen herstellenden Textilmaschine, mit einem Spulenantrieb und einem separaten, einzelmotorisch angetriebenen Fadenführer, dessen Antrieb mit einem Winkelsensor ausgestattet ist,
Fig. 2
den auf der Welle des Fadenführerantriebes angeordneten Winkelsensor im Schnitt,
Fig. 3
den Winkelsensor, gemäß Schnitt III - III der Figur 2,
Fig. 4
den Fingerfadenführer in Blickrichtung des Pfeiles X, während eines Abgleichs des Winkelsensors,
Fig. 5
ein Winkelstellung / Ausgangsspannung - Diagramm während eines Abgleichs des Winkelsensors.
It shows:
Fig. 1
1 schematically shows a workstation of a textile machine producing cross-wound bobbins, with a bobbin drive and a separate, single-motor-driven yarn guide, the drive of which is equipped with an angle sensor,
Fig. 2
the arranged on the shaft of the thread guide drive angle sensor in section,
Fig. 3
the angular sensor, according to section III - III of FIG. 2 .
Fig. 4
the finger thread guide in the direction of arrow X, during an adjustment of the angle sensor,
Fig. 5
one angular position / output voltage - diagram during adjustment of the angle sensor.

In Figur 1 ist in Seitenansicht schematisch die Arbeitsstelle 2 einer Kreuzspulen herstellenden Textilmaschine, im vorliegenden Fall eines sogenannten Kreuzspulautomaten 1 dargestellt.
Auf den Arbeitsstellen 2 derartiger Kreuzspulautomaten 1 werden, wie bekannt und daher nicht näher erläutert, die auf einer Ringspinnmaschine produzierten Spinnkopse 3 zu großvolumigen Kreuzspulen 5 umgespult.
Die Kreuzspulen 5 werden nach ihrer Fertigstellung beispielsweise mittels eines (nicht dargestellten) selbsttätig arbeitenden Serviceaggregates auf eine maschinenlange Kreuzspulentransporteinrichtung 7 übergeben und zu einer maschinenendseitig angeordneten Spulenverladestation oder dergleichen transportiert.
Solche Kreuzspulautomaten 1 weisen in der Regel außerdem ein Spulen- und Hülsentransportsystem 6 auf, in dem, auf Transporttellern 11, die Spinnkopse 3 beziehungsweise Leerhülsen umlaufen.
Von dem Spulen- und Hülsentransportsystem 6 sind in Fig. 1 lediglich die Kopszuführstrecke 24, die reversierend antreibbare Speicherstrecke 25, eine der zu den Spulstellen 2 führenden Quertransportstrecken 26 sowie die Hülsenrückführstrecke 27 dargestellt.
In FIG. 1 is a schematic side view of the workstation 2 of a cheese-producing textile machine, in the present case of a so-called cross-winding machine 1 shown.
As is known and therefore not explained in more detail, the spinning stations 3 produced on a ring spinning machine are rewound to large-volume cheeses 5 on the work stations 2 of such automatic packages 1.
The cheeses 5 are automatically after their completion, for example by means of a (not shown) working service units on a machine-length cross-bobbin transport device 7 and transported to a machine end side arranged Spulenverladestation or the like.
Such spooling machines 1 generally also have a bobbin and tube transport system 6, in which, on transport plates 11, the spinning cops 3 or empty tubes circulate.
Of the bobbin and tube transport system 6 are in Fig. 1 only the Kopszuführstrecke 24, the reversibly driven storage section 25, one of the leading to the winding units 2 transverse transport sections 26 and the sleeve return path 27 shown.

Die einzelnen Arbeitsstellen 2 verfügen außerdem, wie bekannt und daher nur angedeutet, über verschiedene Einrichtungen, die einen ordnungsgemäßen Betrieb derartiger Arbeitsstellen gewährleisten.
Eine dieser Einrichtungen ist beispielsweise die Spulvorrichtung 4.
Die Spulvorrichtung 4 weist einen um eine Schwenkachse 12 beweglich gelagert Spulenrahmen 8 auf.
Gemäß vorliegendem Ausführungsbeispiel liegt die Kreuzspule 5 während des Spulprozesses mit ihrer Oberfläche auf einer Antriebstrommel 9 auf und wird von dieser einzelmotorisch beaufschlagten Antriebstrommel 9 über Reibschluss mitgenommen. Der entsprechende Antrieb trägt die Bezugszahl 33.
The individual jobs 2 also have, as known and therefore only hinted, various facilities that ensure the proper operation of such jobs.
One of these devices is, for example, the winding device 4.
The winding device 4 has a coil frame 8 movably mounted about a pivot axis 12.
According to the present embodiment, the cheese 5 is located during the winding process with its surface on a drive drum 9 and is driven by this single-motor actuated drive drum 9 via frictional engagement. The corresponding drive carries the reference number 33.

Zur Changierung des Fadens 16 während des Spulprozesses ist eine Fadenchangiereinrichtung 10 vorgesehen.
Eine solche in der Figur 1 nur schematisch angedeutete Fadenchangiereinrichtung 10 verfügt beispielsweise über einen Fadenführer 13 mit einem fingerartig ausgebildeten Fadenverlegehebel 45. Der Fadenverlegehebel 45 traversiert, durch einen elektromechanischen Antrieb 14 beaufschlagt, den Faden 16 zwischen den beiden Stirnseiten der Kreuzspule 5. Der Antrieb 14 des Fadenführers 13 ist dabei beispielsweise über eine (nicht dargestellte) Konsole am Spulstellengehäuse 34 der betreffenden Arbeitsstelle 2 festgelegt.
Außerdem sind sowohl der Antrieb 14 des Fadenführers 13 als auch der Antrieb 33 der Antriebstrommel 9 über Steuerleitungen 15 bzw. 35 mit dem Arbeitsstellenrechner 28 verbunden.
For traversing the thread 16 during the winding process a Fadenchangiereinrichtung 10 is provided.
Such in the FIG. 1 only schematically indicated Fadenchangiereinrichtung 10 has, for example, a The thread-laying lever 45 traverses, acted upon by an electromechanical drive 14, the thread 16 between the two end faces of the cheese 5. The drive 14 of the thread guide 13 is, for example via a (not shown) console on Spulstellengehäuse 34 of the relevant job 2.
In addition, both the drive 14 of the thread guide 13 and the drive 33 of the drive drum 9 via control lines 15 and 35 are connected to the workstation computer 28.

Wie beispielsweise aus Fig. 2 ersichtlich, weist der Antrieb 14 eine Motorwelle 17 auf, an der der fingerartig ausgebildete Fadenverlegehebel 45 drehfest angeordnet ist.
Auf der dem Fadenführer 13 gegenüberliegenden Seite der Motorwelle 17 ist geschützt unter einer abnehmbaren Abdeckkappe 18 ein Winkelsensor 19 montiert, dessen Aufbau nachfolgend erläutert wird.
Like, for example Fig. 2 it can be seen, the drive 14 has a motor shaft 17, on which the finger-like thread laying lever 45 is arranged rotationally fixed.
On the side opposite the yarn guide 13 side of the motor shaft 17 is protected by a removable cap 18, an angle sensor 19 is mounted, the structure will be explained below.

Wie in Fig. 2 dargestellt, ist am Gehäuse 39 des Antriebes 14, auf der dem Fadenverlegehebel 45 gegenüberliegenden Seite, ein Kunststoffformteil 31 festgelegt, das sowohl eine Befestigungsbohrung 36 für einen Sensorträger 23 als auch einen Lagerzapfen 37 für eine mit einer elektronischen Schaltung 32 bestückten Platine 38 aufweist.
Die elektronische Schaltung 32 kann dabei beispielsweise einen Speicherchip sowie eine elektronische Steuereinrichtung beinhalten.
Am Sensorträger 23 ist stationär ein Hall-IC-Element 29 festgelegt, das mit einem Permanentmagneten 20 korrespondiert, der über einen Stützring 21 sowie einen Schraubenbolzen 22 drehfest mit der Motorwelle 17 des Antriebes 14 verbunden ist.
As in Fig. 2 shown, on the housing 39 of the drive 14, on the thread laying lever 45 opposite side, a plastic molded part 31 is fixed, which has both a mounting hole 36 for a sensor carrier 23 and a bearing pin 37 for a stocked with an electronic circuit board 32 38.
The electronic circuit 32 may include, for example, a memory chip and an electronic control device.
At the sensor carrier 23, a Hall-IC element 29 is stationary, which corresponds to a permanent magnet 20, which is rotatably connected via a support ring 21 and a bolt 22 with the motor shaft 17 of the drive 14.

Die Figur 3 zeigt eine Rückansicht des Antriebes 14, das heißt eine Ansicht des Winkelsensors 19 gemäß Schnitt III-III der Figur 2.
Wie dargestellt, ist der Permanentmagnet 20 als zweipolig radial magnetisierter Ringmagnet ausgebildet, dessen Pole N, S in der dargestellten Mittelstellung des Fadenführers 13, das heißt, in der Winkelstellung 0°, bezüglich des stationär angeordneten Hall-IC-Elementes 29 orthogonal angeordnet sind. Das heißt, wenn der Fadenführer 13 eine Winkelstellung 0° einnimmt, sind die Pole N, S des Magnetringes 20 rechtwinklig zum Hall-IC-Element ausgerichtet.
The FIG. 3 shows a rear view of the drive 14, that is, a view of the angle sensor 19 according to section III-III of FIG. 2 ,
As shown, the permanent magnet 20 is formed as a two-pole radially magnetized ring magnet whose poles N, S in the illustrated center position of the yarn guide 13, that is, in the angular position 0 °, with respect to the stationary arranged Hall IC element 29 are arranged orthogonal. That is, when the yarn guide 13 assumes an angular position 0 °, the poles N, S of the magnetic ring 20 are aligned at right angles to the Hall IC element.

Die Fig. 4 zeigt eine Ansicht der Fadenchangiereinrichtung 10 gemäß Blickrichtung des Pfeils X der Fig. 1 während eines Abgleichs des Winkelsensors 19.
Wie dargestellt sind in die Frontplatte 44 des Fadenführerantriebs 14 in definiert angeordneten Bohrungen Anschläge 40 bzw. 41 eingelassen, die jeweils eine vorgegeben, exakte Winkelstellung des Fadenverlegehebels 45 definieren. Die Anschläge 40, 41 sind dabei vorzugsweise so positioniert, dass der während des Abgleichs am Anschlag 40 anliegende Fadenverlegehebel 45 exakt eine Winkellage von -39° aufweist, während die Winkellage des Fadenverlegehebels 45 am Anschlag 41 exakt +39° beträgt.
Die bei der Anlage des Fadenverlegehebels 45 am Anschlag 40 bzw. 41 durch das Hall-IC-Element 29 initiierte elektrische Spannung V wird in der elektronischen Schaltung 32 des Winkelsensors 19 verarbeitet und über eine Daten- und Steuerleitung 15 an den Arbeitsstellenrechner 28 weitergeleitet, der daraus im Bedarfsfalle eine Korrekturkennlinie berechnet, anhand deren jeder Messwert einer bestimmten Winkelstellung des Fadenverlegehebels 45 zugeordnet werden kann.
The Fig. 4 shows a view of the Fadenchangiereinrichtung 10 in accordance with the direction of the arrow X of Fig. 1 during an adjustment of the angle sensor 19.
As shown, in the front plate 44 of the thread guide drive 14 in defined holes arranged stops 40 and 41, each defining a predetermined, exact angular position of the thread-laying lever 45. The stops 40, 41 are preferably positioned so that the fitting during adjustment at the stop 40 thread-laying lever 45 has exactly an angular position of -39 °, while the angular position of the thread-laying lever 45 at the stop 41 is exactly + 39 °.
The electrical voltage V initiated by the Hall IC element 29 when the thread-laying lever 45 abuts against the stop 40 or 41 is processed in the electronic circuit 32 of the angle sensor 19 and via a data and control line 15 to the workstation computer 28 forwarded therefrom, if necessary, calculates a correction characteristic curve, by means of which each measured value can be assigned to a specific angular position of the thread-laying lever 45.

In Fig. 5 sind anhand eines Koordinatensystems Kennlinien 42, 43 dargestellt, die den von den Winkelstellungen des Fadenverlegehebels 45 und damit von den Winkelstellungen des Permanentmagneten 20 abhängigen, durch das programmierbare Hall-IC-Element 29 generierten elektrischen Spannungsverlauf, andeuten.
Auf der Abszisse des Koordinatensystems ist dabei der vom Fadenverlegehebel 45 während der Fadenchangierung abdeckbare Bereich in Winkelgraden dargestellt, während die Ordinate des Koordinatensystems die vom Hall-IC-Element 29 generierte Spannung in Volt zeigt.
Das heißt, die Spannung V, die das Hall-IC-Element 29 aus dem Magnetfluß der Permanentmagnete 20, deren Winkelstellung sowie einer Gerätekonstanten generiert.
In Fig. 5 characteristic curves 42, 43 are shown on the basis of a coordinate system which indicate the electrical voltage profile generated by the programmable Hall IC element 29 and dependent on the angular positions of the thread-laying lever 45 and thus on the angular positions of the permanent magnet 20.
On the abscissa of the coordinate system while the area covered by the thread-laying lever 45 during the Fadenchangierung area is shown in degrees, while the ordinate of the coordinate system shows the voltage generated by the Hall-IC element 29 in volts.
That is, the voltage V which generates the Hall IC element 29 from the magnetic flux of the permanent magnets 20, their angular position and a device constants.

Mit 43 ist dabei eine Kennlinie für den Spannungsverlauf des Winkelsensors 19 gekennzeichnet, wie sie sich nach der Kalibrierung des Winkelsensors 19 zu Beginn seines Einsatzes ergeben hatte.
Im Ausführungsbeispiel liegt gemäß Kennlinie 43 bei einer Winkelstellung des Fadenverlegehebels 45 von -39° am Winkelsensor 19 beispielsweise eine Spannung von 0,71 V an. Bei einer Winkelstellung des Fadenverlegehebels 45 von +39° beträgt die entsprechende Spannung am Winkelsensor 19 4,83 V. Wie anhand der Kennlinie 43 angedeutet, ist der Spannungsverlauf in dem vom Fadenverlegehebel 45 abgedeckten Changierbereich zwischen -39° und +39° weitestgehend linear.
With 43 while a characteristic curve for the voltage waveform of the angle sensor 19 is characterized as it had resulted after the calibration of the angle sensor 19 at the beginning of its use.
In the exemplary embodiment is according to characteristic curve 43 at an angular position of the thread-laying lever 45 of -39 ° at the angle sensor 19, for example, a voltage of 0.71 V at. At an angular position of the thread-laying lever 45 of + 39 °, the corresponding voltage at the angle sensor 19 is 4.83 V. As indicated by the characteristic 43, the voltage curve in the covered by the thread-laying lever 45 trailing range between -39 ° and + 39 ° is largely linear.

In der Mittelstellung 0° des Fadenverlegehebels 45 ergibt sich am Winkelsensor 19 folglich eine Spannung von beispielsweise 2,76 Volt.In the middle position 0 ° of the thread-laying lever 45, the angle sensor 19 consequently produces a voltage of, for example, 2.76 volts.

Die Kennlinie 42 zeigt den bei einem späteren Abgleich des Winkelsensors 19 ermittelten Spannungsverlauf.
Im Ausführungsbeispiel liegt die vom Winkelsensors 19 bei diesem Abgleich bei einer Winkelstellung des Fadenverlegehebels 45 von -39° generierte elektrische Spannung bei 0,56 V.
Bei einer Winkelstellung des Fadenverlegehebels 45 von +39° werden 4,47 V generiert.
Da auch die Kennlinie 42 einen weitestgehend linearen Verlauf aufweist, ergibt daraus für die Mittel-Stellung 0° des Fadenverlegehebels 45 am Winkelsensor 19 eine Spannung von beispielsweise 2,48 Volt.
The characteristic curve 42 shows the voltage curve determined during a later adjustment of the angle sensor 19.
In the exemplary embodiment, the electrical voltage generated by the angle sensor 19 in this adjustment at an angular position of the thread-laying lever 45 of -39 ° is 0.56 V.
At an angular position of the thread-laying lever 45 of + 39 ° 4.47 V are generated.
Since the characteristic 42 has a largely linear course, it results for the middle position 0 ° of the thread-laying lever 45 at the angle sensor 19, a voltage of for example 2.48 volts.

Mit dem vorliegenden Winkelsensor 19 ist beispielsweise eine Auflösung 0,024° realisierbar.With the present angle sensor 19, for example, a resolution of 0.024 ° can be realized.

Vor Inbetriebnahme des Fadenführerantriebes 14 in der Arbeitsstelle 2 muss der Winkelsensor 19 zunächst kalibriert werden.
Bei dieser Kalibrierung des Winkelsensors 19 am fertig montierten Antrieb 14 kann dabei nach verschiedenen Verfahren vorgegangen werden, die in der nachveröffentlichten DE 103 54 587 relativ ausführlich beschrieben sind.
Before starting the thread guide drive 14 in the workplace 2, the angle sensor 19 must first be calibrated.
In this calibration, the angle sensor 19 on the fully assembled drive 14 can be followed by various methods that in the post-published DE 103 54 587 are described in relative detail.

Bei einem dieser Kalibrierverfahren wird beispielsweise die magnetische Kennlinie des Permanentmagneten 20 des Winkelsensors 19 anhand definierter Winkelstellungen des Fadenverlegehebels 45 des Fadenführers 13 gemessen.
Das heißt, der Fadenverlegehebel 45 wird mittels einer einfachen mechanischen Vorrichtung, zum Beispiel zweier Anschläge 40, 41, nacheinander in definierten Winkelstellungen positioniert und dabei jeweils die aufgrund des Magnetflusses des Permanentmagneten 20 im Hall-IC-Element 29 generierte elektrische Spannung erfasst.
Der Arbeitsstellenrechner 28 der betreffenden Spulstelle 2 berechnet dann anhand der bekannten Positionen des Fadenverlegehebels 45 sowie der erfassten Messwerte des Winkelsensors eine erste Kennlinie für den Winkelsensor 19. Diese erste Kennlinie ist im Koordinatensystem der Fig. 5 mit der Bezugszahl 43 gekennzeichnet.
Wie in Fig. 5 angedeutet, ist jedem Punkt der Kennlinie 43 eine bestimmte Winkelstellung des Fadenverlegehebels 45 sowie ein entsprechender Messwert des Winkelgebers 19 zugeordnet.
Bei einer Mittelstellung des Fadenverlegehebels 45, das heißt bei einer Winkelstellung von 0° beträgt der zugehörige Messwert des Winkelsensors beispielsweise 2,76 V.
In one of these calibration methods, for example, the magnetic characteristic of the permanent magnet 20 of the Angle sensor 19 measured by means of defined angular positions of the thread-laying lever 45 of the thread guide 13.
In other words, the thread-laying lever 45 is successively positioned in defined angular positions by means of a simple mechanical device, for example two stops 40, 41, thereby detecting the electrical voltage generated in the Hall IC element 29 due to the magnetic flux of the permanent magnet 20.
The workstation computer 28 of the relevant winding unit 2 then calculates a first characteristic curve for the angle sensor 19 on the basis of the known positions of the thread-laying lever 45 and the detected measured values of the angle sensor. This first characteristic curve is in the coordinate system of FIG Fig. 5 marked with the reference number 43.
As in Fig. 5 indicated, each point of the characteristic 43 is associated with a certain angular position of the thread-laying lever 45 and a corresponding measured value of the angle sensor 19.
In a middle position of the thread-laying lever 45, that is, at an angular position of 0 °, the associated measured value of the angle sensor is, for example, 2.76 V.

Das erfindungsgemäße Abgleichverfahren läuft folgendermaßen:The balancing method according to the invention runs as follows:

Da sich die Kennlinie des Winkelsensors 19 prinzipbedingt im Laufe der Zeit ändert, beispielsweise durch die Alterung der Permanentmagnete 20 des Winkelsensors 19, durch Temperaturtrift oder dergleichen, entspricht ein Messwert von zum Beispiel 2,76 V nur eine bestimmte Zeit exakt einer Winkelstellung von 0° des Fadenverlegehebels 45.
Um exakte Messwerte des Winkelsensors 19 auch über einen längeren Zeitraum gewährleisten zu können, wird der Winkelsensor 19 deshalb von Zeit zu Zeit abgeglichen.
Since the characteristic of the angle sensor 19 changes in principle over time, for example due to the aging of the permanent magnets 20 of the angle sensor 19, by temperature drift or the like, corresponds to a reading of, for example, 2.76 V only a certain time exactly an angular position of 0 ° the thread-laying lever 45.
In order to be able to ensure exact measured values of the angle sensor 19 over a longer period of time, the angle sensor 19 is therefore adjusted from time to time.

Bei diesem zweiten Kalibrierverfahren wird die magnetische Kennlinie des Permanentmagneten 20 neu vermessen.
Dies kann in einer externen Kalibriervorrichtung oder in der Arbeitsstelle geschehen.
Die ermittelten Korrekturwerte werden dann entweder im Arbeitsstellenrechner 28 der Spulstelle oder in einem zusätzlichen (nicht dargestellten) Speicherchip der elektronischen Schaltung 32 des Winkelsensors 19 abgelegt.
In this second calibration method, the magnetic characteristic of the permanent magnet 20 is re-measured.
This can be done in an external calibration device or in the workplace.
The determined correction values are then stored either in the workstation computer 28 of the winding unit or in an additional memory chip (not shown) of the electronic circuit 32 of the angle sensor 19.

Das heißt, der Fadenverlegehebel 45 wird beispielsweise erneut, nacheinander, an die definierten Anschläge 40, 41 gefahren und in diesen Winkelstellungen die vom Winkelsensor 19 generierten Messwerte erfasst.
Aus diesen erfassten Messwerten berechnet der Arbeitsstellenrechner 28 dann eine Korrekturkennlinie 42, wie dies in Fig. 5 dargestellt ist.
Auch die Korrekturkennlinie 42 weist einen linearen Verlauf auf.
Des Weiteren ist auch jedem Punkt der Korrekturkennlinie 42 eine bestimmte Winkelstellung des Fadenverlegehebels 45 sowie ein zugehöriger Messwert des Winkelsensor 19 in Volt zugeordnet.
Bei der in Fig. 5 als Ausführungsbeispiel dargestellten Korrekturkennlinie 42 entspricht ein Messwert von zum Beispiel 0,56 V einer Winkelstellung des Fadenverlegehebels 45 von -39°. In der Mittelstellung 0° des Fadenverlegehebels 45 steht am Winkelsensor 19 ein Messwert von 2,48 V an, während der Messwert des Winkelsensors 19 bei einer Winkelstellung von +39° des Fadenverlegehebels 45 beispielsweise 4,47 V beträgt.
That is to say, the thread-laying lever 45 is driven, for example, again one after the other, to the defined stops 40, 41, and the measured values generated by the angle sensor 19 are detected in these angular positions.
From these measured values, the workstation computer 28 then calculates a correction characteristic 42, as shown in FIG Fig. 5 is shown.
The correction characteristic 42 also has a linear course.
Furthermore, each point of the correction characteristic 42 is also assigned a specific angular position of the thread-laying lever 45 and an associated measured value of the angle sensor 19 in volts.
At the in Fig. 5 Correction characteristic line 42 shown as an exemplary embodiment corresponds to a measured value of, for example, 0.56 V of an angular position of the thread-laying lever 45 of -39 °. In the center position 0 ° of the thread-laying lever 45, a measured value of 2.48 V is present at the angle sensor 19, while the measured value of the angle sensor 19 is 4.47 V at an angular position of + 39 ° of the thread-laying lever 45.

Die Korrekturkennlinie 42 des Winkelsensors 19 bleibt bis zum nächsten Abgleich maßgebend und wird dann gegebenenfalls durch eine neue Korrekturkennlinie ersetzt, die ebenfalls durch einen entsprechenden Abgleich ermittelt wird.The correction characteristic 42 of the angle sensor 19 remains relevant until the next adjustment and is then optionally replaced by a new correction characteristic, which is also determined by a corresponding adjustment.

Claims (8)

  1. Method for operating a workstation (2) of a textile machine (1) producing cross-wound bobbins, comprising a creel (8) for holding a rotatable wind-on bobbin (5), a thread traversing mechanism (10), which is driven by a single motor, and a sensor element (19) which can be calibrated and supplies a measured value that is proportional to the position of the thread guide (13), whereby a proper operating mode of the sensor element (19) is ensured in that an adjustment takes place between measured values supplied by the sensor element (19) and defined positions of the thread guide (13), at predeterminable time intervals and/or in relation to events, characterised in that to determine the measured values of the sensor element (19) during a winding interruption, the thread guide (13) is moved successively into determined, defined positions, in that in these positions, a respective measured value of the sensor element (19) is detected and in that the detected measured values are processed in the workstation computer (28) to calculate a characteristic correction curve (43) of the sensor element (19).
  2. Method according to claim 1, characterised in that during the winding process, the workstation computer (28), according to the characteristic correction curve (43), allocates the associated position of the thread guide (13) to a voltage (V) generated by the sensor element (19), which position is then used to control the thread guide (13).
  3. Method according to claim 2, characterised in that the determined characteristic correction curve (43) is then used until the next adjustment of the sensor element (19).
  4. Device with a thread traversing mechanism driven by a single motor for carrying out the method according to claim 1, characterised in that the single drive of the thread traversing mechanism has a calibrated angle sensor which is equipped with a Hall IC element and is connected to a workstation computer, and supplies a measured value proportional to the position of the thread guide, and in that provided in the region of the thread traversing mechanism (10) are means (40, 41), which allow a positioning of the thread guide (13) in defined, reproducible positions.
  5. Device according to claim 4, characterised in that the workstation computer (28) is configured, such that it links each voltage (V) generated by the Hall IC element (29) of the angle sensor (19) with an associated position of the thread guide (13).
  6. Device according to claim 4, characterised in that the thread traversing device (10) is configured as a finger thread guide (13), the thread placing lever (45) of which can be positioned in defined angle positions by disposing on stops (40, 41).
  7. Device according to claim 6, characterised in that the angle range which can be covered by the angle sensor (19) by calibration is between +40° and -40°, in that the working range of the thread placing lever (45) is between +37.5° and -37.5°, and in that the stops (40, 41), on which the thread placing lever (45) is positioned for adjustment, are arranged in each case at + 39° and at -39°.
  8. Device according to claim 4, characterised in that the angle sensor (19) has a resolution of 0.024°.
EP20050027303 2005-01-08 2005-12-14 Method and device for the operation of a workstation of a textile machine producing crosswound bobbins Active EP1679277B1 (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE200510001094 DE102005001094A1 (en) 2005-01-08 2005-01-08 Method and device for operating a workstation of a textile machine producing cross-wound bobbins

Publications (3)

Publication Number Publication Date
EP1679277A2 EP1679277A2 (en) 2006-07-12
EP1679277A3 EP1679277A3 (en) 2007-08-01
EP1679277B1 true EP1679277B1 (en) 2009-06-10

Family

ID=36103296

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050027303 Active EP1679277B1 (en) 2005-01-08 2005-12-14 Method and device for the operation of a workstation of a textile machine producing crosswound bobbins

Country Status (4)

Country Link
EP (1) EP1679277B1 (en)
JP (1) JP4773206B2 (en)
CN (1) CN1799978B (en)
DE (2) DE102005001094A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009227414A (en) * 2008-03-24 2009-10-08 Murata Mach Ltd Yarn winder
CN101618809B (en) * 2009-07-20 2012-02-22 南京航空航天大学 Device for controlling yarn releasing with low damage and method
DE102009049390A1 (en) * 2009-10-14 2011-04-21 Oerlikon Textile Gmbh & Co. Kg A method of operating a cheese-producing textile machine and cheese-producing textile machine
DE102013009652A1 (en) * 2013-06-08 2014-12-11 Saurer Germany Gmbh & Co. Kg A method of adjusting a rotational angular position of a spool frame rotatably supporting a spool, a spool fabric making textile machine having a plurality of winding units, and use of a spool motor driving a stepping motor
DE102019104570A1 (en) * 2018-03-02 2019-09-05 Oerlikon Textile Gmbh & Co. Kg Method and measuring device for functional testing of wing vibration
DE102019116479A1 (en) * 2019-06-18 2020-12-24 Saurer Spinning Solutions Gmbh & Co. Kg Friction disks for a thread connecting device
DE102019122056A1 (en) * 2019-08-16 2021-02-18 Saurer Spinning Solutions Gmbh & Co. Kg Splice prism unit for a splicer of a textile machine

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0829443A1 (en) * 1996-09-16 1998-03-18 Ssm Schärer Schweiter Mettler Ag Apparatus for winding yarn on a bobbin
EP0838422B1 (en) * 1996-10-28 2002-11-20 Ssm Schärer Schweiter Mettler Ag Apparatus for winding a yarn on a bobbin
US6405966B1 (en) * 1997-07-26 2002-06-18 Barmag Ag Process and cross-winding device for laying a thread
CH693094A5 (en) * 1998-10-28 2003-02-28 Rieter Ag Maschf Traversing unit.
DE19858548A1 (en) * 1998-12-18 2000-06-21 Schlafhorst & Co W Electromechanical drive for the reciprocating yarn guide for winding cross wound bobbins has a structured air gap with magnetic field lines through it acting on a coil at the yarn guide
DE59907716D1 (en) * 1999-04-30 2003-12-18 Ssm Ag Device for winding a thread
DE10021963A1 (en) * 1999-05-14 2000-12-21 Barmag Barmer Maschf Winding of yarns on cross-wound packages involves arranging the variation of traverse length to ensure that turning points are spaced round periphery
JP3491584B2 (en) * 1999-12-08 2004-01-26 株式会社デンソー Rotation angle output adjustment method
DE19963232A1 (en) * 1999-12-27 2001-07-05 Volkmann Gmbh Device for winding a thread on a spool
EP1125877A1 (en) * 2000-02-17 2001-08-22 Schärer Schweiter Mettler AG Winding head and its use
DE10040109A1 (en) * 2000-08-17 2002-02-28 Schlafhorst & Co W Bearing housing for a drive device of a textile machine producing cross-wound bobbins
DE10162778A1 (en) * 2001-12-20 2003-07-03 Schlafhorst & Co W Conical cheese and method for forming the winding body of a conical cheese
DE10354587A1 (en) * 2003-11-21 2005-06-16 Saurer Gmbh & Co. Kg Electromotor drive for the reciprocating yarn guide at a bobbin winder, to produce cross wound bobbins, has an angular sensor as a permanent ring magnet keyed to the motor shaft and a static Hall integrated circuit

Also Published As

Publication number Publication date
JP4773206B2 (en) 2011-09-14
JP2006193334A (en) 2006-07-27
DE502005007452D1 (en) 2009-07-23
EP1679277A2 (en) 2006-07-12
DE102005001094A1 (en) 2006-07-20
EP1679277A3 (en) 2007-08-01
CN1799978B (en) 2011-02-16
CN1799978A (en) 2006-07-12

Similar Documents

Publication Publication Date Title
EP1679277B1 (en) Method and device for the operation of a workstation of a textile machine producing crosswound bobbins
EP0943713B1 (en) Yarn tension sensor with repeated adjustment
EP3109194B1 (en) Method and device for optimizing the density of crosswound spools produced on working stations of an automatic winder
DE102009009971B4 (en) Method and apparatus for operating a workstation of a textile machine producing cross-cheeses, and workstation for carrying out the method
EP1089933A1 (en) Yarn changing method
EP1124748B1 (en) Yarn changing method
DE102006006390A1 (en) Thread splicing device for textile machine which produces cross-wound bobbins has rotational angle sensor for monitoring correct positioning of functional elements, and is connected to thread regulator
DE3240486C2 (en) Method and device for determining defective packages in a winding machine
DE102011008298A1 (en) Method for adjusting swivel path of thread feeder arranged at thread splicing apparatus of cross wound bobbin producing textile machine in textile industry, involves detecting consideration during swivel process of correction factor
EP1249422B1 (en) Yarn clearing device in the winding station of a textile machine
EP2036847B1 (en) Method and device for positioning a finger yarn guide of a textile machine for creating cross-wound spools
DE102007048721A1 (en) Service assembly for self-actuating support of cross-wound bobbin producing textile machine, has chassis supported at guiding rail along machine and sensor unit attached at control unit for collecting position information
EP1498378B1 (en) Energy storage means for a yarn guide of a textile machine for producing a cross-wound bobbin
EP1151951B1 (en) Method for operating a textile machine producing crosswound bobbins
EP1684403B1 (en) Method and device for determining the zero position of a traversing yarn guide
EP1010658B1 (en) Non-contact yarn monitoring method and device for a spinning or winding machine
DE102013018877A1 (en) Method for monitoring a paraffin body, paraffining device and workstation of a textile machine producing cross-wound bobbins
DE102014001626A1 (en) Textile machine producing cross-wound bobbins and method for operating the textile machine
DE10354587A1 (en) Electromotor drive for the reciprocating yarn guide at a bobbin winder, to produce cross wound bobbins, has an angular sensor as a permanent ring magnet keyed to the motor shaft and a static Hall integrated circuit
EP1125879A2 (en) Device for producing a thread reserve and/or an end ridge of thread
DE4335764C2 (en) Device for the orderly clearing of cross-wound bobbins from a conveyor belt running along a machine producing cross-wound bobbins
DE102009017857A1 (en) Thread cross-winding device for producing cross-wound bobbin, is supported in winding device of textile machine manufacturing cross-wound bobbin in winding frame of winding device of cross-coil manufacturing textile machine pivoted
DE4241290A1 (en) Thread winding device with thread changing guide - has thread reserve mechanism operated according to position of guide, detected by sensor in thread guide path
EP0584304B1 (en) Process for controlling movement cycles in a spooler and spooler for carrying out said process
DE102021118258A1 (en) Spinning or winding machine and method for operating a spinning or winding machine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON TEXTILE GMBH & CO. KG

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20080201

AKX Designation fees paid

Designated state(s): CH DE IT LI TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON TEXTILE GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE IT LI TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005007452

Country of ref document: DE

Date of ref document: 20090723

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100311

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20101214

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111214

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005007452

Country of ref document: DE

Owner name: SAURER GERMANY GMBH & CO. KG, DE

Free format text: FORMER OWNER: OERLIKON TEXTILE GMBH & CO. KG, 42897 REMSCHEID, DE

Effective date: 20130918

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005007452

Country of ref document: DE

Owner name: SAURER SPINNING SOLUTIONS GMBH & CO. KG, DE

Free format text: FORMER OWNER: OERLIKON TEXTILE GMBH & CO. KG, 42897 REMSCHEID, DE

Effective date: 20130918

REG Reference to a national code

Ref country code: CH

Ref legal event code: PUE

Owner name: SAURER GERMANY GMBH AND CO. KG, DE

Free format text: FORMER OWNER: OERLIKON TEXTILE GMBH AND CO. KG, DE

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER AND PARTNER AG PATENT- UND MARKENANW, CH

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: NEW ADDRESS: LEVERKUSER STRASSE 65, 42897 REMSCHEID (DE)

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502005007452

Country of ref document: DE

Owner name: SAURER SPINNING SOLUTIONS GMBH & CO. KG, DE

Free format text: FORMER OWNER: SAURER GERMANY GMBH & CO. KG, 42897 REMSCHEID, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20181219

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20190219

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005007452

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20191231

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230519

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20231228

Year of fee payment: 19