EP1669609B1 - Partialdruckregelung von Gas zur Optimierung eines Verfahrens - Google Patents

Partialdruckregelung von Gas zur Optimierung eines Verfahrens Download PDF

Info

Publication number
EP1669609B1
EP1669609B1 EP20050300948 EP05300948A EP1669609B1 EP 1669609 B1 EP1669609 B1 EP 1669609B1 EP 20050300948 EP20050300948 EP 20050300948 EP 05300948 A EP05300948 A EP 05300948A EP 1669609 B1 EP1669609 B1 EP 1669609B1
Authority
EP
European Patent Office
Prior art keywords
pressure
secondary pump
gases
control
delivery pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20050300948
Other languages
English (en)
French (fr)
Other versions
EP1669609A1 (de
Inventor
Jean-Pierre Desbiolles
Michel Puech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP1669609A1 publication Critical patent/EP1669609A1/de
Application granted granted Critical
Publication of EP1669609B1 publication Critical patent/EP1669609B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/85986Pumped fluid control
    • Y10T137/86002Fluid pressure responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86083Vacuum pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86131Plural
    • Y10T137/86139Serial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87917Flow path with serial valves and/or closures

Definitions

  • the present invention relates to the control of the atmosphere in a vacuum chamber such as a process chamber used in the manufacture of semiconductors.
  • the reactions are generally produced in a plasma, and they require a permanent control of the global gas pressure in the vacuum chamber.
  • the overall gas pressure is an important parameter in the processes, and it is commonly used control means and adjustment adapted to control and adjust the total gas pressure of the gas mixture in the vacuum chamber.
  • At least one secondary pump adapted to the low pressures to obtain, at least one primary pump adapted to discharge at atmospheric pressure, a first pipe having an inlet connected to a pipe is used. outlet of the vacuum chamber and an outlet of which is connected to a suction of the secondary pump, and an intermediate pipe whose inlet is connected to a discharge of the secondary pump and an outlet of which is connected to a suction of the primary pump .
  • the known devices have disadvantages, however, in that the proportions of gases present in a vacuum chamber such as a process chamber are not controlled.
  • the injected gases are cracked by a plasma, and then they react with the different materials present on the substrate.
  • the concentration of gaseous residues will depend directly on how the secondary pump will pump the different species, which may in some cases not be optimum in the process.
  • the secondary pump can evacuate, in priority, the active gases which are useful for carrying out the process, and leave in the vacuum chamber the inactive gases which result from the reaction of the active gases with the materials and which are therefore useless for carrying out the process. It is understood that this has the effect of slowing or even degrading the performance of the process.
  • the means for controlling and regulating the overall gas pressure in a vacuum chamber generally comprise various means such as a gas injection into the vacuum chamber, and a control valve placed in the first pipe upstream of the pump. secondary, that is to say at the output of the vacuum chamber. It happens that such a control valve tends to promote the pumping of light gases, which are generally active gases, and tends to slow down the evacuation of heavy gases such as the gases resulting from the reactions. This is therefore unfavorable to the aim pursued.
  • the document US 6,200,107 proposes to move the regulating valve and arrange it in a bypass line in parallel on the secondary pump, between the first pipe and the intermediate pipe.
  • the control valve thus constitutes the unique means for regulating the pressure in a process chamber, and promotes the evacuation of the inactive gases from the reactions in the chamber.
  • This solution also has the major disadvantage of polluting the process chamber in terms of particles, because it reinjects gas that has circulated through the secondary pump and therefore potentially loaded with particles.
  • the problem proposed by the present invention is to find another way to establish and control a low pressure gas mixture in a vacuum chamber, which allows both to control the overall gas pressure in the vacuum chamber and control the proportions of the different gases in the gaseous mixture present in the vacuum chamber.
  • the invention thus aims to optimize the processes used in vacuum enclosures, such as semiconductor manufacturing processes.
  • Another object of the invention is to avoid any risk of additional pollution that may be produced by the device according to the invention.
  • the present invention results from the observation according to which the secondary pumps of molecular, turbomolecular or hybrid type have a pumping capacity which varies as a function of the pressure at the outlet of the pump, and this variation of pumping capacity does not vary. is not the same for all gases. As a result, the pumps perform a selective pumping that can be modified by the outlet pressure.
  • the idea underlying the invention is that by correctly choosing the output pressure of the secondary pump, it is possible to act favorably on the partial pressures of the gases in the vacuum chamber to control the parameters of a process.
  • first control and adjustment means which permanently maintain the total gas pressure of the gaseous mixture in the vacuum chamber, and second control and adjustment means which adjust the proportions of the gaseous mixture in the vacuum chamber. gas
  • the first control and adjustment means are arranged upstream of the secondary pump, and comprise a control valve interposed in the first pipe and / or controlled gas injection means in the vacuum chamber.
  • the second control and adjustment means comprise a control valve interposed in the intermediate pipe.
  • the second control and adjustment means comprise a gas injection device for injecting a neutral gas into the intermediate pipe.
  • the second control and adjustment means comprise a speed control means for controlling the speed of the primary pump.
  • the second control and adjustment means it is possible to combine a control valve and / or gas injection means and / or a primary pump speed variation.
  • the device can act in an open loop, for example receiving a setpoint from an external control means that manages the method implemented in the vacuum chamber.
  • the device according to the invention may furthermore comprise a control device which controls the second control and adjustment means according to a specific program in order to adapt the selective pumping capacity of the secondary pump to the different successive stages of operation. a treatment process taking place in the vacuum chamber.
  • the invention provides a method for establishing and controlling a suitable low pressure gas mixture in a vacuum chamber using a device as defined above. In this method, it acts on the discharge pressure of the secondary pump to adapt its selective pumping capacity and to thereby adjust the proportions of gases in the gas mixture.
  • the discharge pressure is modified by modifying the conductance of the intermediate pipe.
  • it acts on the discharge pressure by injecting a neutral gas into the intermediate pipe.
  • it acts on the discharge pressure by changing the speed of the primary pump.
  • the three modes of action above can be combined together or two by two.
  • the method according to the invention acts on the discharge pressure of the secondary pump in the direction of an increase in pumping of moisture during a controlled emptying process of the vacuum chamber.
  • the process acts on the discharge pressure of the secondary pump in the direction of a constant maintenance of the partial pressure of at least one gas in the vacuum chamber.
  • the device defined above may find application for the compensation of variations in pumping characteristics of a secondary pump. These variations may occur over time as a result of successive deposits on the walls of the pump, or may occur when changing from one pump to be replaced by another.
  • a particularly interesting application is the preferential evacuation of heavy gases in the chambers of dry etching processes in the manufacture of semiconductors or electromechanical microsystems (MEMS). It is thus possible to substantially increase the etching rate.
  • MEMS electromechanical microsystems
  • Another interesting application may be to control the quality of CVD (Chemical Vapor Deposition) deposits by acting on the discharge pressure of the secondary pump.
  • CVD Chemical Vapor Deposition
  • the device can also find an application to compensate for the drifts of a gas pumping system in a vacuum chamber, drifts of all kinds that can occur for any known or unknown reasons.
  • FIG. 6 illustrates the partial pressures of a mixture of two gases with constant total pressure at the inlet of a turbomolecular pump, given in arbitrary units, for two different outlet pressures of the turbomolecular pump.
  • the speed of the turbomolecular pump is constant.
  • Zone 1 illustrates the partial pressure of argon for an outlet pressure of 2.155 Torr at the outlet of the turbomolecular pump
  • Zone 2 illustrates the partial pressure of helium under the same conditions, for a mixture of argon and helium at a given total pressure.
  • Zones 3 and 4 respectively illustrate, for mixing the same argon and helium gases having the same total pressure, the respective partial pressures of argon and helium for an outlet pressure of 0.359 Torr at the outlet of the turbomolecular pump.
  • curves 5, 6 and 7 respectively represent the pumping rates, in liters per second, of helium, nitrogen or argon, depending on the outlet pressure of a turbomolecular pump.
  • the pumping rates are all three decreasing, for the three helium, nitrogen and argon gases, but that the variations different.
  • the pumping rate of argon is relatively constant up to an outlet pressure of about 0.8 millibars, and decreases fairly rapidly thereafter.
  • the nitrogen pumping rate is relatively constant up to an output pressure of 0.4 millibars, and then decreases more rapidly than the pumping rate of argon.
  • the pumping speed of helium is strongly decreasing at the outlet pressure of 0.2 millibars.
  • the selective pumping capacity of the pump is modified to favor the pumping of one or the other of the gases.
  • the present invention takes advantage of this phenomenon to improve the establishment and control of a low pressure gas mixture in a vacuum chamber.
  • FIG. 1 which illustrates a general structure of a device according to one embodiment of the invention, is now considered.
  • the device is intended to establish and control a suitable gas mixture at low pressure in a vacuum chamber 8 such as a process chamber for manufacturing semiconductor components, and comprises a secondary pump 9 of molecular, turbomolecular or hybrid type, a primary pump 10 adapted to discharge at an outlet 11 at atmospheric pressure, a first pipe 12, an inlet 13 of which is connected to an outlet 14 of the vacuum enclosure 8 and an outlet 15 of which is connected to a suction 16 of the secondary pump 9, and an intermediate pipe 17, an inlet 18 is connected to a discharge 19 of the secondary pump 9 and an outlet 20 is connected to a suction 21 of the primary pump 10.
  • a vacuum chamber 8 such as a process chamber for manufacturing semiconductor components
  • the device comprises first control and adjustment means 22, adapted to control and adjust the total gas pressure of the gas mixture in the vacuum chamber 8.
  • the first control and adjustment means 22 may comprise controlled gas injection means 23 for injecting a gas into the vacuum chamber 8, and / or a regulation valve 24 interposed in the first pipe 12 and controlled by a speaker pressure controller 25 according to total pressure measurement data produced by a pressure gauge 26 in the vacuum chamber 8.
  • the enclosure pressure controller 25 may for example be a microcontroller programmed to keep constant the total pressure in the vacuum chamber 8 , as a function of a total pressure setpoint 27.
  • the device further comprises second control and adjustment means 28, distinct from the first control and adjustment means 22, arranged downstream of the secondary pump 9, and acting on the discharge pressure of the secondary pump 9 in the intermediate pipe 17, in the pressure range where the pressure changes cause significant variations in the selective pumping speed of the different gases of the mixture by the secondary pump 9.
  • second control and adjustment means 28 distinct from the first control and adjustment means 22, arranged downstream of the secondary pump 9, and acting on the discharge pressure of the secondary pump 9 in the intermediate pipe 17, in the pressure range where the pressure changes cause significant variations in the selective pumping speed of the different gases of the mixture by the secondary pump 9.
  • the second control and adjustment means 28 may comprise a regulation means 29 controlling the conductance of the intermediate pipe 17, controlled by a discharge pressure controller 30 which receives a discharge pressure setpoint 32 and data output pressure produced by a discharge pressure gauge 31 in the intermediate pipe 17.
  • FIGS. 2, 3 and 4 show three embodiments of the second control and adjustment means.
  • the secondary pump 9 the primary pump 10
  • the discharge pressure sensor 31 the discharge pressure controller 30, and a discharge pressure setpoint 32.
  • the regulating means is a regulating valve 29a interposed in the intermediate pipe 17.
  • the regulating means is a gas injection device 29b for injecting a neutral gas such as nitrogen into the intermediate pipe 17.
  • the regulation means is a speed control means 29c for varying the rotation speed of the primary pump 10.
  • Each of these embodiments of the regulating means 29 may be used alone or in combination with one or two other regulating means.
  • control device 33 which generates the discharge pressure setpoint 32.
  • the control device 33 thus controls the second control and adjustment means 28, for example according to a specific program recorded in a memory and which adapts the selective pumping capacity of the secondary pump 9 to the successive successive stages of a treatment process taking place in the vacuum chamber 8.
  • the control device 33 can generate a high discharge pressure setpoint 32 during the first stage and a relatively low discharge pressure setpoint 32 for the second stage.
  • the evolution of the discharge pressure setpoint 32 can be adapted to each treatment process, by seeking at each step the optimization of the selective pumping capacity of the secondary pump 9 to optimize the treatment process.
  • FIG. 5 which illustrates a second more advanced embodiment of the device according to the invention, is now considered.
  • the device further comprises means for regulating the partial pressures of the gases in the vacuum chamber 8.
  • partial pressure sensors 34 are provided, able to determine the partial pressures of one or more gases of the gaseous mixture in the vacuum chamber 8, and to produce on their outputs 35 partial pressure data sent by a line 36 to a partial pressure controller 37.
  • a partial pressure controller 37 is furthermore provided, which thus receives the partial pressure data produced by the partial pressure sensors 34, which compares these data with a partial pressure setpoint 38, and which generates on its output 39 a signal of output which drives the second control and adjustment means 28 to adapt the selective pumping capacity of the secondary pump 9.
  • the partial pressure controller 37 compares the measured partial pressure data and the partial pressure reference data 38 by looking for the differences between the measured proportions of the gases and the corresponding proportions of the partial pressure setpoint 38. presence of a gap, the pressure controller part 37 generates on its output 39 a discharge pressure signal which drives the regulating means 29 to act on the discharge pressure of the secondary pump 9 to adapt the selective pumping capacity of the secondary pump 9 in the direction of a reducing the difference between the measured proportions of the gases and the corresponding proportions of the partial pressures setpoint 38.
  • the partial pressure sensors 34 communicate the measurements P1 and P2 to the partial pressure controller 37 which reports it. P1 / P2.
  • the partial pressure controller also receives, in the partial pressure setpoint 38, the pressures P10 and P20 for the same gases, and can calculate the ratio P10 / P20.
  • the partial pressure controller 37 determines the difference between the ratios P1 / P2 and P10 / P20, and deduces, based on data previously stored in memory, if the discharge pressure in the intermediate pipe 17 pump discharge Secondary 9 must be increased or decreased to reduce this difference.
  • the partial pressure controller 37 thus generates on its output 39 a discharge pressure setpoint.
  • the discharge pressure sensor 31 measures the discharge pressure in the intermediate pipe 17 and generates pressure measurement data.
  • the discharge pressure controller 30 receives the discharge pressure setpoint and the discharge pressure measurement data, and controls the regulating means 29 to reduce the difference between the discharge pressure setpoint and the pressure measurement data. of repression.
  • the partial pressure controller can directly control the regulating means 29 to reduce the difference between a partial pressure setpoint and the partial pressure measurement.
  • the device according to the invention can find various applications during the process steps in which there is an interest in adjusting the proportion of gases in a gaseous mixture.
  • the possibility of acting on the selective pumping capacity of the secondary pump may also be useful in cases where it is desired to compensate for the drifts of a system for pumping gases in a vacuum chamber.
  • Another interesting application lies in the compensation of possible variations in the pumping characteristics of a secondary pump, either because of aging over time, or because of progressive deposits of material on the walls of the pump, or even makes a replacement of one pump by another.
  • the heavy gases resulting from the etching reactions can advantageously be evacuated preferentially by an increase in the discharge pressure of the secondary pump. This results in a significant increase in the etching rate.
  • the control system of the discharge pressure of the secondary pump may be carried out in open loop, that is to say without servocontrolling, or in closed loop by the servocontrol of the pressure given by a sensor located on the line of empty at the outlet of the secondary pump.
  • the slaving can also be performed in a global manner by measuring the partial pressures in the vacuum chamber, for example by mass spectrometers, optical spectrometers, and by acting on the output pressure control element. to obtain the desired concentration in the vacuum chamber.
  • the partial pressure setpoint of the gases can result from real-time measurements of various parameters of a process taking place in the vacuum chamber, or of delayed time indicators.
  • the deferred time indicators may be measures related to a process optimization, for example the attack speed, the contamination measurement, the drift of a process parameter in the case of an indicator linked to repackaging.
  • a device acts on the discharge pressure of the secondary pump 9 in the pressure range where these modifications cause significant variations in the pumping speed of the gases. selectively according to the nature of the gases, because of the intrinsic characteristics of turbomolecular, molecular or hybrid pumps.
  • the device By applying variations of the partial pumping rates, the device also causes a variation of the total pumping rate in the vacuum chamber, and therefore a possible change in the total pressure in the vacuum chamber.
  • the device therefore acts, simultaneously, on the means for regulating the suction pressure upstream of the secondary pump 9, to readjust the total pressure in the vacuum chamber and to keep it constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Flow Control (AREA)
  • Inorganic Insulating Materials (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Claims (19)

  1. - Vorrichtung zum Aufbauen und Regeln eines geeigneten Gasgemisches mit niedrigem. Druck in einem Vakuumbehälter (8), beinhaltend:
    - mindestens eine Sekundärpumpe (9) ausgeführt als Molekular-, Turbomolekular- oder Hybridpumpe,
    - mindestens eine Primärpumpe (10), die geeignet ist für das Fördern bei atmosphärischem Druck,
    - eine erste Leitung (12), von der ein Eingang (13) an einen Ausgang (14) des Vakuumbehälters (8) angeschlossen ist und von der ein Ausgang (15) an eine Ansaugung (16) der Sekundärpumpe (9) angeschlossen ist,
    - eine Zwischenleitung (17), von der ein Eingang (18) an eine Druckleitung (19) der Sekundärpumpe (9) angeschlossen ist und von der ein Ausgang (20) an eine Ansaugung (21) der Primärpumpe (10) angeschlossen ist,
    - erste Mittel zur Regelung und Einstellung (22), die geeignet sind, um den Gesamtgasdruck des Gasgemisches im Vakuumbehälter (8) in Abhängigkeit von einem Gesamtdrucksollwert (27) zu regeln und einzustellen,
    dadurch gekennzeichnet, dass sie außerdem folgendes einschließt:
    zweite Mittel zur Regelung und Einstellung die sich von den ersten Mitteln für die Regelung und Einstellung (22) unterscheiden, die unterhalb der Sekundärpumpe (9) angeordnet sind und auf den Förderdruck der Sekundärpumpe (9) im Bereich von Drücken einwirken, wo Druckänderungen deutliche Änderungen von selektiven Pumpgeschwindigkeiten der verschiedenen Gase des Gemisches nach sich ziehen, um die selektive Pumpkapazität der Sekundärpumpe (9) anzupassen und somit die Größenverhältnisse der Gase des Gasgemisches im Vakuumbehälter (8) einzustellen.
  2. - Vorrichtung gemäß Anspruch 1, dadurch gekennzeichnet, dass die ersten Mittel zur Regelung und Anpassung (22) oberhalb der Sekundärpumpe (9) angeordnet sind und ein Regulierventil (24) einschließen, das in der ersten Leitung (12) eingefügt ist und/oder Mittel zur kontrollierten Einspritzung von Gas (23) in den Vakuumbehälter (8).
  3. - Vorrichtung gemäß einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die zweiten Mittel für die Regelung und Einstellung (28) ein Regulierventil (29a) einschließen, das in der Zwischenleitung (17) eingefügt ist.
  4. - Vorrichtung gemäß einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die zweiten Mittel zur Regelung und Einstellung (28) eine Vorrichtung zur Gaseinspritzung (29b) zum Einspritzen eines Neutralgases in die Zwischenleitung (17) einschließen,
  5. - Vorrichtung gemäß einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass die zweiten Mittel zur Regelung und Einstellung (28) ein Mittel zur Geschwindigkeitssteuerung (29c) zum Steuern der Geschwindigkeit der Primärpumpe (10) einschließen,
  6. - Vorrichtung gemäß einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass sie folgendes einschließt:
    - Partialdrucksensoren (34), die im Stande sind, den Partialdruck eines Gases oder mehrerer Gase des Gasgemisches im Vakuumbehälter (8) zu bestimmen und Partialdruckdaten zu erstellen,
    - einen Partialdruckcontroller (37), der die Partialdruckdaten empfängt, die von den Partialdrucksensoren (34) erstellt werden, diese Daten mit einem Partialdrucksollwert (38) vergleicht und die Abweichungen sucht zwischen den gemessenen Größenverhältnissen der Gase und den entsprechenden Größenverhältnissen des Partialdrucksollwerts (38), und ein Ausgangssignal generiert, welches die zweiten Mittel zur und Einstellung (28) steuert, um die selektive Pumpkapazität der Sekundärpumpe (9) dahingehend anzupassen, dass der Abstand zwischen den gemessenen Größenverhältnissen der Gase und den entsprechenden Größenverhältnissen des Partialdrucksolwerts (38) verringert wird.
  7. - Vorrichtung gemäß Anspruch 6, dadurch gekennzeichnet, dass:
    - der Partialdruckcontroller (37) an seinem Ausgang (39) einen Sollwert für den Förderdruck generiert,
    - ein Förderdrucksensor (31) den Förderdruck in der Zwischenleitung (17) misst und Messdaten betreffend den Förderdruck generiert,
    - ein Förderdruckcontroller (30) den Sollwert für den Förderdruck und die Daten für den Förderdruck empfängt und Mittel zur Regulierung (29) des Förderdrucks steuert, um die Abweichung zwischen dem Förderdrucksollwert und den Messdaten für den Förderdruck zu verringern.
  8. - Vorrichtung gemäß einem der Ansprüche 1, bis 7, dadurch gekennzeichnet, dass sie eine Steuervorrichtung (33) einschließt, welche die zweiten Mittel zur Regelung und Einstellung (28) gemäß einem spezifischen Programm steuert, um die selektive Pumpkapazität der Sekundärpumpe (9) an die verschiedenen aufeinander folgenden Schritte eines Behandlungsverfahrens anzupassen, das im Vakuumbehälter (8) abläuft.
  9. - Verfahren, um ein geeignetes Gasgemisch mit geringem Druck in einem Vakuumbehälter (8) mit Hilfe einer Vorrichtung gemäß einem der Ansprüche 1 bis 8 herzustellen und zu regeln, dadurch gekennzeichnet, dass man auf den Förderdruck der Sekundärpumpe (9) einwirkt, um ihre selektive Pumpkapazität anzupassen und somit die Größenverhältnisse der Gase im Gasgemisch einzustellen.
  10. - Verfahren gemäß Anspruch 9, dadurch gekennzeichnet, dass man auf den Förderdruck dadurch einwirkt, dass man die Konduktanz der Zwischenleitung (17) verändert.
  11. - Verfahren gemäß Anspruch 9 oder 10, dadurch gekennzeichnet, dass man auf den Förderdruck einwirkt, indem man ein Neutralgas in die Zwischenleitung (17) einspritzt.
  12. - Verfahren gemäß einem der Ansprüche 9 bis 11, dadurch gekennzeichnet, dass man auf den Förderdruck einwirkt, indem man die Geschwindigkeit der Primärpumpe (10) verändert.
  13. - Verfahren gemäß einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, dass man auf den Förderdruck der Sekundärpumpe (9) einwirkt, und zwar abhängig von den aufeinander folgenden Schritten eines Bearbeitungsverfahrens, das im Vakuumbehälter (8) abläuft.
  14. - Verfahren gemäß einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass man auf den Förderdruck der Sekundärpumpe (9) im Sinne einer Erhöhung in Sachen Feuchtigkeitspumpen während eines Prozesses zur kontrollierten Entleerung des Vakuumbehälters (8) einwirkt.
  15. - Verfahren gemäß einem der Ansprüche 9 bis 13, dadurch gekennzeichnet, dass man auf den Förderdruck der Sekundärpumpe (9) im Sinne einer Konstanthaltung des Partialdrucks von mindestens einem Gas im Vakuumbehälter (8) einwirkt.
  16. - Anwendung einer Vorrichtung gemäß einem der Ansprüche 1 bis 8 für die Kompensierung der Änderungen von Pumpcharakteristika einer Sekundärpumpe (9).
  17. - Anwendung einer Vorrichtung gemäß einem der Ansprüche 1 bis 8 zur Kompensierung der Abweichungen eines Systems zum Pumpen der Gase in einem Vakuumbehälter (8).
  18. - Anwendung einer Vorrichtung gemäß einem der Ansprüche 1 bis 8 zur Erhöhung der Geschwindigkeit eines Trockengravurverfahrens durch Erhöhung des Förderdrucks der Sekundärpumpe (9).
  19. - Anwendung einer Vorrichtung gemäß einem der Ansprüche 1 bis 8 zur Beherrschung der Qualität von CVD (Gasphasenabscheidung) durch Einwirken auf den Förderdruck der Sekundärpumpe (9).
EP20050300948 2004-12-03 2005-11-18 Partialdruckregelung von Gas zur Optimierung eines Verfahrens Not-in-force EP1669609B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0452853A FR2878913B1 (fr) 2004-12-03 2004-12-03 Controle des pressions partielles de gaz pour optimisation de procede

Publications (2)

Publication Number Publication Date
EP1669609A1 EP1669609A1 (de) 2006-06-14
EP1669609B1 true EP1669609B1 (de) 2008-02-06

Family

ID=34952720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050300948 Not-in-force EP1669609B1 (de) 2004-12-03 2005-11-18 Partialdruckregelung von Gas zur Optimierung eines Verfahrens

Country Status (6)

Country Link
US (2) US7793685B2 (de)
EP (1) EP1669609B1 (de)
AT (1) ATE385545T1 (de)
DE (1) DE602005004640T2 (de)
FR (1) FR2878913B1 (de)
WO (1) WO2006059027A1 (de)

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878913B1 (fr) * 2004-12-03 2007-01-19 Cit Alcatel Controle des pressions partielles de gaz pour optimisation de procede
US7438534B2 (en) * 2005-10-07 2008-10-21 Edwards Vacuum, Inc. Wide range pressure control using turbo pump
JP5372353B2 (ja) * 2007-09-25 2013-12-18 株式会社フジキン 半導体製造装置用ガス供給装置
US8042566B2 (en) 2008-07-23 2011-10-25 Atmel Corporation Ex-situ component recovery
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
EP2458218A1 (de) * 2010-11-30 2012-05-30 Converteam Technology Ltd System zur Aufrechterhaltung eines hohen Vakuums
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9002465B2 (en) * 2012-04-06 2015-04-07 Boston Scientific Neuromodulation Corporation Verifying correct operation of an implantable neurostimulator device using current distribution circuitry
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US8525111B1 (en) 2012-12-31 2013-09-03 908 Devices Inc. High pressure mass spectrometry systems and methods
US9099286B2 (en) 2012-12-31 2015-08-04 908 Devices Inc. Compact mass spectrometer
US9093253B2 (en) * 2012-12-31 2015-07-28 908 Devices Inc. High pressure mass spectrometry systems and methods
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US20140311581A1 (en) * 2013-04-19 2014-10-23 Applied Materials, Inc. Pressure controller configuration for semiconductor processing applications
CN103277284B (zh) * 2013-06-21 2016-06-22 苏州盟通利机电设备有限公司 全自动真空抽气装置及其控制方法
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
US9502226B2 (en) 2014-01-14 2016-11-22 908 Devices Inc. Sample collection in compact mass spectrometry systems
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US8816272B1 (en) 2014-05-02 2014-08-26 908 Devices Inc. High pressure mass spectrometry systems and methods
US8921774B1 (en) 2014-05-02 2014-12-30 908 Devices Inc. High pressure mass spectrometry systems and methods
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9478434B2 (en) 2014-09-24 2016-10-25 Applied Materials, Inc. Chlorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
GB2579360A (en) * 2018-11-28 2020-06-24 Edwards Ltd Multiple chamber vacuum exhaust system
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
FR3112086B1 (fr) * 2020-07-09 2022-07-08 Pfeiffer Vacuum Dispositif de traitement des gaz et ligne de vide
FR3112177B1 (fr) * 2020-07-09 2022-07-08 Pfeiffer Vacuum Ligne de vide et procédé de contrôle d’une ligne de vide
DE102022100843A1 (de) 2022-01-14 2023-07-20 VON ARDENNE Asset GmbH & Co. KG Verfahren, Steuervorrichtung, Speichermedium und Vakuumanordnung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529860A (en) * 1982-08-02 1985-07-16 Motorola, Inc. Plasma etching of organic materials
US4699570A (en) * 1986-03-07 1987-10-13 Itt Industries, Inc Vacuum pump system
US5108983A (en) * 1989-11-21 1992-04-28 Georgia Tech Research Corporation Method for the rapid deposition with low vapor pressure reactants by chemical vapor deposition
JP3847357B2 (ja) * 1994-06-28 2006-11-22 株式会社荏原製作所 真空系の排気装置
US5628364A (en) * 1995-12-04 1997-05-13 Terrane Remediation, Inc. Control system for governing in-situ removal of subterranean hydrocarbon-based fluids
US5944049A (en) * 1997-07-15 1999-08-31 Applied Materials, Inc. Apparatus and method for regulating a pressure in a chamber
US5979225A (en) * 1997-08-26 1999-11-09 Applied Materials, Inc. Diagnosis process of vacuum failure in a vacuum chamber
JP3929185B2 (ja) * 1998-05-20 2007-06-13 株式会社荏原製作所 真空排気装置及び方法
FR2786566B1 (fr) * 1998-11-26 2000-12-29 Cit Alcatel Procede et dispositif de detection de fuites sur echangeurs automobiles
DE10043783A1 (de) * 2000-09-06 2002-03-14 Leybold Vakuum Gmbh Verfahren und Vorrichtung zur Regelung des Vakuums in einer Kammer
JP4335469B2 (ja) * 2001-03-22 2009-09-30 株式会社荏原製作所 真空排気装置のガス循環量調整方法及び装置
FR2854667B1 (fr) * 2003-05-09 2006-07-28 Cit Alcatel Controle de pression dans la chambre de procedes par variation de vitesse de pompes, vanne de regulation et injection de gaz neutre
DE602004013612D1 (de) * 2003-09-26 2008-06-19 Edwards Ltd Erfassung von verunreinigungen in einem durch eine vakuumpumpe gepumpten fluid
US7253107B2 (en) * 2004-06-17 2007-08-07 Asm International N.V. Pressure control system
FR2878913B1 (fr) * 2004-12-03 2007-01-19 Cit Alcatel Controle des pressions partielles de gaz pour optimisation de procede

Also Published As

Publication number Publication date
US8297311B2 (en) 2012-10-30
US20060118178A1 (en) 2006-06-08
DE602005004640T2 (de) 2009-01-29
DE602005004640D1 (de) 2008-03-20
US20110005607A1 (en) 2011-01-13
FR2878913B1 (fr) 2007-01-19
EP1669609A1 (de) 2006-06-14
FR2878913A1 (fr) 2006-06-09
US7793685B2 (en) 2010-09-14
WO2006059027A1 (fr) 2006-06-08
ATE385545T1 (de) 2008-02-15

Similar Documents

Publication Publication Date Title
EP1669609B1 (de) Partialdruckregelung von Gas zur Optimierung eines Verfahrens
EP2417621B1 (de) Verfahren zur bordotierung von siliziumwafern
FR2501909A1 (fr) Procede d'attaque par l'hydrogene de semiconducteurs et d'oxydes de semiconducteurs
FR2794036A1 (fr) Procede et appareil pour accentuer le nettoyage de chambre de traitement
EP0995908A1 (de) Molekularpumpe
WO2001082019A1 (fr) Procede et dispositif de conditionnement de l'atmosphere dans une chambre de procedes
EP0231544B1 (de) Reaktionskammer für Epitaxiekristallzüchtung aus gasförmiger Phase von Halbleitermaterialien
EP1746287A1 (de) Pumpvorrichtung zum schnellen Evakuiieren eines Behälters mit niedrigem Energieverbrauch
WO2006134289A1 (fr) Procede de pilotage de la pression dans une chambre de procede
EP0964741B1 (de) Verfahren zur verbesserung eines vakuums in einem hochvakuumsystem
WO2007048937A1 (fr) Methode de surveillance d'un plasma, dispositif pour la mise en œuvre de cette methode, application de cette methode au depot d'un film sur corps creux en pet
FR2645344A1 (fr) Dispositif pour le depot sous vide de films sur des supports
EP3377672B1 (de) Verfahren zur herstellung von aluminiumoxid und/oder aluminiumnitrid
EP0985828A1 (de) Verfahren und Anlage zur Verhinderung von Ablagerungen in eineTurbomolekularpumpe mit Magnet-oder Gaslager
CA2253082A1 (fr) Procede et dispositif pour le traitement de surface d'un substrat par decharge electrique entre deux electrodes dans un melange gazeux
EP1348039B1 (de) Vorrichtung, in der eine operation durchgeführt wird, die die kontrolle der atmosphäre in einer kammer erfordert
FR2807951A1 (fr) Procede et systeme de pompage des chambres de transfert d'equipement de semi-conducteur
EP3380647A1 (de) Verfahren zur behandlung der oberfläche einer sich bewegenden folie und einrichtung zur implementierung dieses verfahrens
WO1997019464A1 (fr) Boite de stockage d'un objet destine a etre protege d'une contamination physico-chimique
FR2900277A1 (fr) Procede de formation d'une portion monocristalline a base de silicium
FR2804542A1 (fr) Procede et dispositif pour la formation de couches minces de composes de silicium et de germanium
FR2863404A1 (fr) Dispositif pour la generation et la commande du flux d'agents de nettoyage dans une chambre de procedes
FR2984423A1 (fr) Dispositif de pompage et equipement de fabrication d'ecrans plats correspondant
EP4341984A1 (de) Verfahren zur herstellung eines mikroelektronischen bauteils mit einer schicht auf basis eines iii-v-materials
WO2001057491A1 (fr) Procede et dispositif d'echantillonnage de gaz optimalise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061214

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005004640

Country of ref document: DE

Date of ref document: 20080320

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080409

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080517

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

BERE Be: lapsed

Owner name: ALCATEL LUCENT

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101223

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20111122

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: ALCATEL LUCENT;3, AVENUE OCTAVE GREARD;75007 PARIS (FR)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121118

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ADIXEN VACUUM PRODUCTS, FR

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141126

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141120

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005004640

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130