EP1675694A1 - Verfahren und steuervorrichtung zum betrieb einer walzstrasse für metallband - Google Patents

Verfahren und steuervorrichtung zum betrieb einer walzstrasse für metallband

Info

Publication number
EP1675694A1
EP1675694A1 EP04790153A EP04790153A EP1675694A1 EP 1675694 A1 EP1675694 A1 EP 1675694A1 EP 04790153 A EP04790153 A EP 04790153A EP 04790153 A EP04790153 A EP 04790153A EP 1675694 A1 EP1675694 A1 EP 1675694A1
Authority
EP
European Patent Office
Prior art keywords
flatness
metal strip
model
visible
intrinsic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04790153A
Other languages
English (en)
French (fr)
Other versions
EP1675694B1 (de
Inventor
Johannes Reinschke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Primetals Technologies Germany GmbH
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=34399272&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1675694(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP1675694A1 publication Critical patent/EP1675694A1/de
Application granted granted Critical
Publication of EP1675694B1 publication Critical patent/EP1675694B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B37/00Control devices or methods specially adapted for metal-rolling mills or the work produced thereby
    • B21B37/28Control of flatness or profile during rolling of strip, sheets or plates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/22Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length
    • B21B2001/225Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling plates, strips, bands or sheets of indefinite length by hot-rolling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B38/00Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product
    • B21B38/02Methods or devices for measuring, detecting or monitoring specially adapted for metal-rolling mills, e.g. position detection, inspection of the product for measuring flatness or profile of strips

Definitions

  • the invention relates to a method according to the preamble of claim 1; one application is particularly suitable for operation in a hot rolling mill, e.g. in the finishing train, but is not limited to this.
  • the invention relates to a control device according to the preamble of patent claim 10.
  • the object is achieved by a method of the type mentioned at the outset, the visible flatness and an intrinsic flatness of the metal strip being taken into account when controlling the roll stands using a dent model.
  • the buckling model creates a clear connection between the intrinsic and visible flatness of the metal strip. This makes it possible for the first time not only to make a presetting based on flatness measurements, but to use the visible flatness for precise control or regulation of the rolling process in progress.
  • the visible flatness is advantageously determined in the form of a dent pattern.
  • the dent pattern is easily comparable in terms of data technology and can be saved with relatively little effort.
  • the dent pattern is advantageously three-dimensional.
  • the buckling pattern of the metal strip it is advantageous to evaluate not only the relative length of individual tracks of the metal strip, but also at least one of the variables wavelength, amplitude and phase offset of the individual tracks.
  • the buckling pattern can thus be recorded much more precisely.
  • a multitrack laser measuring device is advantageously used to determine the buckling pattern, which enables inexpensive detection of the buckling pattern with sufficient precision.
  • the visible flatness is advantageously measured topometrically. In this way, a flat detection of the strip surface structure and in particular the dent pattern is directly possible.
  • values for the visible flatness are advantageously converted into values for the intrinsic flatness or values for intrinsic flatness translated into values for visible flatness.
  • intrinsic strip flatnesses calculated and visible strip flatnesses measured at the exit of a rolling mill can be adapted to one another or verified using a material flow model.
  • the flatness is translated online. This enables a particularly exact control or regulation of the strip flatness.
  • the flatness is translated with the help of an online-capable approximation function.
  • on-line computing time can be saved when translating between visible and intrinsic flatness.
  • its buckling pattern is advantageously modeled by means of the buckling model by applying a fictitious temperature distribution in the transverse direction of the metal strip.
  • the thermal expansion corresponding to this strip temperature distribution in the longitudinal direction, but not in the transverse direction, corresponds to a length distribution that can be assigned to the intrinsic flatness. In this way, only a segment of limited length has to be modeled and the model equations of the elastic plate deformations with large deflections with suitable boundary conditions can be set up at the segment edges.
  • an intrinsic flatness of the metal strip - viewed in the material flow direction - is advantageously determined in front of a physical measuring location of the flatness.
  • one or more flatness limit values are advantageously specified at freely selectable points within and / or after the rolling mill.
  • the flatness limit values can relate to the intrinsic flatness and / or the visible flatness. Because plan limit values can be specified anywhere within or after the rolling mill, control accuracies for the rolling process can be significantly increased.
  • control device for operating a rolling train for metal strip with at least one roll stand, in particular according to the previously described method, the control device having at least one control unit which is coupled to a buckling model.
  • Advantageous designs of the control device are specified in the subclaims. The advantages of the control device result analogously to those of the method.
  • 1 shows a multi-stand rolling mill for rolling metal strip and a control device assigned to the rolling mill
  • a rolling mill for rolling a metal strip 1 is controlled by a control computer 2.
  • the metal strip 1 can be, for example, a steel strip, an aluminum strip or a non-ferrous metal strip, in particular a copper strip.
  • the rolling mill has at least two roll stands 3.
  • the roll stands 3 have at least work rolls 4 and - as indicated in FIG. 1 for one of the roll stands 3 - generally also support rolls 5.
  • the roll stands 3 could also have more rolls, for example axially displaceable intermediate rolls.
  • the metal strip 1 runs through the rolling mill in its longitudinal direction x, the transverse direction y of the metal strip 1 being largely parallel to the axes of the work rolls 4.
  • the rolling train shown in FIG. 1 is designed as a finishing train for hot rolling steel strip.
  • the present invention is particularly suitable for use in a multi-stand finishing train for hot rolling steel strip, it is not limited to this, in particular the rolling mill could also be designed as a cold rolling mill (tandem mill) and / or for rolling a non-ferrous metal ( For example, aluminum, copper or another non-ferrous metal).
  • the control device 2 has a control unit 11. This in turn has a module 10 for profile and flatness control, which is coupled to a material flow model 9.
  • the control device 2 specifies scaffold controllers 6 setpoints for profile and flatness actuators (not shown in more detail). The scaffold controllers 6 then adjust the actuators in accordance with the specified target values.
  • the input variables supplied to the control device 2 include, for example, pass schedule data such as an entry thickness of the metal strip 1 and a rolling force and a pass reduction for each roll stand 3.
  • the input variables generally also include a final thickness, a target profile value, a target thickness contour profile and a target flatness profile of the metal strip 1 at the outlet of the rolling mill.
  • the rolled metal strip 1 should be as flat as possible.
  • the metal strip 1 has flatness errors, as are shown schematically and by way of example in FIGS. 2a, 2b and 2c. Flatness errors of the metal strip 1 can be measured at a location x2, as indicated in FIG. 1, for example by means of a multi-track laser measuring device 13.
  • Figure 2a shows a central bulge of the metal strip 1.
  • Figure 2b shows flatness errors at the edges of the metal strip 1.
  • Figure 2c shows bulges of the metal strip 1, which occur repeatedly in the longitudinal direction x of the metal strip 1, in particular in two areas in the transverse direction y of the metal strip 1.
  • the buckling of the metal strip 1 is caused in particular by internal stresses in the metal strip 1. Internal stresses in the metal strip 1 are also referred to as intrinsic strip flatness ip.
  • FIG. 3 shows the division of a metal strip 1 into fictitious tracks Sl to Sn or into measurement tracks Sl ⁇ to Sm ⁇ . If the metal strip 1 were cut into narrow longitudinal strips or into tracks S1 to Sn, one could measure an uneven strip length distribution (the intrinsic strip length distribution), which is the cause of the internal stresses in the metal strip 1.
  • the multi-track laser measuring device 13 detects the relative
  • Length of the metal strip 1 per measurement track Sl x to Sm and preferably also determines quantities such as the wavelength, amplitude and / or the phase offset of the individual tracks Sl to Sm. It is crucial that the corresponding intrinsic or measured relative lengths do not match for corresponding fictitious tracks Sl to Sn and measurement tracks Sl to Sm.
  • intrinsic strip flatness ip denotes, as stated above, the Band length distribution over the tracks Sl to Sn.
  • the visible flatness vp results from the buckling behavior of the strip, which depends, among other things, on sizes such as the strip thickness, the strip width, the modulus of elasticity of the metal strip 1 and the total tension under which the metal strip 1 is located.
  • the visible flatness vp is measured at a location x2 at the outlet of the rolling mill, in particular a finishing train, and fed to a buckling model 12.
  • the measurement of the visible flatness vp takes place according to the invention in such a way that not only is the visible strip length distribution over the strip width in the transverse direction y the output variable of a measuring device, but the three-dimensional buckling pattern of the strip can be reconstructed from the measuring device output variables.
  • the wavelength and phase offset for each track Sl ⁇ to Sm are output by the measuring device.
  • a topometric band flatness measurement is preferably based on a strip projection method. Stripe patterns are projected onto the surface of the metal strip 1 and continuously recorded with the aid of a matrix camera.
  • the intrinsic flatness ip is preferably calculated at a location xl between or after the roll stands 3, in particular between and / or after the roll stands 3 of a finishing train.
  • the calculation is preferably carried out using a material flow model 9 (see FIG. 1), which is preferably part of a control unit 11.
  • the intrinsic flatness ip calculated by the material flow model 9 can be compared with the measured visible flatness vp with the aid of the buckling model 12.
  • a cold rolling mill would be fundamental it is also possible to measure the intrinsic flatness ip on the metal strip 1.
  • the bulge model 12 creates a clear connection between intrinsic flatness ip and visible flatness vp, insofar as this is possible.
  • intrinsic flatness ip cannot be inferred from the buckling behavior, since such a metal strip 1 generally does not bulge.
  • the different flatnesses are preferably determined in the following order:
  • the visible flatness vp which corresponds to the buckling behavior of the metal strip 1, is usually measured after a last rolling stand 3, for example at the outlet of a finishing train.
  • the intrinsic flatness ip of the metal strip 1 at the measurement site of the visible flatness vp (cf. step 1) is determined by means of the dent model 12.
  • the intrinsic flatness ip between the roll stands 3, that is to say for example within the finishing train, is determined by means of the material flow model 9. In this way, the intrinsic flatness - seen in the direction of material flow - can be determined in front of the physical measuring location of the flatness, here the intrinsic flatness.
  • the relationship between an intrinsic flatness ip between the roll stands 3 and an intrinsic flatness ip after the last of the roll stands 3 is established via the material flow model 9.
  • Input variables such as the strip thickness contours of the metal strip 1 and flatness profiles or flatnesses before and after passing through a roll stand 3 can be fed to the material flow model 9.
  • the Mate The radial flow model 9 determines the intrinsic flatness profile of the metal strip 1 after passing through the roll stand 3 and a rolling force profile in the transverse direction y of the metal strip 1 and leads it to a roll deformation model (not shown in more detail).
  • the roll deformation model which is not shown in detail, is preferably part of a control unit 11.
  • the roll deformation model determines roll deformations and feeds them to a target value determiner, not shown, which, on the basis of the determined roller deformations and a contour-side contour profile of the metal strip 1, sets the target values for the profile and flatness actuators in determined each individual roll stand 3.
  • the material flow model 9 and the profile and flatness control implemented in module 10 can be adapted to the measurement data of the visible flatness vp.
  • Lower and upper bounds can be specified for the visible flatness vp or for the corresponding visible band unevenness, which can be translated into barriers for the intrinsic flatness ip or intrinsic flatness with the aid of the buckling model 12.
  • the bulge model 12 calculates the buckling pattern of the metal strip 1 from the intrinsic flatness.
  • the visible flatness can in turn be determined from the calculated buckling pattern. Inverse modeling is used for the reverse conclusion.
  • the dent model 12 is preferably based on the theory of elastic plate deformations.
  • the intrinsic flatness ip is modeled by applying a fictitious strip temperature distribution over the strip width, that is to say in the transverse direction y, which leads to thermal expansion in the longitudinal direction x of the metal strip 1, to be precise equal to the length distribution belonging to the intrinsic flatness ip.
  • a band segment as shown in FIG. 5 with length a, width b and thickness h.
  • the longitudinal direction x, transverse direction y and a perpendicular z Only a band segment with a length a of half or a whole base buckling length is modeled, with periodic boundary conditions at the head and foot ends of the band segment.
  • the boundary conditions at the strip edges are the free edges.
  • the model equations are partial differential equations as well as the associated boundary conditions, which can be solved, for example, using the finite difference method or the finite element method.
  • the dent model 12 can be used directly online.
  • an online-capable approximation function can be generated using an offline model, which is then used online for the buckling model 12.
  • the measured deflections of the metal strip 1, which are attributable to the buckling of the metal strip 1, generally have a significantly larger order of magnitude than that Strip thickness h.
  • their magnitude is significantly smaller than both the typical wavelength of the buckling behavior and the bandwidth b.
  • the classic, linear theory of plate deformation only applies if the deflections are less than or equal to approximately 1/5 of the strip thickness h, a non-linear description of the plate warps must be used in the present case.
  • T denotes the temperature in the metal strip 1 and ⁇ x or ⁇ y the coefficient of thermal expansion in the longitudinal or transverse direction (x or y).
  • Equations (I) and (IV) form a system of two coupled, non-linear, partial differential equations. If suitable boundary conditions are used, such as free margins or periodic boundary conditions Head and foot ends of a band segment, equations (I) and (IV) can be solved numerically in an iterative manner.
  • the invention relates to a method and a control device for operating a rolling mill for metal strip 1, which has at least one rolling stand 3, the intrinsic flatness ip of the metal strip 1 being determined at the outlet of the rolling mill.
  • the visible flatness vp or the buckling behavior of the metal strip 1 at the outlet of the rolling mill or preferably to measure it and by means of to translate a dent model 12 into the intrinsic planning unit ip of the metal strip 1.
  • the visible flatness can thus be used online with the aid of the dent model 12 to control the rolling stands of the rolling mill.
  • the visible flatness vp according to the invention can preferably be better regulated online, with the aid of the buckling model 12.
  • the bulge model 12 is online-capable and establishes a one-to-one relationship between the absolute intrinsic flatness ip of the rolled metal strip 1 and the actually measured visual defects of the metal strip 1, that is to say the visible flatness vp.
  • the verification, adaptation and coordination of a material flow model 9 based on the intrinsic flatness or its corresponding profile and flatness control with respect to the actual measured values is made possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Metal Rolling (AREA)
  • Metal Rolling (AREA)

Description

Beschreibung
Verfahren und Steuervorrichtung zum Betrieb einer Walzstraße für Metallband
Die Erfindung betrifft ein Verfahren gemäß dem Oberbegriff des Patentanspruchs 1; eine Anwendung eignet sich insbesondere für den Betrieb in einem Warmwalzwerk, z.B. in der Fertigstraße, ist jedoch nicht darauf beschränkt.
Des weiteren betrifft die Erfindung eine Steuervorrichtung gemäß dem Oberbegriff des Patentanspruchs 10.
Aus der Deutschen Offenlegungsschrift DE 19851554 AI ist es bekannt, das Profil und/oder die Planheit eines Metallbandes beim Auslaufen aus einer Walzstraße zu ermitteln und zur Voreinstellung einer Walzstraße zu verwenden. Die gemessene sichtbare Planheit wird hier einem neuronalen Netz in Form von Eingangsparametern zugeführt.
Es ist Aufgabe der Erfindung, eine Walzstraße für Metallband derart zu betreiben, dass eine Steuerung bereitgestellt wird, die gewährleistet, dass eine geforderte sichtbare Planheit des gewalzten Metallbandes innerhalb vorgegebener Schranken zuverlässig und mit hinreichender Genauigkeit eingehalten wird.
Die Aufgabe wird gelöst durch ein Verfahren der eingangs genannten Art, wobei bei der Steuerung der Walzgerüste die sichtbare Planheit und eine intrinsische Planheit des Metallbandes unter Verwendung eines Beulmodells berücksichtigt werden.
Durch die erfindungsgemäß mit Hilfe des Beulmodells mögliche Berücksichtigung sowohl der sichtbaren Planheit der Walzstrasse als auch der intrinsisσhen Planheit können äußerst hohe Anforderungen hinsichtlich der Güte der sichtbaren Plan- heit des Metallbandes erfüllt werden, obwohl die sichtbare Planheit bzw. Welligkeit des Metallbandes beim Walzen unter Zug, also zwischen den Walzgerüsten, mitunter völlig verschwindet und somit innerhalb der Walzstrasse in vielen Fäl- len praktisch nicht messbar ist.
Mittels des Beulmodells wird erstmalig ein eineindeutiger Zusammenhang zwischen intrinsischer und sichtbarer Planheit des Metallbandes hergestellt. Somit wird es erstmals möglich, nicht nur eine Voreinstellung auf Grundlage von Planheitsmessungen vorzunehmen, sondern die sichtbare Planheit zu einer genauen Steuerung bzw. Regelung des laufenden Walzvorgangs zu verwenden.
Mit Vorteil wird die sichtbare Planheit in Form eines Beulmusters ermittelt. Das Beulmuster ist datentechnisch leicht vergleichbar und mit verhältnismäßig geringem Aufw-and speicherbar.
Mit Vorteil ist das Beulmuster dreidimensional.
Mit Vorteil wird zur Ermittlung des Beulmusters des Metallbandes neben der relativen Länge einzelner Spuren des Metallbandes mindestens eine der Größen Wellenlänge, Amplitude und Phasenversatz der einzelnen Spuren ausgewertet. Das Beulmuster kann so wesentlich genauer erfasst werden.
Mit Vorteil wird zur Ermittlung des Beulmusters ein Mehrspur- Laser-Messgerät verwendet, was eine kostengünstige Erfassung des Beulmusters bei ausreichend hoher Präzision ermöglicht.
Mit Vorteil wird die sichtbare Planheit topometrisch gemessen. Derart wird eine flächenhafte Erfassung der Bandoberflächenstruktur und insbesondere des Beulmusters direkt möglich.
Mit Vorteil werden mittels des Beulmodells Werte für die sichtbare Planheit in Werte für die intrinsische Planheit bzw. Werte für die intrinsische Planheit in Werte für die sichtbare Planheit übersetzt. Derart können mittels eines Materialflussmodells berechnete intrinsische Bandplanheiten und .am Auslauf einer Walzstraße gemessene sichtbare Bandplanhei- ten an einander angepasst bzw. verifiziert werden.
Mit Vorteil erfolgt die Übersetzung der Planheiten online. Derart wird eine besonders exakte Steuerung bzw. Regelung der Bandplanheit ermöglicht.
Mit Vorteil erfolgt die Übersetzung der Planheiten unter Zuhilfenahme einer on-line-fähigen Approximationsf nk ion. Derart kann On-line-Rechenzeit bei der Übersetzung zwischen sichtbarer und intrinsischer Planheit eingespart werden.
Mit Vorteil wird ausgehend von der intrinsischen Planheit des Metallbandes dessen Beulmuster mittels des Beulmodells durch Aufbringen einer fiktiven Temperaturverteilung in Querrichtung des Metallbandes modelliert. Die dieser Bandtemperatur- Verteilung entsprechende thermische Ausdehnung in B.andl.ängs- richtung, nicht aber in Querrichtung, entspricht einer der intrinsischen Planheit zuordenbaren Längenverteilung. Derart muss lediglich ein Segment begrenzter Länge modelliert werden und es können die Modellgleichungen der elastischen Platten- Verformungen mit großen Auslenkungen mit geeigneten Randbe- dingungen an den Segmentkanten aufgestellt werden.
Mit Vorteil wird mittels eines Materialflussmodells eine intrinsische Planheit des Metallbandes - in Materialflussrich- tung gesehen - vor einem physikalischen Messort der Planheit bestimmt.
Mit Vorteil werden zur Steuerung der Walzstraße ein oder mehrere Planheitsgrenzwerte an frei wählbaren Punkten innerhalb und/oder nach der Walzstraße vorgegeben. Die Planheitsgrenzwerte können sich auf die intrinsische Planheit und/oder die sichtbare Planheit beziehen. Dadurch, dass Plan- heitsgrenzwerte überall innerhalb bzw. nach der Walzstraße vorgegeben werden können, können Regelgenauigkeiten für den Walzprozess wesentlich erhöht werden.
Die Aufgabe wird auch gelöst durch eine Steuervorrichtung zum Betrieb einer Walzstraße für Metallband mit mindestens einem Walzgerüst, insbesondere gemäß dem zuvor beschriebenen Verfahren, wobei die Steuervorrichtung mindestens eine Regelungseinheit aufweist, die mit einem Beulmodell gekoppelt ist. Vorteilhafte Ausbildungen der Steuervorrichtung sind in Unteransprüchen angegeben. Die Vorteile der Steuervorrichtung ergeben sich analog zu denen des Verfahrens.
Weitere Vorteile und Einzelheiten ergeben sich aus der nach- folgenden Beschreibung eines Ausführungsbeispiels in Verbindung mit den Figuren. Dabei zeigen:
FIG 1 eine mehrgerüstige Walzstraße zum Walzen von Metallband und eine der Walzstraße zugeordnete Steu- ervorrichtung,
FIG 2a-2c Beispiele für Metallbänder mit Planheitsfehlern,
FIG 3 die Untergliederung eines Metallbandes in Spuren,
FIG 4 einen Ausschnitt einer mehrgerüstigen Walzstraße mit Steuervorrichtung,
FIG 5 die Geometrie eines Abschnitts eines Metallbandes,
Gemäß Figur 1 wird eine Walzstraße zum Walzen eines Metallbandes 1 von einem Steuerrechner 2 gesteuert. Das Metallband 1 kann beispielsweise ein Stahlband, ein Aluminiumband oder ein Buntmetallband, insbesondere ein Kupferband, sein. Die Walzstraße weist mindestens zwei Walzgerüste 3 auf. Die Walzgerüste 3 weisen zumindest Arbeitswalzen 4 und - wie in Figur 1 für eines der Walzgerüste 3 angedeutet - in der Regel auch Stützwalzen 5 auf. Die Walzgerüste 3 könnten auch noch mehr Walzen aufweisen, beispielsweise axial verschieb- bare Zwischenwalzen.
Das Metallband 1 durchläuft die Walzstraße in seiner Längsrichtung x, wobei die Querrichtung y des Metallbandes 1 wei- testgehend parallel zu den Achsen der Arbeitswalzen 4 ist.
Die in Figur 1 gezeigte Walzstraße ist als Fertigstraße zum Warmwalzen von Stahlband ausgebildet. Die vorliegende Erfindung ist zwar besonders für die Anwendung bei einer mehrge- rüstigen Fertigstraße zum Warmwalzen von Stahlband geeignet, jedoch nicht darauf beschränkt, insbesondere könnte die Walzstraße auch als Kaltwalzstraße (Tandemstraße) ausgebildet sein und/oder zum Walzen eines Nicht-Eisen-Metalls (z.B. Aluminium, Kupfer oder ein .anderes Buntmetall) ausgebildet sein.
Die Steuervorrichtung 2 weist eine Regelungseinheit 11 auf. Diese weist ihrerseits ein Modul 10 zur Profil- und PlanheitsSteuerung auf, das mit einem Materialflussmodell 9 gekoppelt ist. Die Steuervorrichtung 2 gibt Gerüstreglern 6 Sollwerte für nicht näher dargestellte Profil- und Plan- heitsStellglieder vor. Die Gerüstregler 6 stellen die Stellglieder d.ann entsprechend den vorgegebenen Sollwerten ein.
Die der Steuervorrichtung 2 zugeführten Eingangsgrößen umfassen beispielsweise Stichplandaten wie eine Eingangsdicke des Metallbandes 1 sowie für jedes Walzgerüst 3 eine Walzkraft und eine Stichabnahme. Die Eingangsgrößen umfassen in der Regel ferner eine Enddicke, einen Sollprofilwert, einen Soll- Dickenkontur- und einen Soll-Planheitsverlauf des Metallbandes 1 am Auslauf der Walzstraße. Meist soll das gewalzte Me- tallband 1 so plan wie möglich sein. Oft weist das Metallband 1 jedoch Planheitsfehler auf, wie sie in den Figuren 2a, 2b und 2c beispielhaft und schematisch dargestellt sind. Planheitsfehler des Metallbandes 1 können an einem Ort x2, wie in Figur 1 angedeutet, beispielsweise mittels eines Mehrspur-Laser-Messgeräts 13 gemessen werden.
Figur 2a zeigt eine zentrisσhe Ausbeulung des Metallbands 1. Figur 2b zeigt Planheitsfehler an den Rändern des Metallbandes 1. Figur 2c zeigt Ausbeulungen des Metallbandes 1, die in Längsrichtung x des Metallbandes 1 wiederholt auftreten, und zwar insbesondere in zwei Bereichen in Querrichtung y des Metallbandes 1.
Das Beulen des Metallbandes 1 wird insbesondere durch innere Spannungen im Metallband 1 verursacht. Innere Spannungen im Metallband 1 werden auch als intrinsische Bandplanheit ip bezeichnet.
Figur 3 zeigt die Einteilung eines Metallbandes 1 in fiktive Spuren Sl bis Sn bzw. in Mess-Spuren Sl λ bis Smλ. Würde man das Metallband 1 in schmale Längsstreifen bzw. in Spuren Sl bis Sn zerschneiden, so könnte man dabei eine ungleiche Bandlängenverteilung (die intrinsische Bandlängenverteilung) messen, die ursächlich für die inneren Spannungen im Metallband 1 ist. Das Mehrspur-Laser-Messgerät 13 erfasst die relative
Länge des Metallbandes 1 pro Mess-Spur Sl x bis Sm und ermittelt vorzugsweise zusätzlich Größen wie beispielsweise die Wellenlänge, Amplitude und/oder den Phasenversatz der einzelnen Spuren Sl bis Sm . Entscheidend ist, dass für überein- stimmende fiktive Spuren Sl bis Sn und Mess-Spuren Sl bis Sm die zugehörigen intrinsischen bzw. gemessenen relativen Längen nicht übereinstimmen.
Wie auch aus Figur 4 hervorgeht, wird beim Warmwalzen von Me- tallband 1 zwischen intrinsischer Bandplanheit ip und sichtbarer Bandplanheit vp unterschieden. Die intrinsische Bandplanheit ip bezeichnet, wie vorangehend ausgeführt, die Bandlängenverteilung über die Spuren Sl bis Sn. Die sichtbare Planheit vp ergibt sich aus dem Beulverhalten des Bandes, das unter anderem abhängig ist von Größen wie der Banddicke, der Bandbreite, dem E-Modul des Metallbandes 1 sowie dem Gesamt- zug, unter dem sich das Metallband 1 befindet.
Gemäß Figur 4 wird die sichtbare Planheit vp an einem Ort x2 am Auslauf der Walzstraße, insbesondere eine Fertigstraße, gemessen und einem Beulmodell 12 zugeführt. Die Messung der sichtbaren Planheit vp erfolgt erfindungsgemäß derart, dass nicht nur die sichtbare Bandlängen-Verteilung über die Bandbreite in Querrichtung y Ausgabegröße einer Messeinrichtung ist, sondern aus den Messeinrichtungs-Ausgabegrößen das dreidimensionale Beulmuster des Bandes rekonstruierbar ist. Bei einem Mehrspur-Lasermesssystem wird dementsprechend nicht nur die (relative) Länge der einzelnen Mess-Spuren Sl Λ bis Smλ, sondern auch Wellenlänge und Phasenversatz für jede Spur Sl λ bis Sm von der Messeinrichtung ausgegeben. Bei einer topo- metrischen Messung der sichtbaren Planheit vp wird die Ober- flächenstruktur des Metallbandes 1 flächenhaft und dreidimensional über große Bereiche des Metallbandes 1 erfasst. Eine topometrische Bandplanheitsmessung beruht vorzugsweise auf einem Streifen-Projektions-Verfahren. Dabei werden Streifenmuster auf die Oberfläche des Metallbandes 1 projiziert und mit Hilfe einer Matrix-Kamera kontinuierlich erfasst.
Die intrinsische Planheit ip wird vorzugsweise an einem Ort xl zwischen bzw. nach den Walzgerüsten 3, insbesondere zwischen und/oder nach den Walzgerüsten 3 einer Fertigstraße, berechnet. Die Berechnung erfolgt dabei vorzugsweise mittels eines Materialflussmodells 9 (siehe Figur 1), das vorzugsweise Bestandteil einer Regelungseinheit 11 ist. An einem Ort x2 am Auslauf der Walzstraße, an dem die sichtbare Planheit vp gemessen wird, kann die vom Materialflussmodell 9 berechnete intrinsische Planheit ip unter Zuhilfenahme des Beulmodells 12 mit der gemessenen sichtbaren Planheit vp verglichen werden. Insbesondere bei einem Kaltwalzwerk wäre grundsätzlich auch eine Messung der intrinsischen Planheit ip am Metallband 1 möglich.
Durch das Beulmodell 12 wird ein eineindeutiger Zusammenhang zwischen intrinsischer Planheit ip und sichtbarer Planheit vp hergestellt, soweit dies möglich ist. So kann beispielsweise bei einem sehr dicken Metallband 1 mit moderater intrinsischer Unplanheit aus dem Beulverhalten nicht auf die intrinsische Planheit ip geschlossen werden, da ein derartiges Me- tallband 1 in der Regel nicht beult.
Die Ermittlung der unterschiedlichen Planheiten (ip bzw. vp) erfolgt vorzugsweise in nachfolgender Reihenfolge:
1. Die sichtbare Planheit vp, die dem Beulverhalten des Metallbandes 1 entspricht, wird in der Regel nach einem letzten Walzgerüst 3 beispielsweise am Auslauf einer Fertigstraße gemessen.
2. Mittels des Beulmodells 12 wird die intrinsische Planheit ip des Metallbandes 1 am Messort der sichtbaren Planheit vp (vgl. Schritt 1.) ermittelt.
3. Mittels des Materialflussmodells 9 wird die intrinsische Planheit ip zwischen den Walzgerüsten 3, also beispielsweise innerhalb der Fertigstraße, bestimmt. Die intrinsische Planheit kann so - in Materialflussrichtung gesehen - vor dem physikalischen Messort der Planheit, hier der intrinsischen Planheit, bestimmt werden.
Der Zusammenhang zwischen einer intrinsischen Planheit ip zwischen den Walzgerüsten 3 und einer intrinsischen Planheit ip nach dem letzten der Walzgerüste 3 wird über das Materialflussmodell 9 hergestellt. Dem Materialflussmodell 9 können Eingangsgrößen wie die Banddickenkonturen des Metallbandes 1 sowie Planheitsverläufe bzw. Planheiten vor und nach dem Durchlaufen eines Walzgerüstes 3 zugeführt werden. Das Mate- rialflussmodell 9 ermittelt online den intrinsischen Planheitsverlauf des Metallbandes 1 nach dem Durchlaufen des Walzgerüstes 3 sowie einen Walzkraftverlauf in Querrichtung y des Metallbandes 1 und führt ihn einem nicht näher darge- stellten Walzenverformungsmodell zu. Das nicht näher dargestellte Walzenverformungsmodell ist vorzugsweise Bestandteil einer Regelungseinheit 11. Das Walzenverformungsmodell ermittelt Walzenverformungen und führt sie einem nicht näher dargestellten Sollwertermittler zu, der .anhand der ermittelten Walzenverformungen und eines gerüst-auslaufseitigen Konturverlaufs des Metallbandes 1 die Sollwerte für die Profil- und Planheitsstellglieder in jedem einzelnen Walzgerüst 3 ermittelt.
Durch die Verwendung des Beulmodells 12 können das Materialflussmodell 9 und die im Modul 10 implementierte Profil- und Planheitssteuerung (siehe jeweils Figur 1) den Messdaten der sichtbaren Planheit vp angepasst werden. Für die sichtbare Planheit vp bzw. für die entsprechende sichtbare Bandunplan- heit können untere und obere Schranken angegeben werden, die unter Zuhilfenahme des Beulmodells 12 in Schranken für die intrinsische Planheit ip bzw. intrinsische Unplanheit übersetzt werden können. Das Beulmodell 12 berechnet aus der intrinsischen Unplanheit das Beulmuster des Metallbandes 1. Aus dem berechneten Beulmuster lässt sich wiederum die sichtbare Unplanheit ermitteln. Für den Umkehrschluss wird eine inverse Modellierung verwendet.
Das Beulmodell 12 basiert vorzugsweise auf der Theorie elas- tischer Plattenverformungen. Die intrinsische Planheit ip wird dadurch modelliert, dass eine fiktive Bandtemperaturverteilung über die Bandbreite, d.h. in Querrichtung y, aufgebracht wird, die zu einer thermischen Ausdehnung in Längsrichtung x des Metallbandes 1 führt, und zwar gleich der zur intrinsischen Planheit ip gehörigen Längenverteilung. Man betrachte nun ein wie in Figur 5 dargestelltes Bandsegment mit der Länge a, der Breite b und der Dicke h. In der Zeichnung angegeben sind ferner die Längsrichtung x, Querrichtung y sowie eine Lotrechte z. Modelliert wird lediglich ein Bandsegment mit einer Länge a von einer halben oder einer ganzen Grundbeullänge, und zwar mit periodischen Randbedingungen an Kopf- und Fußenden des Bandsegments. Die Randbedingungen an den Bandkanten sind die freier Ränder. Die Modellgleichungen sind partielle Differentialgleichungen sowie die dazugehörigen Randbedingungen, die beispielsweise mittels Fi- niter-Differenzen-Verfahren oder Finiter-Elemente-Verfahren gelöst werden können.
In Abhängigkeit von der Rechenzeit des Lösungsalgorithmus kann das Beulmodell 12 unmittelbar online eingesetzt werden. Alternativ kann mittels eines Offline-Modells eine onlinefähige Approximationsfunktion generiert werden, die dann online für das Beulmodell 12 eingesetzt wird.
Um die Funktionsweise des Beulmodells 12 besser zu verstehen, muss man zunächst erkennen, dass beispielsweise beim Warmwalzen eines Metallbandes 1 die gemessenen Ablenkungen des Metallbandes 1, die auf das Beulen des Metallbandes 1 zurückzuführen sind, in der Regel eine deutlich größere Größenordnung aufweisen, als die Banddicke h. Typischerweise ist ihre Größenordnung jedoch bedeutend geringer als sowohl die typische Wellenlänge des Beulverhaltens wie auch die Bandbreite b. W-ährend die klassische, lineare Theorie der Plattenverformung nur gilt, wenn die Ablenkungen kleiner gleich ungefähr 1/5 der Banddicke h sind, muss im vorliegenden Fall eine nichtlineare Beschreibung der Plattenverwerfungen angewandt werden. Neben den in Figur 5 gezeigten Größen, die das Metallband 1 beschreiben, wird auch auf das Elastizitätsmodul, kurz E-Modul zurückgegriffen, wobei in der Regel von einem kon- stanten E-Modul ausgegangen wird. Das nicht-lineare Beulverhalten lässt sich nun wie folgt beschreiben: (I) 2- V4w(x, y) =- + L(w(x, y), Φ(x, y)) h h
D.abei sind in der Bandebene wirkende Kräfte in Form eines Potentials Φ, das gemeinhin auch als Airy' s Spannungs- ("stress") -Funktion bezeichnet wird, ausgedrückt, w bezeichnet die vertikale Verschiebung ("displacement") des Metallbandes 1 während p die von außen wirkende Druckverteilung beschreibt, die in der Lotrechten z wirkt. D wird durch nachfolgende Gleichung definiert:
Eh3 (II) D: = — 12(1-v2) Dabei steht E für das E-Modul und \> steht für die Querkon- traktionszahl des Metallbandes 1.
Außerdem gilt für den Term L(w,Φ) aus Gleichung (I):
/-rττv τ , Λ, d2w d2Φ d2w d2Φ d2w d2Φ (III) L (w, Φ): = ———-____- 2- dx2 dy2 dy2 dx2 dxdy dxdy Macht man nun noch Annahmen hinsichtlich thermisch verursachter innerer Spannungen (Λλstresses") und Dehnungen (""strains") , so ergibt sich:
(IV) 1 7< d2T(x,y) d2T(x,y) d2w d2w 1 , t , ,
Dabei bezeichnet T die Temperatur im Metallband 1 und κx bzw. κy den Koeffizienten der thermischen Exp.ansion in Längs- bzw. Querrichtung (x bzw. y) .
Die Gleichungen (I) und (IV) bilden ein System zweier gekop- pelter, nicht-linearer, partieller Differentialgleichungen. Setzt man nun noch geeignete Randbedingungen ein wie beispielsweise freie Ränder bzw. periodische Randbedingungen an Kopf- und Fußende eines Bandsegments, so können die Gleichungen (I) und (IV) numerisch in iterativer Weise gelöst werden.
Der Grundgedanke der Erfindung lässt sich wie folgt zusammen- fassen:
Die Erfindung betrifft ein Verfahren und eine Steuervorrichtung zum Betrieb einer Walzstraße für Metallband 1, die mindestens ein Walzgerüst 3 aufweist, wobei die intrinsische Planheit ip des Metallbandes 1 am Auslauf der Walzstraße ermittelt wird. Um die Einhaltung einer geforderten sichtbaren Planheit vp des gewalzten Metallbandes 1 innerhalb vorgegebener Schranken zuverlässig und mit hinreichender Genauigkeit zu gewährleisten, wird vorgeschlagen, die sichtbare Planheit vp bzw. das Beulverhalten des Metallbandes 1 am Auslauf der Walzstraße zu ermitteln bzw. vorzugsweise zu messen und mittels eines Beulmodells 12 in die intrinsische Pl.anheit ip des Metallbandes 1 zu übersetzen. Die sichtbare Planheit kann so online unter Zuhilfenahme des Beulmodells 12 zu Steuerung der Walzgerüste der Walzstraße verwendet werden. In der gesamten Walzstraße kann die sichtbare Planheit vp erfindungsgemäß vorzugsweise online unter Zuhilfenahme des Beulmodells 12 besser reguliert werden.
Das Beulmodell 12 ist online-fähig und stellt eine eineindeutige Beziehung zwischen der absoluten intrinsischen Planheit ip des gewalzten Metallbandes 1 und dem tatsächlich gemessenen visuellen Defekten des Metallbandes 1, also der sichtbaren Planheit vp, her. Erstmals wird die Verifikation, Anpas- sung und Abstimmung eines auf der intrinsischen Planheit fußenden Matrialflussmodells 9 bzw. seiner entsprechenden Profil- und Planheitssteuerung in Bezug auf die tatsächlichen Messwerte ermöglicht.

Claims

Patentansprüche
1. Verfahren zum Betrieb einer Walzstraße für Metallband ( 1) , die mindestens ein Walzgerüst (3) aufweist, wobei eine sicht- bare Planheit (vp) des Metallbandes (1) am Auslauf der Walzstraße berücksichtigt wird, d a d u r c h g e k e n n z e i c h n e t , dass bei der Steuerung der Walzgerüste die sichtbare Planheit (vp) und eine intrinsische Planheit (ip) des Metallbandes (1) unter Ver- Wendung eines Beulmodells (12) berücksichtig werden.
2. Verfahren nach Patentanspruch 1, d a d u r c h g e k e n n z e i c h n e t , dass die sichtbare Planheit (vp) in Form eines Beulmusters ermittelt wird.
3. Verfahren nach Patentanspruch 2, d a d u r c h g e k e n n z e i c h n e t , dass das Beulmuster dreidimensional ist.
4. Verfahren nach Patentanspruch 2 oder 3, d a d u r c h g e k e n n z e i c hn e t , dass zur Ermittlung des Beulmusters neben der relativen Länge einzelner Spuren (Sl bis Sn) des Metallbandes (1) mindestens eine der Größen Wellenlänge, Amplitude und Phasenversatz der einzelnen Spuren (Sl bis Sn) ausgewertet wird.
5. Verfahren nach einem der vorstehenden Patentansprüche, d a d u r c h g e k e n n z e i c h n e t , dass zur Er- mittlung der intrinsischen Planheit (ip) ein Mehrspur-Laser- Messgerät (13) verwendet wird.
6. Verfahren nach einem der Patentansprüche 1 bis 4, d a du r c h g e k e n n z e i c h n e t , dass die sichtbare Planheit (VP) topometrisch gemessen wird.
7. Verfahren nach einem der vorstehenden Patentansprüche, d a du r c h g e k e nn z e i c h n e t , dass mittels des Beulmodells (12) Werte für die sichtbare Planheit (vp) in Werte für die intrinsische Planheit (ip) übersetzt werden.
8. Verfahren nach einem der vorstehenden Patentansprüche, d a du r c h g e k e n n z e i c h n e t , dass mittels des Beulmodells (12) Werte für die intrinsische Planheit (ip) in Werte für die sichtbare Planheit (vp) übersetzt werden.
9. Verfahren nach Patentanspruch 7 oder 8, d a du r c h g e k e n n z e i c h n e t , dass die Übersetzung der Planheiten (ip bzw. vp) online erfolgt.
10. Verfahren nach einem der Patentansprüche 7 bis 9, d a du r c h g e k e n n z e i c h n e t , dass die Übersetzung der Planheiten (ip bzw. vp) unter Zuhilfenahme einer online-fähigen Approximationsfunktion erfolgt.
11. Verfahren nach einem der vorstehenden Patentansprüche, d a du r c h g e k e n n z e i c hn e t , dass ausgehend von der intrinsischen Planheit (ip) des Metallbandes (1) dessen Beulmuster mittels des Beulmodells (12) durch Aufbringen einer fiktiven Temperaturverteilung in Querrichtung (y) des Metallbandes (1) ermittelt wird.
12. Verfahren nach einem der vorstehenden Patentansprüche, d a du r c h g e k e n n z e i c h n e t , dass mittels eines Materialflussmodells (9) eine intrinsische Planheit (ip) vor einem physikalischen Messort der Planheit bestimmt wird.
13. Verfahren nach einem der vorstehenden Patentansprüche, d a d u r c h g e k e n n z e i c h n e t , dass zur Steuerung der Walzstraße ein oder mehrere Planheitsgrenzwerte an frei wählbaren Punkten vorgegeben werden.
14. Steuervorrichtung (2) zum Betrieb einer Walzstraße für Metallband ( 1) mit mindestens einem Walzgerüst ( 3 ) , insbesondere nach einem Verfahren gemäß einem der vorstehenden Pa- tentansprüche, wobei die Steuervorrichtung (2) mindestens eine Regelungseinheit (11) aufweist, d a du r c h g e k e n n z e i c h n e t , dass die Regelungseinheit (11) mit einem Beulmodell (12) gekoppelt ist.
15. Steuervorrichtung (2) nach Patentanspruch 14, d adu r c h g e k e nn z e i c h n e t , dass das Beulmodell (12) mit einer Vorrichtung zum Messen der sichtbaren Planheit (vp) des Metallbandes (1) gekoppelt ist.
16. Steuervorrichtung (2) nach Patentanspruch 14 oder 15, d a du r c h g e k e n n z e i c h n e t , dass die Steuervorrichtung (2) mindestens ein Materialflussmodell (9) aufweist.
17. Steuervorrichtung (2) nach einem der Patentansprüche 14 bis 16, d a d u r c h g e k e nn z e i c h n e t , dass die Vorrichtung zur Messung der sichtbaren Planheit (vp) ein Mehrspur-Laser-Messgerät (13) ist.
18. Steuervorrichtung (2) nach einem der Patentansprüche 14 bis 17, d a d u r c h g e k e n n z e i c h n e t , dass das Beulmodell (12) zur Ermittlung eines Beulmusters des Metallbandes (1) mit mindestens einem topometrischen Messsystem gekoppelt ist.
EP04790153A 2003-10-06 2004-10-06 Verfahren und steuervorrichtung zum betrieb einer walzstrasse für metallband Expired - Fee Related EP1675694B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10346274A DE10346274A1 (de) 2003-10-06 2003-10-06 Verfahren und Steuervorrichtung zum Betrieb einer Walzstraße für Metallband
PCT/EP2004/011171 WO2005035156A1 (de) 2003-10-06 2004-10-06 VERFAHREN UND STEUERVORRICHTUNG ZUM BETRIEB EINER WALZSTRAßE FÜR METALLBAND

Publications (2)

Publication Number Publication Date
EP1675694A1 true EP1675694A1 (de) 2006-07-05
EP1675694B1 EP1675694B1 (de) 2007-12-12

Family

ID=34399272

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04790153A Expired - Fee Related EP1675694B1 (de) 2003-10-06 2004-10-06 Verfahren und steuervorrichtung zum betrieb einer walzstrasse für metallband

Country Status (7)

Country Link
US (1) US20070006625A1 (de)
EP (1) EP1675694B1 (de)
JP (1) JP2007507354A (de)
CN (1) CN100395044C (de)
AT (1) ATE380607T1 (de)
DE (2) DE10346274A1 (de)
WO (1) WO2005035156A1 (de)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6837301B2 (en) 1999-02-05 2005-01-04 Castrip Llc Strip casting apparatus
SE529074C2 (sv) 2005-06-08 2007-04-24 Abb Ab Förfarande och anordning för optimering av planhetsstyrning vid valsning av ett band
US8205474B2 (en) * 2006-03-08 2012-06-26 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
US7849722B2 (en) * 2006-03-08 2010-12-14 Nucor Corporation Method and plant for integrated monitoring and control of strip flatness and strip profile
JP5708356B2 (ja) * 2011-08-08 2015-04-30 新日鐵住金株式会社 金属板の形状計測方法、形状計及び金属板の圧延方法
EP2737963B1 (de) * 2012-10-03 2016-05-18 Nippon Steel & Sumitomo Metal Corporation Verzerrungsberechnungsverfahren und walzanlage
DE102014007381A1 (de) * 2014-05-20 2015-07-23 Asinco GmbH Verfahren zum Messen und Regeln der Ebenheit eines durch Bandwalzen erzeugten Bandes
EP2998040A1 (de) * 2014-09-17 2016-03-23 Primetals Technologies Germany GmbH Breiteneinstellung bei einer Fertigstraße
US10254228B2 (en) * 2014-12-09 2019-04-09 Konica Minolta, Inc. Detection chip and detection method
CN107561051A (zh) * 2016-07-01 2018-01-09 清华大学 一种用于单分子检测的分子载体
CN107561053B (zh) * 2016-07-01 2020-04-28 清华大学 一种单分子检测方法
CN108072640B (zh) * 2016-11-14 2020-01-07 清华大学 一种单分子检测装置以及单分子检测方法
CN107561052B (zh) * 2016-07-01 2020-04-28 清华大学 一种用于单分子检测的分子载体的制备方法
CN109470676A (zh) * 2017-09-08 2019-03-15 清华大学 用于分子检测的分子载体
EP3599038A1 (de) 2018-07-25 2020-01-29 Primetals Technologies Austria GmbH Verfahren und vorrichtung zur ermittlung der seitlichen bandkontur eines laufenden metallbandes
EP3997249A1 (de) * 2019-07-08 2022-05-18 Commonwealth Rolled Products, Inc. Verfahren und systeme zur messung der flachheit eines aluminiumlegierungsblechs in einem wärmebehandlungsofen
EP3888810B1 (de) * 2020-04-03 2023-08-02 ABB Schweiz AG Verfahren zur steuerung der planheit eines bandes aus walzgut, steuerungssystem und produktionslinie
US11919060B2 (en) * 2021-08-16 2024-03-05 The Bradbury Co., Inc. Methods and apparatus to control roll-forming processes

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2104886A1 (de) * 1971-02-03 1972-08-24 Schloemann Ag Verfahren zur Ermittlung von Planheitsabweichungen an unter Längszug geförderten Bändern
FR2485959B1 (fr) * 1980-06-13 1986-07-18 Centre Rech Metallurgique Procede et dispositif pour controler la planeite des toles metalliques
BE902359A (fr) * 1985-05-06 1985-11-06 Centre Rech Metallurgique Procede pour determiner la planeite d'une bande laminee en mouvement.
US4771622A (en) * 1986-03-12 1988-09-20 International Rolling Mill Consultants Inc. Strip rolling mill apparatus
DE19618995C2 (de) * 1996-05-10 2002-01-10 Siemens Ag Verfahren und Einrichtung zur Beeinflussung relevanter Güteparameter, insbesondere des Profils oder der Planheit eines Walzbandes
US5927117A (en) * 1996-10-11 1999-07-27 Central Iron & Steel Research Institute Ministry Metallurgical Industry Methods to measure and control strip shape in rolling
DE19758466B4 (de) * 1997-03-11 2007-10-04 Betriebsforschungsinstitut VDEh - Institut für angewandte Forschung GmbH Planheits-Regelungssystem für Metallband
DE19851554C2 (de) * 1998-11-09 2001-02-01 Siemens Ag Verfahren und Einrichtung zur Voreinstellung einer Walzstraße
ES2223334T3 (es) * 1999-05-28 2005-03-01 Ims-Messsysteme Gmbh Procedimiento para la determinacion delaplanitud deuna banda de material.
DE19959553A1 (de) * 1999-06-17 2001-06-13 Siemens Ag Einrichtung zur Beeinflussung des Profils oder der Planheit eines Walzbandes
KR20010010085A (ko) * 1999-07-15 2001-02-05 이구택 압연 스탠드간 열연판의 평탄도 검출장치
ATE255964T1 (de) * 1999-12-23 2003-12-15 Abb Ab Verfahren und vorrichtung zur planheitsregelung
ES2211712T3 (es) * 2001-09-29 2004-07-16 Achenbach Buschhutten Gmbh Procedimiento para el ajuste previo y la regulacion de la planeidad de una banda durante el laminado unidireccional y reversible flexible de un tramo de material en forma de banda.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005035156A1 *

Also Published As

Publication number Publication date
DE10346274A1 (de) 2005-04-28
JP2007507354A (ja) 2007-03-29
EP1675694B1 (de) 2007-12-12
CN100395044C (zh) 2008-06-18
WO2005035156A1 (de) 2005-04-21
ATE380607T1 (de) 2007-12-15
DE502004005723D1 (de) 2008-01-24
US20070006625A1 (en) 2007-01-11
CN1863612A (zh) 2006-11-15

Similar Documents

Publication Publication Date Title
EP1675694B1 (de) Verfahren und steuervorrichtung zum betrieb einer walzstrasse für metallband
EP1485216B1 (de) Rechnergestütztes ermittlungsverfahren für sollwerte für profil- und planheitsstellglieder
DE3036997C2 (de)
EP2548665B1 (de) Ermittlungsverfahren für relativbewegungsabhängigen Verschleiß einer Walze
DE112004002903B4 (de) Walzenkeilanstellungs-/Steuerverfahren zum Walzen von plattenförmigem Material
EP1711283B1 (de) Regelverfahren und regler für ein walzgerüst
DE4136013C2 (de) Verfahren und Vorrichtung zum Steuern eines Walzwerks
DE2446009C2 (de) Steuerungsvorrichtung für den Walzspalt der Walzgerüste einer Kaltwalzstraße
DE10211623A1 (de) Rechnergestütztes Ermittlungverfahren für Sollwerte für Profil-und Planheitsstellglieder
DE19618712B4 (de) Regelverfahren für ein Walzgerüst zum Walzen eines Bandes
DE69913538T2 (de) Verfahren und Vorrichtung zur Planheitsregelung
DE3515429A1 (de) Formsteuervorrichtung fuer flachmaterial
EP2662158A1 (de) Verfahren zur Bearbeitung von Walzgut und Walzwerk
DE19731980A1 (de) Verfahren zur Steuerung und Voreinstellung eines Walzgerüstes oder einer Walzstraße zum Walzen eines Walzbandes
WO2011038965A1 (de) Verfahren zur modellbasierten ermittlung von stellglied-sollwerten für die asymmetrischen stellglieder der walzgerüste einer warmbreitbandstrasse
EP1481742B1 (de) Steuerrechner und rechnergestütztes Ermittlungsverfahren für eine Profil- und Planheitssteuerung für eine Walzstrasse
AT410904B (de) Verfahren und vorrichtung zur berechnung der walzspaltkontur
EP3851217B1 (de) Verbesserte adaption eines walzenmodells
EP4061552B1 (de) Verfahren, steuervorrichtung sowie walzanlage zur einstellung einer auslauftemperatur eines aus einer walzstrasse auslaufenden metallbands
EP2483004A1 (de) Verfahren zur modellbasierten ermittlung von stellglied-sollwerten für die symmetrischen und asymmetrischen stellglieder der walzgerüste einer warmbreitbandstrasse
DE1527610A1 (de) Walzverfahren und Vorrichtung zur Durchfuehrung desselben
EP3009204A1 (de) Modellierung von metallband in einer walzstrasse
WO2023088703A1 (de) Vorrichtung und verfahren zur herstellung eines gewalzten metallbandes
EP1336437B1 (de) Bandkanten-Planheitssteuerung
DE102022212627A1 (de) Verfahren zum Herstellen eines Stahlbandes aus einem Vorprodukt, bei dem die Sollwerte über die Länge eines einzelnen Stahlbandes und / oder zeitlich in Bezug auf eine einzelne Produktionsanlage einer Walzstraße variabel vorgegeben werden

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060403

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE DE FR

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): AT BE DE FR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE DE FR

REF Corresponds to:

Ref document number: 502004005723

Country of ref document: DE

Date of ref document: 20080124

Kind code of ref document: P

ET Fr: translation filed
PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLAX Notice of opposition and request to file observation + time limit sent

Free format text: ORIGINAL CODE: EPIDOSNOBS2

26 Opposition filed

Opponent name: SMS DEMAG AG

Effective date: 20080911

PLBB Reply of patent proprietor to notice(s) of opposition received

Free format text: ORIGINAL CODE: EPIDOSNOBS3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

APBM Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNO

APBP Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2O

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SMS SIEMAG AKTIENGESELLSCHAFT

Effective date: 20080911

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20121112

Year of fee payment: 9

APBQ Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3O

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20120912

Year of fee payment: 9

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

BERE Be: lapsed

Owner name: SIEMENS A.G.

Effective date: 20131031

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SIEMENS AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 380607

Country of ref document: AT

Kind code of ref document: T

Effective date: 20131006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131006

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: SMS GROUP GMBH

Effective date: 20080911

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502004005723

Country of ref document: DE

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Free format text: FORMER OWNER: SIEMENS AKTIENGESELLSCHAFT, 80333 MUENCHEN, DE

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: PRIMETALS TECHNOLOGIES GERMANY GMBH, DE

Effective date: 20151105

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161020

Year of fee payment: 13

Ref country code: FR

Payment date: 20161020

Year of fee payment: 13

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

REG Reference to a national code

Ref country code: DE

Ref legal event code: R100

Ref document number: 502004005723

Country of ref document: DE

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20170220

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004005723

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180629

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20180501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171031