EP1669723A1 - Server, Weiterleitungsvorrichtung und System zur Aktualisierung von Kartendaten - Google Patents

Server, Weiterleitungsvorrichtung und System zur Aktualisierung von Kartendaten Download PDF

Info

Publication number
EP1669723A1
EP1669723A1 EP05027102A EP05027102A EP1669723A1 EP 1669723 A1 EP1669723 A1 EP 1669723A1 EP 05027102 A EP05027102 A EP 05027102A EP 05027102 A EP05027102 A EP 05027102A EP 1669723 A1 EP1669723 A1 EP 1669723A1
Authority
EP
European Patent Office
Prior art keywords
data
map data
server
updated
navigation system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP05027102A
Other languages
English (en)
French (fr)
Inventor
Norihiro Nakamura
Naoki Tsuchiya
Seiji Takahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aisin AW Co Ltd
Original Assignee
Aisin AW Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aisin AW Co Ltd filed Critical Aisin AW Co Ltd
Publication of EP1669723A1 publication Critical patent/EP1669723A1/de
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09BEDUCATIONAL OR DEMONSTRATION APPLIANCES; APPLIANCES FOR TEACHING, OR COMMUNICATING WITH, THE BLIND, DEAF OR MUTE; MODELS; PLANETARIA; GLOBES; MAPS; DIAGRAMS
    • G09B29/00Maps; Plans; Charts; Diagrams, e.g. route diagram
    • G09B29/10Map spot or coordinate position indicators; Map reading aids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01CMEASURING DISTANCES, LEVELS OR BEARINGS; SURVEYING; NAVIGATION; GYROSCOPIC INSTRUMENTS; PHOTOGRAMMETRY OR VIDEOGRAMMETRY
    • G01C21/00Navigation; Navigational instruments not provided for in groups G01C1/00 - G01C19/00
    • G01C21/38Electronic maps specially adapted for navigation; Updating thereof
    • G01C21/3804Creation or updating of map data
    • G01C21/3859Differential updating map data

Definitions

  • Conventional navigation systems include, for example, a search function that searches for a guide route from the current position to a destination and a route guidance function that indicates the host vehicle position and the guide route on a display.
  • the navigation system accesses road data (e.g.., node data, link data) corresponding to roads throughout Japan and map drawing data for displaying maps.
  • This road data and map drawing data (hereinafter, this data will simply be referred to as "map data") is conventionally stored in an optical disk that can be read by the navigation system or stored in a hard disk provided as part of the navigation system.
  • JP-A-2000-36097 proposes a system that transmits map data directly from a host station to a mobile navigation system via a communication line or wireless communication. In order to reduce the amount of data transferred from the parent station to the mobile station, the system may transmits the difference between the old map data and the new map data from host station.
  • Navigation systems with internal hard disks are advantageous in that, for example, they can be made to have a large capacity.
  • a convenient map data updating method is not yet in widespread use. That is, when updating map data stored in the hard disk, the user often must take the navigation system out of the vehicle in which it is mounted and send it to the manufacturer, which is extremely troublesome for the user.
  • the map data must be transmitted via wireless communication in order to update the data without removing the internal hard disk type navigation system.
  • the volume of map data that must be transmitted is large so it places a transmission load on the network and communication costs are substantial.
  • the navigation system of Japanese Patent Application Publication No. JP-A- 2000-36097 must perform time and resource intensive processing to create a new version of the map data based on the differential data and the old map data. Moreover, the navigation system must convert the differential data and the like to a data format that is usable in search processing. Accordingly, this places a load on the navigation system and requires a long time to update the map.
  • a relay device for example, a relay device, a server, a map data updating system, and a map data updating method which enables navigation system map data updating to be easily performed.
  • It is beneficial provide, for example, a relay device, a server, a map data updating system, and a map data updating method which enables the amount of data transferred when updating the map data to be reduced and the load on the navigation system to be decreased.
  • Systems, methods, and programs for updating map data create differential data in a server by comparing an old version of map data stored in the server with a new version of map data and transmit the differential data from the server to a relay device.
  • the systems, methods and programs create updated map data by combining the differential data received from the server with map data previously stored in the relay device.
  • the relay device may then be connected to an updated data storing device that disconnectably connects to both the relay device and the navigation system.
  • the systems, methods, and programs may then transfer the updated map data from the relay device to the updated data storing device and from the updated data storing device to the navigation system.
  • FIG. 1 is a schematic of an exemplary updated data delivery system
  • FIG. 2 is a block diagram showing the configuration of an exemplary store terminal and server
  • FIG. 3 shows exemplary management data provided in the server
  • FIG. 4 is a block diagram showing the configuration of an exemplary navigation system
  • FIG. 5 shows an exemplary differential data creating method
  • FIG. 6 shows an exemplary differential data distributing method
  • FIG. 7 shows an exemplary license information issuing method
  • FIG. 8 shows an exemplary navigation system data updating method.
  • FIG. 1 shows an exemplary updated data delivery system 1 that may serve, for example, as a map data updating system.
  • the updated data delivery system 1 may include, for example, a server 2 and a distribution terminal 3.
  • the server 2 and the distribution terminal 3 may be connected, for example, via a network N1 such as, for example, the Internet or a satellite connection.
  • Each distribution terminal 3 may be a terminal, for example, owned by a different business or provider and each may have different map data.
  • This map data may include, for example, road data corresponding to roads throughout Japan, drawing data for drawing roads and areas other than roads, and/or facility data.
  • the road data may include, for example, road type, road width, road name, intersection data, link data, and/or node data corresponding to the roads.
  • the drawing data may include, for example, various data for drawing roads, rivers, bridges, and/or other map features.
  • the facility data may include, for example, information relating to facilities and/or facility image data.
  • the map data may be in a data format that is different from the data format used, for example, by a navigation system 10 mounted in a vehicle C searching for a route
  • each road may consist of a plurality of componential units called links.
  • Each link may be separated and defined by, for example, an intersection, an intersection having more than three roads, a curve, and/or a point at which the road type changes.
  • node refers to a point connecting two links.
  • a node may be, for example, an intersection, an intersection having more than three roads, a curve, and/or a point at which the road type changes.
  • the map data may be updated multiple times a year, for example, to map data that reflects newly opened or closed roads, and/or newly established facilities.
  • the distribution terminal 3 may store the latest map data (i.e., the new version of the map data) in the server 2 by, for example, communication via the network N1.
  • the server 2 may be connected to each store terminal 4, which may serve as a relay device, via a network N2.
  • Each store terminal 4 may be, for example, a terminal provided in a store or other provider such as a navigation system 10, an automotive dealer, and/or a gas station.
  • This store terminal 4 may be connected to an updated data storing device (memory) 6, which may store updated data, via a cable 5.
  • the updated data storing device 6 may house, for example, a hard disk.
  • the network N2 may be made up of, for example, a satellite communication network that includes a relay, a communication satellite, and/or a communication line such as a private line or a public phone line.
  • the network N2 may also be made up of one or a plurality of satellite communication, private lines and public communication lines.
  • the networks N1 and N2, for example, may also be the same network. When the network N2 uses satellite communication, the server 2 and the store terminal 4 may both include, for example, a satellite communication antenna.
  • the updated data storing device 6 may be disconnected from the store terminal 4, for example, by disconnecting the cable 5. Once disconnected, the updated data storing device 6 can then be carried to the vehicle C and connected to the navigation system 10 via a cable 7 (see FIG. 4).
  • FIG. 2 is a block diagram showing the configuration of an exemplary store terminal and server.
  • the server 2 may include a control portion (controller) 20 and an interface (I/F) 21 for connecting with the networks N1 and N2.
  • the control portion 20 may be physically, functionally, or conceptually include, for example, a differential data creating portion, a transmission control portion, a license information transmission control portion, and/or a reception control portion.
  • the server 2 may also include a plurality of server side map data storing portions (memories) 22 that serve as map data storing portions. (FIG. 2 shows only one server side map data storing portion 22 for the sake of simplicity).
  • Each server side map data storing portion 22 may store server side map data 22a as map data.
  • the server side map data 22a may have both common data and data (including programs) that differs for each server side map data storing portion 22.
  • the control portion 20 may include, for example, a CPU and/or RAM, and may have a differential data creating program. Upon receiving a new version of map data from each distribution terminal 3, the control portion 20 may, for example, select the server side map data storing portion 22 corresponding to that map data and read the old version of map data. The control portion 20 may then compare the read data with the new version of map data, detect different locations of the different versions of the map data, and create differential data for the data type for which a difference can be created, according to the differential data creating program described above.
  • the server 2 may include, for example, a management data storing portion (memory) 23.
  • This management data storing portion 23 may store, for example, various management data 24 (see FIG. 3).
  • the server 2 may also include an issued license management portion (controller) 29 that serves as a license information transmission controlling portion.
  • the issued license management portion 29 may store, for example, a program for creating license information for using the updated map data and/or a license information creation history, and the like.
  • the license information may include, for example, an encryption key and can be decrypted by the navigation system 10.
  • FIG. 3 shows exemplary management data provided in the server.
  • the management data 24 may be created for each store or store terminal 4, and may include, for example, an identifier 25, a store name 26, and/or a destination 27.
  • the identifier 25 may be an identifier for identifying the management data 24.
  • the store name 26 may be the name of the store and the destination 27 may be, for example, the address used when transmitting license information to the store terminal 4.
  • the store terminal 4 may include, for example, a control portion (controller) 40, an interface (I/F) 41 that can connect with the network N2, an input portion 42 such as a keyboard, and/or a display portion 43 that includes a display.
  • the control portion 40 may functionally, physically, and/or conceptually include an updated data creating portion, a data transferring portion, a data converting portion, and/or a license information transferring portion.
  • the control portion 40 may include a CPU and/or RAM, and may connect with the updated data storing device 6 via the interface 41 and the cable 5 as described above.
  • the store terminal 4 may include an obtained license storing portion (memory) 44 which temporarily stores the license information received from the server 2.
  • the store terminal 4 may also include a store side map data storing portion (memory) 45 which serves as, for example, a relay side map data storing portion.
  • the store side map data storing portion 45 may store store side map data 46 as relay side map data.
  • the control portion 40 may use the differential data and the store side map data 46 stored in the store side map data storing portion 45 to create map data for updating that is converted to a data format usable for search processing and the like by the navigation system 10, according to the updated data creating program.
  • FIG. 4 is a block diagram showing the configuration of an exemplary navigation system.
  • the navigation system 10 may include, for example, a guidance control portion (controller) 11 and an interface (I/F) 12.
  • the guidance control portion 11 may be connected to the updated data storing device 6 via the interface 12 and a cable 7.
  • the navigation system 10 may also include, for example, a GPS (Global Positioning System) receiving portion 13 and a display portion 14 that includes, for example, a touch panel.
  • the guidance control portion 11 may detect the position of the host vehicle based on, for example, the GPS receiving portion 13, a directional sensor 18, and/or a vehicle speed sensor 17 provided in the vehicle C.
  • the navigation system 10 may include, for example, a navigation system side map data storing portion 15 that stores navigation system side map data 16.
  • the navigation system side map data 16 may include road data and/or drawing data similar to the map data provided in the distribution terminal 3 and the server 2; but the data format of the navigation system side map data 16 is different, i.e., the data format of this data is such that computing and processing such as search processing by the navigation system 10 may be performed.
  • the guidance control portion 11 may, for example, search for the guide route from the host vehicle position to the destination using the navigation system side map data 16.
  • the guidance control portion 11 may also read the navigation system side map data 16 (drawing data) for the area around the host vehicle position, display the host vehicle position and a map image on the display portion 14, and/or display an indicator indicating the guide route.
  • the guidance control portion 11 of the navigation system 10 may, for example, decrypt and encrypt the license information stored in the updated data storing device 6.
  • the guidance control portion 11 may read map data for updating 6a that is stored in the updated data storing device 6, and update, by over-writing, the navigation system side map data 16 stored in the navigation system side map data storing portion 15.
  • the license information includes data for which the number of writable times or the like is encrypted, that data is updated based on a prescribed rule.
  • an exemplary differential data creating method for example, executed by the control portion 20 of the server 2 will be described with reference to FIG. 5.
  • the exemplary method may be implemented, for example, by one or more components of the above-described systems.
  • the exemplary structure of the above-described systems may be referenced in the description of the method, it should be appreciated that the referenced structure is exemplary and the exemplary process need not be limited by any of the above-described exemplary structure.
  • that new version of map data may be transmitted from the distribution terminal 3 to the server 2 via, for example, the network N1 (step S1-1).
  • the control portion 20 of the server 2 may read the stored map data from the server side map data storing portion 22 which corresponds to that map data. The control portion 20 of the server 2 may then perform a differential data creating process (step S1-3) to create differential data based on the old version of map data that was read and the new version of map data that was received.
  • the control portion 20 may then detect different locations by comparing the old version of the map data and the new version of the map data, of the data type for which a difference can be detected within the various data included in the map data.
  • the control portion 20 may create differential data by combining the data of differences corresponding to those different locations with the data for which differences are unable to be detected.
  • the control portion 20 may assign the version information of the new version of map data to the differential data.
  • the amount of the differential data is far less than that of all of the map data.
  • the control portion 20 may end the differential data creating process.
  • the control portion 20 may store the new version of map data that was received in the server side map data storing portion 22.
  • the server 2 may perform a differential data distributing process such as for example, the exemplary data distributing method shown in FIG. 6.
  • the exemplary method may be implemented, for example, by one or more components of the above-described systems.
  • the exemplary structure of the above-described systems may be referenced in the description of the method, it should be appreciated that the referenced structure is exemplary and the exemplary method need not be limited by any of the above-described exemplary structure.
  • the control portion 20 of the server 2 may transmit it to each store terminal 4 by satellite communication at a specified timing (step S2-1).
  • the differential data may be transmitted quickly and at a low cost to many store terminals 4 using satellite communication, but other lines may also be used.
  • a storage medium such as an optical disk on which the differential data is stored may be sent to store terminals 4 that are not connected to a communication line network.
  • the control portion 40 of the store terminal 4 may receive the differential data corresponding to the store side map data 46 provided in the store terminal 4 (step S2-2). Alternatively, the store terminal 4 may read the differential data from the storage medium on which it is stored. Then, an updated data creating process may be performed (step S2-3). In this updated data creating process, the control portion 40 may use the differential data received from the server 2 and the store side map data 46 stored in the store side map data storing portion 45 to create new store side map data 46 in a data format that can be used for processing by the navigation system 10. Also, the control portion 40 may assign the version information that was assigned to the differential data to the store side map data 46.
  • the control portion 40 may replace the old version of the store side map data 46 with the new store side map data 46 and write that new store side map data 46 as map data for updating 6a into the updated data storing device 6 via the interface 41 and the cable 5 (step S2-4).
  • the latest map data which includes the differential data, is stored in the updated data storing device 6 and the store side map data storing portion 45.
  • the exemplary method may be implemented, for example, by one or more components of the above-described systems.
  • the exemplary structure of the above-described systems may be referenced in the description of the method, it should be appreciated that the referenced structure is exemplary and the exemplary method need not be limited by any of the above-described exemplary structure.
  • the individual in charge at the store may operate the input portion 42 of the store terminal 4 and may send a license issuance request to the server 2 (step S3-1) when, for example, notification is transmitted from the server 2 to the store terminal 4 at the time, for example, differential data my be distributed from the server 2 to the store terminal 4.
  • the store terminal 4 may also transmit the identifier 25 and/or the store name 26 in the management data 24 provided in each terminal.
  • the control portion 20 of the server 2 may create license information using the issued license management portion 29 (step S3-2).
  • the control portion 20 may then transmit the created license information to the store terminal 4 via the network N2 based on the destination 27 stored in the management data 24 (step S3-3).
  • the amount of data of the license information to be transmitted may be small and the license information may be transmitted to a specific store terminal 4 so the control portion 20 may transmit it via a communication line such as the Internet.
  • the control portion 40 of the store terminal 4 may temporarily store it in the obtained license storing portion 44. Then the control portion 40 may store the obtained license information in the updated data storing device 6 via the cable 5 based on, for example, a predetermined timing or an operation of the input portion 42 by the individual in charge at the store (step S3-4). As a result, the license information may be stored in the updated data storing device 6.
  • the exemplary method may be implemented, for example, by one or more components of the above-described systems.
  • the exemplary structure of the above-described systems may be referenced in the description of the method, it should be appreciated that the referenced structure is exemplary and the exemplary method need not be limited by any of the above-described exemplary structure.
  • the individual in charge at the store may disconnect the updated data storing device 6 in which the latest map data for updating 6a is stored from the store terminal 4 and carry it to the vehicle C.
  • the updated data storing device 6 may then be connected to the navigation system 10 via the cable 7.
  • the updating of the map data may be started by operating, for example, a switch (not shown) or the display portion 14 of the navigation system 10.
  • the guidance control portion 11 may detect the version information assigned to the map data for updating 6a stored in the updated data storing device 6. The guidance control portion 11 may compare that version information with the version of the navigation system side map data 16 stored in the navigation system side map data storing portion 15, and determines whether the map data for updating 6a is a newer version than the navigation system side map data 16. If the version of the map data for updating 6a is newer than the version of the navigation system side map data 16, the process proceeds on to step S4-2. If the version of the map data for updating 6a is the same as that of the navigation system side map data 16, data updating is cancelled, thus preventing the updating process from being needlessly executed despite the fact that the versions are the same.
  • the guidance control portion 11 may read the map data for updating 6a from the updated data storing device 6 and replace the navigation system side map data 16 stored in the navigation system side map data storing portion 15 with the map data for updating 6a, thereby updating the navigation system side map data 16 (step S4-2).
  • the guidance control portion 11 may change the license information stored in the updated data storing device 6 (step S4-3). At this time, the license information may be erased or the decrypted data is changed.
  • the navigation system 10 may provide notification of that fact by, for example, outputting an indicator such as "data updating complete" to the display portion 43. Then, the individual in charge at the store, for example, may disconnect the updated data storing device 6 from the navigation system 10. This completes the map data updating of the navigation system 10.
  • the foregoing steps may then be repeated between the distribution terminal 3, the server 2, the store terminal 4, and the navigation system 10 every time a new version of the map data is produced.
  • the updated data delivery system 1 for updating navigation system side map data 16 in the navigation system 10 may include the server 2 that has the server side map data storing portion 22.
  • the updated data delivery system 1 may also include the store terminal 4 that has the store side map data storing portion 45 and that connects with the server 2 via the network N2.
  • the control portion 20 of the server 2 may compare the server side map data 22a with the new version of map data newly obtained from the distribution terminal 3, create differential data, and transmit that differential data to the store terminal 4. Therefore, it is possible to reduce the amount of data transmitted from the server 2 to the store terminal 4 in order to update the map data. Accordingly, data transfer can be completed in a short time.
  • the control portion 40 of the store terminal 4 may create the map data for updating 6a using the differential data received from the server 2 and the store side map data 46 stored in the store side map data storing portion 45.
  • the control portion 40 then stores the created map data for updating 6a in the updated data storing device 6 that disconnectedly connects to the store terminal 4 via the cable 5.
  • the updated data storing device 6 can also be connected to the navigation system 10 via the cable 7 so that the navigation system side map data 16 can be updated using the map data for updating 6a by connecting the updated data storing device 6 to the navigation system 10 that is mounted in the vehicle C. Therefore, the map data can be updated without having to remove the navigation system 10 from the vehicle C.
  • the store terminal 4 may integrate the differential data and the store side map data 46 and creates the latest version of map data in advance, so the load from computing and processing on the navigation system 10 can be reduced.
  • the map data for updating 6a may be converted to the same data format as the navigation system side map data 16 provided in the navigation system 10. Therefore, the navigation system 10 only needs to read the map data for updating 6a stored in the updated data storing device 6 and replace the old version of the navigation system side map data 16 with it. Accordingly, the data format conversion processing is shared with the store terminal 4 so the load from computing and processing on the navigation system 10 can be reduced.
  • the server 2 may transmit license information for approving a data update to the store terminal 4. Also, the store terminal 4 may store received license information in the updated data storing device 6. Moreover, before reading the map data for updating 6a, the navigation system 10 may confirm the existence or absence of the license information and may perform data updating only if license information is stored. If there is no license information, the data updating is cancelled. Therefore, unauthorized writing and the like of map data for updating 6a can be prevented even when data for updating is sent and received between the server 2 and the navigation system 10.
  • the server 2 may receive different map data from a plurality of the distribution terminals 3 each having map data. Also, the server 2 may include server side map data storing portions 22 that store different map data. Accordingly, the server 2 is able to centrally manage different types of map data so differential data can be distributed to a greater number of store terminals 4.
  • the navigation system 10 may be made to be able to decrypt the license information.
  • the store terminal 4 may be made to be able to decrypt the license information.
  • the navigation system 10 may change the license information (step S4-3) after reading the map data for updating 6a.
  • the navigation system 10 may erase the map data for updating 6a stored in the updated data storing device 6.
  • the store terminal 4 may receive the differential data from the server 2, create the map data for updating 6a, and store that map data for updating 6a in the updated data storing device 6 every time the data in the navigation system 10 is to be updated.
  • the license information issuing process can be omitted.
  • the navigation system 10 may also perform conversion processing of the data format of the map data for updating 6a.
  • the server 2 may also perform the differential data distributing process when it has received a data request from the store terminal 4. Also, at the point when differential data is created, that differential data may be automatically transmitted to the store terminal 4.
  • the server 2 receives the map data from a plurality of distribution terminals 3. However, it may also receive it from only one distribution terminal 3. At this time, the distribution terminal 3 and the server 2 may also be integrated.
  • the updated data storing device 6 may be a storage medium other than a socalled external hard disk, such as, for example, an optical disk.
  • the server 2 may include a license issuing function and a differential data creating function.
  • the issued license management portion 29 and the management data storing portion 23 may be provided in the license issuing server and the server side map data storing portions 22 may be provided in the differential data creating server.
  • Each of these servers may then be connected to the store terminal 4 via the network N2. As a result, the processing operations can be shared, which enables the load on each server to be reduced.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Automation & Control Theory (AREA)
  • Business, Economics & Management (AREA)
  • Educational Administration (AREA)
  • Educational Technology (AREA)
  • Navigation (AREA)
  • Instructional Devices (AREA)
  • Traffic Control Systems (AREA)
EP05027102A 2004-12-13 2005-12-12 Server, Weiterleitungsvorrichtung und System zur Aktualisierung von Kartendaten Withdrawn EP1669723A1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004360080A JP2006171106A (ja) 2004-12-13 2004-12-13 地図データ更新方法、地図データ更新システム、サーバ及び中継装置

Publications (1)

Publication Number Publication Date
EP1669723A1 true EP1669723A1 (de) 2006-06-14

Family

ID=35883528

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05027102A Withdrawn EP1669723A1 (de) 2004-12-13 2005-12-12 Server, Weiterleitungsvorrichtung und System zur Aktualisierung von Kartendaten

Country Status (3)

Country Link
US (1) US20060195256A1 (de)
EP (1) EP1669723A1 (de)
JP (1) JP2006171106A (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108449A2 (en) * 2007-02-28 2008-09-12 Aisin Aw Co., Ltd. Navigation device and data update system

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080168094A1 (en) * 2005-02-16 2008-07-10 Pioneer Corporation Data Relay Device, Digital Content Reproduction Device, Data Relay Method, Digital Content Reproduction Method, Program, And Computer-Readable Recording Medium
KR100826553B1 (ko) 2006-12-22 2008-04-30 에스케이에너지 주식회사 네비게이션 단말기, 그의 지도 정보 업데이트 시스템, 방법및 기록매체
JP4725535B2 (ja) * 2007-02-27 2011-07-13 アイシン・エィ・ダブリュ株式会社 地図情報更新システム
US20080270576A1 (en) * 2007-04-09 2008-10-30 Ian Cummings Apparatus and methods for reducing data transmission in wireless client-server navigation systems
JP2009043031A (ja) * 2007-08-09 2009-02-26 Hitachi Ltd タクシーナビシステム
US8521430B2 (en) 2007-12-28 2013-08-27 Navteq B.V. Managing differences between geographic database versions
JP4539722B2 (ja) * 2008-01-14 2010-09-08 株式会社デンソー 地図配信サーバおよび地図配信システム
JP5216665B2 (ja) 2009-03-31 2013-06-19 アイシン・エィ・ダブリュ株式会社 地図データ更新システム及び地図データ更新プログラム、並びにこれを利用したナビゲーション装置及び車両制御装置
US9304005B2 (en) * 2009-12-04 2016-04-05 GM Global Technology Operations LLC Application programming interface (API) for navigation applications that merges incremental updates with existing map database
US8683008B1 (en) 2011-08-04 2014-03-25 Google Inc. Management of pre-fetched mapping data incorporating user-specified locations
US8280414B1 (en) 2011-09-26 2012-10-02 Google Inc. Map tile data pre-fetching based on mobile device generated event analysis
US8204966B1 (en) 2011-09-26 2012-06-19 Google Inc. Map tile data pre-fetching based on user activity analysis
US9275374B1 (en) 2011-11-15 2016-03-01 Google Inc. Method and apparatus for pre-fetching place page data based upon analysis of user activities
US8886715B1 (en) 2011-11-16 2014-11-11 Google Inc. Dynamically determining a tile budget when pre-fetching data in a client device
US8711181B1 (en) 2011-11-16 2014-04-29 Google Inc. Pre-fetching map data using variable map tile radius
US9063951B1 (en) 2011-11-16 2015-06-23 Google Inc. Pre-fetching map data based on a tile budget
US9305107B2 (en) 2011-12-08 2016-04-05 Google Inc. Method and apparatus for pre-fetching place page data for subsequent display on a mobile computing device
US9197713B2 (en) 2011-12-09 2015-11-24 Google Inc. Method and apparatus for pre-fetching remote resources for subsequent display on a mobile computing device
US9389088B2 (en) 2011-12-12 2016-07-12 Google Inc. Method of pre-fetching map data for rendering and offline routing
US8803920B2 (en) 2011-12-12 2014-08-12 Google Inc. Pre-fetching map tile data along a route
US9332387B2 (en) 2012-05-02 2016-05-03 Google Inc. Prefetching and caching map data based on mobile network coverage
US8849942B1 (en) 2012-07-31 2014-09-30 Google Inc. Application programming interface for prefetching map data
EP3252431B1 (de) * 2016-05-31 2020-12-16 HERE Global B.V. Routenbestimmung und navigation auf der basis von kartenregionen mit mehreren versionen

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296042A (ja) * 2001-03-30 2002-10-09 Matsushita Electric Ind Co Ltd 地図差分更新装置
DE10209173C1 (de) * 2002-03-01 2003-04-24 Daimler Chrysler Ag Verfahren zum Aktualisieren von Kartendaten und Navigationssystem
US20030220735A1 (en) * 2002-04-25 2003-11-27 Aisin Aw Co., Ltd. Navigation system

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3500928B2 (ja) * 1997-09-17 2004-02-23 トヨタ自動車株式会社 地図データ処理装置、地図データ処理方法および地図データ処理システム
US6636802B1 (en) * 1998-11-24 2003-10-21 Matsushita Electric Industrial Co., Ltd. Data structure of digital map file
JP2001075967A (ja) * 1999-08-31 2001-03-23 Denso Corp 地図データの更新用情報作成方法及び地図データの差分更新システム
JP3922857B2 (ja) * 1999-12-13 2007-05-30 パイオニア株式会社 ナビゲーションシステム
DE10010436A1 (de) * 2000-03-03 2001-09-06 Bosch Gmbh Robert Verfahren zur Übertragung von ortsbezogenen Dateninformationen zwischen einer Zentrale und einem mobilen Endgerät, mobiles Endgerät und Zentrale
JP2002005669A (ja) * 2000-06-16 2002-01-09 Mitsubishi Electric Corp コンピュータ読取可能な再書込み可能記録媒体、地図情報更新システムおよびナビゲーション装置
JP4348503B2 (ja) * 2000-12-21 2009-10-21 三菱電機株式会社 ナビゲーション装置
US6873905B2 (en) * 2002-03-19 2005-03-29 Opnext Japan, Inc. Communications type navigation device
JP2003303028A (ja) * 2002-04-09 2003-10-24 Matsushita Electric Ind Co Ltd ナビゲーション装置のバージョンアップシステム
JP4096607B2 (ja) * 2002-04-25 2008-06-04 アイシン・エィ・ダブリュ株式会社 ナビゲーション装置
JP3660326B2 (ja) * 2002-05-31 2005-06-15 博久 森田 デジタル地図情報提供方法、デジタル地図情報提供システム
US20060106534A1 (en) * 2002-10-22 2006-05-18 Yukihiro Kawamata Map data delivering method for communication-type navigation system
JP4271931B2 (ja) * 2002-12-06 2009-06-03 アルパイン株式会社 ナビゲーション装置及び電子地図更新方法
JP2004198321A (ja) * 2002-12-19 2004-07-15 Pioneer Electronic Corp ナビゲーション用の差分更新データ作成装置及び方法、ナビゲーション装置及び方法、ナビゲーション用の差分更新データセット並びにコンピュータプログラム
JP2004198811A (ja) * 2002-12-19 2004-07-15 Denso Corp 電子機器及びプログラム
JP2004198841A (ja) * 2002-12-19 2004-07-15 Pioneer Electronic Corp ナビゲーション装置及び方法、並びにコンピュータプログラム
JP4065202B2 (ja) * 2003-01-07 2008-03-19 三菱電機株式会社 地図データ処理装置およびセンターシステム
JP2004239730A (ja) * 2003-02-05 2004-08-26 Denso Corp ナビゲーション装置、サーバー及びプログラム
US7216034B2 (en) * 2003-02-27 2007-05-08 Nokia Corporation System and method for an intelligent multi-modal user interface for route drawing
JP4307121B2 (ja) * 2003-03-25 2009-08-05 三菱電機株式会社 地図データ処理装置
JP2004317735A (ja) * 2003-04-15 2004-11-11 Nippon Telegr & Teleph Corp <Ntt> ナビゲーションシステムの電子地図部分更新システム、販売装置、記録した記録媒体および部分更新方法とそのプログラム

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002296042A (ja) * 2001-03-30 2002-10-09 Matsushita Electric Ind Co Ltd 地図差分更新装置
DE10209173C1 (de) * 2002-03-01 2003-04-24 Daimler Chrysler Ag Verfahren zum Aktualisieren von Kartendaten und Navigationssystem
US20030220735A1 (en) * 2002-04-25 2003-11-27 Aisin Aw Co., Ltd. Navigation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 2003, no. 02 5 February 2003 (2003-02-05) *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008108449A2 (en) * 2007-02-28 2008-09-12 Aisin Aw Co., Ltd. Navigation device and data update system
WO2008108449A3 (en) * 2007-02-28 2009-04-09 Aisin Aw Co Navigation device and data update system
CN101578500B (zh) * 2007-02-28 2013-01-02 爱信艾达株式会社 导航设备与数据更新系统
US8510042B2 (en) 2007-02-28 2013-08-13 Aisin Aw Co., Ltd. Navigation device and data update system

Also Published As

Publication number Publication date
US20060195256A1 (en) 2006-08-31
JP2006171106A (ja) 2006-06-29

Similar Documents

Publication Publication Date Title
EP1669723A1 (de) Server, Weiterleitungsvorrichtung und System zur Aktualisierung von Kartendaten
CN102901507B (zh) 生成地图差异数据的设备和方法
CN102341836B (zh) 地图发布服务器、地图信息终端、及使用它们的地图发布系统
JP5327497B2 (ja) 地図データ配信システム及び地図データ更新方法
CN101936742B (zh) 汽车导航装置以及地图数据更新方法
EP2290321B1 (de) Navigationsgerät, navigationsverfahren und navigationssystem
US7136748B2 (en) Map data processing apparatus and center system
JP4209179B2 (ja) 地図情報提供装置および地図情報提供プログラム
EP1507246B1 (de) Map-datenprodukt, map-datenverarbeitungsprogrammprodukt, map-datenverarbeitungsverfahren und map-datenverarbeitungseinrichtung
CN101501452B (zh) 地图更新数据提供装置、版本表、地图数据更新系统和地图更新数据提供方法
CN103493116A (zh) 路线导引的方法和装置
KR101556618B1 (ko) 다양한 사용자 네트워크 환경 지원 및 자유로운 데이터 권역 설정을 위한 지도 데이터 제공 장치 및 방법과 그 시스템
EP2077511A1 (de) Verwaltung der Unterschiede zwischen Geografiedatenbankversionen
US20070213929A1 (en) Computer readable medium storing a map data updating program and map data updating terminal
JP2009157227A (ja) 地図データ配信システム、地図データ配信方法及び通信端末
WO2014181857A1 (ja) 地図データ記憶装置、地図データ更新方法及びコンピュータプログラム
US20040054465A1 (en) Map distribution system and terminal device used in the same
CN102901508A (zh) 地图差别数据生成装置和方法
JP4444677B2 (ja) 検索データの更新方法および更新システム
JP2005242636A (ja) 検索データの更新システムおよび更新方法
EP2051182B1 (de) Datentransfereinrichtung
KR100532144B1 (ko) 지도 정보 제공 시스템 및 그 방법
JP4080307B2 (ja) 地図情報処理装置および地図情報処理プログラム
CN102667410A (zh) 导航系统
JP4380097B2 (ja) 地図情報更新システム、地図情報処理装置及び地図情報提供装置

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061214

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20071009

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100225