EP1669609B1 - Contrôle des pressions partielles de gaz pour optimisation de procédé - Google Patents

Contrôle des pressions partielles de gaz pour optimisation de procédé Download PDF

Info

Publication number
EP1669609B1
EP1669609B1 EP20050300948 EP05300948A EP1669609B1 EP 1669609 B1 EP1669609 B1 EP 1669609B1 EP 20050300948 EP20050300948 EP 20050300948 EP 05300948 A EP05300948 A EP 05300948A EP 1669609 B1 EP1669609 B1 EP 1669609B1
Authority
EP
European Patent Office
Prior art keywords
pressure
secondary pump
gases
control
delivery pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP20050300948
Other languages
German (de)
English (en)
Other versions
EP1669609A1 (fr
Inventor
Jean-Pierre Desbiolles
Michel Puech
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Alcatel Lucent SAS
Original Assignee
Alcatel Lucent SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alcatel Lucent SAS filed Critical Alcatel Lucent SAS
Publication of EP1669609A1 publication Critical patent/EP1669609A1/fr
Application granted granted Critical
Publication of EP1669609B1 publication Critical patent/EP1669609B1/fr
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D27/00Control, e.g. regulation, of pumps, pumping installations or pumping systems specially adapted for elastic fluids
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0396Involving pressure control
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/85986Pumped fluid control
    • Y10T137/86002Fluid pressure responsive
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86083Vacuum pump
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/85978With pump
    • Y10T137/86131Plural
    • Y10T137/86139Serial
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/8593Systems
    • Y10T137/87917Flow path with serial valves and/or closures

Definitions

  • the present invention relates to the control of the atmosphere in a vacuum chamber such as a process chamber used in the manufacture of semiconductors.
  • the reactions are generally produced in a plasma, and they require a permanent control of the global gas pressure in the vacuum chamber.
  • the overall gas pressure is an important parameter in the processes, and it is commonly used control means and adjustment adapted to control and adjust the total gas pressure of the gas mixture in the vacuum chamber.
  • At least one secondary pump adapted to the low pressures to obtain, at least one primary pump adapted to discharge at atmospheric pressure, a first pipe having an inlet connected to a pipe is used. outlet of the vacuum chamber and an outlet of which is connected to a suction of the secondary pump, and an intermediate pipe whose inlet is connected to a discharge of the secondary pump and an outlet of which is connected to a suction of the primary pump .
  • the known devices have disadvantages, however, in that the proportions of gases present in a vacuum chamber such as a process chamber are not controlled.
  • the injected gases are cracked by a plasma, and then they react with the different materials present on the substrate.
  • the concentration of gaseous residues will depend directly on how the secondary pump will pump the different species, which may in some cases not be optimum in the process.
  • the secondary pump can evacuate, in priority, the active gases which are useful for carrying out the process, and leave in the vacuum chamber the inactive gases which result from the reaction of the active gases with the materials and which are therefore useless for carrying out the process. It is understood that this has the effect of slowing or even degrading the performance of the process.
  • the means for controlling and regulating the overall gas pressure in a vacuum chamber generally comprise various means such as a gas injection into the vacuum chamber, and a control valve placed in the first pipe upstream of the pump. secondary, that is to say at the output of the vacuum chamber. It happens that such a control valve tends to promote the pumping of light gases, which are generally active gases, and tends to slow down the evacuation of heavy gases such as the gases resulting from the reactions. This is therefore unfavorable to the aim pursued.
  • the document US 6,200,107 proposes to move the regulating valve and arrange it in a bypass line in parallel on the secondary pump, between the first pipe and the intermediate pipe.
  • the control valve thus constitutes the unique means for regulating the pressure in a process chamber, and promotes the evacuation of the inactive gases from the reactions in the chamber.
  • This solution also has the major disadvantage of polluting the process chamber in terms of particles, because it reinjects gas that has circulated through the secondary pump and therefore potentially loaded with particles.
  • the problem proposed by the present invention is to find another way to establish and control a low pressure gas mixture in a vacuum chamber, which allows both to control the overall gas pressure in the vacuum chamber and control the proportions of the different gases in the gaseous mixture present in the vacuum chamber.
  • the invention thus aims to optimize the processes used in vacuum enclosures, such as semiconductor manufacturing processes.
  • Another object of the invention is to avoid any risk of additional pollution that may be produced by the device according to the invention.
  • the present invention results from the observation according to which the secondary pumps of molecular, turbomolecular or hybrid type have a pumping capacity which varies as a function of the pressure at the outlet of the pump, and this variation of pumping capacity does not vary. is not the same for all gases. As a result, the pumps perform a selective pumping that can be modified by the outlet pressure.
  • the idea underlying the invention is that by correctly choosing the output pressure of the secondary pump, it is possible to act favorably on the partial pressures of the gases in the vacuum chamber to control the parameters of a process.
  • first control and adjustment means which permanently maintain the total gas pressure of the gaseous mixture in the vacuum chamber, and second control and adjustment means which adjust the proportions of the gaseous mixture in the vacuum chamber. gas
  • the first control and adjustment means are arranged upstream of the secondary pump, and comprise a control valve interposed in the first pipe and / or controlled gas injection means in the vacuum chamber.
  • the second control and adjustment means comprise a control valve interposed in the intermediate pipe.
  • the second control and adjustment means comprise a gas injection device for injecting a neutral gas into the intermediate pipe.
  • the second control and adjustment means comprise a speed control means for controlling the speed of the primary pump.
  • the second control and adjustment means it is possible to combine a control valve and / or gas injection means and / or a primary pump speed variation.
  • the device can act in an open loop, for example receiving a setpoint from an external control means that manages the method implemented in the vacuum chamber.
  • the device according to the invention may furthermore comprise a control device which controls the second control and adjustment means according to a specific program in order to adapt the selective pumping capacity of the secondary pump to the different successive stages of operation. a treatment process taking place in the vacuum chamber.
  • the invention provides a method for establishing and controlling a suitable low pressure gas mixture in a vacuum chamber using a device as defined above. In this method, it acts on the discharge pressure of the secondary pump to adapt its selective pumping capacity and to thereby adjust the proportions of gases in the gas mixture.
  • the discharge pressure is modified by modifying the conductance of the intermediate pipe.
  • it acts on the discharge pressure by injecting a neutral gas into the intermediate pipe.
  • it acts on the discharge pressure by changing the speed of the primary pump.
  • the three modes of action above can be combined together or two by two.
  • the method according to the invention acts on the discharge pressure of the secondary pump in the direction of an increase in pumping of moisture during a controlled emptying process of the vacuum chamber.
  • the process acts on the discharge pressure of the secondary pump in the direction of a constant maintenance of the partial pressure of at least one gas in the vacuum chamber.
  • the device defined above may find application for the compensation of variations in pumping characteristics of a secondary pump. These variations may occur over time as a result of successive deposits on the walls of the pump, or may occur when changing from one pump to be replaced by another.
  • a particularly interesting application is the preferential evacuation of heavy gases in the chambers of dry etching processes in the manufacture of semiconductors or electromechanical microsystems (MEMS). It is thus possible to substantially increase the etching rate.
  • MEMS electromechanical microsystems
  • Another interesting application may be to control the quality of CVD (Chemical Vapor Deposition) deposits by acting on the discharge pressure of the secondary pump.
  • CVD Chemical Vapor Deposition
  • the device can also find an application to compensate for the drifts of a gas pumping system in a vacuum chamber, drifts of all kinds that can occur for any known or unknown reasons.
  • FIG. 6 illustrates the partial pressures of a mixture of two gases with constant total pressure at the inlet of a turbomolecular pump, given in arbitrary units, for two different outlet pressures of the turbomolecular pump.
  • the speed of the turbomolecular pump is constant.
  • Zone 1 illustrates the partial pressure of argon for an outlet pressure of 2.155 Torr at the outlet of the turbomolecular pump
  • Zone 2 illustrates the partial pressure of helium under the same conditions, for a mixture of argon and helium at a given total pressure.
  • Zones 3 and 4 respectively illustrate, for mixing the same argon and helium gases having the same total pressure, the respective partial pressures of argon and helium for an outlet pressure of 0.359 Torr at the outlet of the turbomolecular pump.
  • curves 5, 6 and 7 respectively represent the pumping rates, in liters per second, of helium, nitrogen or argon, depending on the outlet pressure of a turbomolecular pump.
  • the pumping rates are all three decreasing, for the three helium, nitrogen and argon gases, but that the variations different.
  • the pumping rate of argon is relatively constant up to an outlet pressure of about 0.8 millibars, and decreases fairly rapidly thereafter.
  • the nitrogen pumping rate is relatively constant up to an output pressure of 0.4 millibars, and then decreases more rapidly than the pumping rate of argon.
  • the pumping speed of helium is strongly decreasing at the outlet pressure of 0.2 millibars.
  • the selective pumping capacity of the pump is modified to favor the pumping of one or the other of the gases.
  • the present invention takes advantage of this phenomenon to improve the establishment and control of a low pressure gas mixture in a vacuum chamber.
  • FIG. 1 which illustrates a general structure of a device according to one embodiment of the invention, is now considered.
  • the device is intended to establish and control a suitable gas mixture at low pressure in a vacuum chamber 8 such as a process chamber for manufacturing semiconductor components, and comprises a secondary pump 9 of molecular, turbomolecular or hybrid type, a primary pump 10 adapted to discharge at an outlet 11 at atmospheric pressure, a first pipe 12, an inlet 13 of which is connected to an outlet 14 of the vacuum enclosure 8 and an outlet 15 of which is connected to a suction 16 of the secondary pump 9, and an intermediate pipe 17, an inlet 18 is connected to a discharge 19 of the secondary pump 9 and an outlet 20 is connected to a suction 21 of the primary pump 10.
  • a vacuum chamber 8 such as a process chamber for manufacturing semiconductor components
  • the device comprises first control and adjustment means 22, adapted to control and adjust the total gas pressure of the gas mixture in the vacuum chamber 8.
  • the first control and adjustment means 22 may comprise controlled gas injection means 23 for injecting a gas into the vacuum chamber 8, and / or a regulation valve 24 interposed in the first pipe 12 and controlled by a speaker pressure controller 25 according to total pressure measurement data produced by a pressure gauge 26 in the vacuum chamber 8.
  • the enclosure pressure controller 25 may for example be a microcontroller programmed to keep constant the total pressure in the vacuum chamber 8 , as a function of a total pressure setpoint 27.
  • the device further comprises second control and adjustment means 28, distinct from the first control and adjustment means 22, arranged downstream of the secondary pump 9, and acting on the discharge pressure of the secondary pump 9 in the intermediate pipe 17, in the pressure range where the pressure changes cause significant variations in the selective pumping speed of the different gases of the mixture by the secondary pump 9.
  • second control and adjustment means 28 distinct from the first control and adjustment means 22, arranged downstream of the secondary pump 9, and acting on the discharge pressure of the secondary pump 9 in the intermediate pipe 17, in the pressure range where the pressure changes cause significant variations in the selective pumping speed of the different gases of the mixture by the secondary pump 9.
  • the second control and adjustment means 28 may comprise a regulation means 29 controlling the conductance of the intermediate pipe 17, controlled by a discharge pressure controller 30 which receives a discharge pressure setpoint 32 and data output pressure produced by a discharge pressure gauge 31 in the intermediate pipe 17.
  • FIGS. 2, 3 and 4 show three embodiments of the second control and adjustment means.
  • the secondary pump 9 the primary pump 10
  • the discharge pressure sensor 31 the discharge pressure controller 30, and a discharge pressure setpoint 32.
  • the regulating means is a regulating valve 29a interposed in the intermediate pipe 17.
  • the regulating means is a gas injection device 29b for injecting a neutral gas such as nitrogen into the intermediate pipe 17.
  • the regulation means is a speed control means 29c for varying the rotation speed of the primary pump 10.
  • Each of these embodiments of the regulating means 29 may be used alone or in combination with one or two other regulating means.
  • control device 33 which generates the discharge pressure setpoint 32.
  • the control device 33 thus controls the second control and adjustment means 28, for example according to a specific program recorded in a memory and which adapts the selective pumping capacity of the secondary pump 9 to the successive successive stages of a treatment process taking place in the vacuum chamber 8.
  • the control device 33 can generate a high discharge pressure setpoint 32 during the first stage and a relatively low discharge pressure setpoint 32 for the second stage.
  • the evolution of the discharge pressure setpoint 32 can be adapted to each treatment process, by seeking at each step the optimization of the selective pumping capacity of the secondary pump 9 to optimize the treatment process.
  • FIG. 5 which illustrates a second more advanced embodiment of the device according to the invention, is now considered.
  • the device further comprises means for regulating the partial pressures of the gases in the vacuum chamber 8.
  • partial pressure sensors 34 are provided, able to determine the partial pressures of one or more gases of the gaseous mixture in the vacuum chamber 8, and to produce on their outputs 35 partial pressure data sent by a line 36 to a partial pressure controller 37.
  • a partial pressure controller 37 is furthermore provided, which thus receives the partial pressure data produced by the partial pressure sensors 34, which compares these data with a partial pressure setpoint 38, and which generates on its output 39 a signal of output which drives the second control and adjustment means 28 to adapt the selective pumping capacity of the secondary pump 9.
  • the partial pressure controller 37 compares the measured partial pressure data and the partial pressure reference data 38 by looking for the differences between the measured proportions of the gases and the corresponding proportions of the partial pressure setpoint 38. presence of a gap, the pressure controller part 37 generates on its output 39 a discharge pressure signal which drives the regulating means 29 to act on the discharge pressure of the secondary pump 9 to adapt the selective pumping capacity of the secondary pump 9 in the direction of a reducing the difference between the measured proportions of the gases and the corresponding proportions of the partial pressures setpoint 38.
  • the partial pressure sensors 34 communicate the measurements P1 and P2 to the partial pressure controller 37 which reports it. P1 / P2.
  • the partial pressure controller also receives, in the partial pressure setpoint 38, the pressures P10 and P20 for the same gases, and can calculate the ratio P10 / P20.
  • the partial pressure controller 37 determines the difference between the ratios P1 / P2 and P10 / P20, and deduces, based on data previously stored in memory, if the discharge pressure in the intermediate pipe 17 pump discharge Secondary 9 must be increased or decreased to reduce this difference.
  • the partial pressure controller 37 thus generates on its output 39 a discharge pressure setpoint.
  • the discharge pressure sensor 31 measures the discharge pressure in the intermediate pipe 17 and generates pressure measurement data.
  • the discharge pressure controller 30 receives the discharge pressure setpoint and the discharge pressure measurement data, and controls the regulating means 29 to reduce the difference between the discharge pressure setpoint and the pressure measurement data. of repression.
  • the partial pressure controller can directly control the regulating means 29 to reduce the difference between a partial pressure setpoint and the partial pressure measurement.
  • the device according to the invention can find various applications during the process steps in which there is an interest in adjusting the proportion of gases in a gaseous mixture.
  • the possibility of acting on the selective pumping capacity of the secondary pump may also be useful in cases where it is desired to compensate for the drifts of a system for pumping gases in a vacuum chamber.
  • Another interesting application lies in the compensation of possible variations in the pumping characteristics of a secondary pump, either because of aging over time, or because of progressive deposits of material on the walls of the pump, or even makes a replacement of one pump by another.
  • the heavy gases resulting from the etching reactions can advantageously be evacuated preferentially by an increase in the discharge pressure of the secondary pump. This results in a significant increase in the etching rate.
  • the control system of the discharge pressure of the secondary pump may be carried out in open loop, that is to say without servocontrolling, or in closed loop by the servocontrol of the pressure given by a sensor located on the line of empty at the outlet of the secondary pump.
  • the slaving can also be performed in a global manner by measuring the partial pressures in the vacuum chamber, for example by mass spectrometers, optical spectrometers, and by acting on the output pressure control element. to obtain the desired concentration in the vacuum chamber.
  • the partial pressure setpoint of the gases can result from real-time measurements of various parameters of a process taking place in the vacuum chamber, or of delayed time indicators.
  • the deferred time indicators may be measures related to a process optimization, for example the attack speed, the contamination measurement, the drift of a process parameter in the case of an indicator linked to repackaging.
  • a device acts on the discharge pressure of the secondary pump 9 in the pressure range where these modifications cause significant variations in the pumping speed of the gases. selectively according to the nature of the gases, because of the intrinsic characteristics of turbomolecular, molecular or hybrid pumps.
  • the device By applying variations of the partial pumping rates, the device also causes a variation of the total pumping rate in the vacuum chamber, and therefore a possible change in the total pressure in the vacuum chamber.
  • the device therefore acts, simultaneously, on the means for regulating the suction pressure upstream of the secondary pump 9, to readjust the total pressure in the vacuum chamber and to keep it constant.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Vapour Deposition (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)
  • Flow Control (AREA)
  • Inorganic Insulating Materials (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)

Description

  • La présente invention concerne le contrôle de l'atmosphère dans une enceinte à vide telle qu'une chambre de procédés utilisée dans la fabrication des semi-conducteurs.
  • Les procédés mis en oeuvre dans les enceintes à vide pour la fabrication de semi-conducteurs nécessitent l'établissement et le contrôle d'une atmosphère à basse pression constituée généralement par des mélanges de gaz.
  • Dans le mélange de gaz, se trouvent des gaz actifs destinés à réagir sur des substrats présents dans l'enceinte à vide, et se trouvent des gaz issus des réactions. Il est donc nécessaire de pomper en permanence l'atmosphère de l'enceinte à vide, pour évacuer les gaz de réaction, et d'introduire en permanence des gaz actifs dans l'enceinte à vide pour poursuivre les réactions.
  • Les réactions sont généralement produites dans un plasma, et elles nécessitent un contrôle permanent de la pression gazeuse globale dans l'enceinte à vide. Ainsi, la pression gazeuse globale est un paramètre important dans les procédés, et on utilise pour cela couramment des moyens de contrôle et d'ajustement adaptés pour contrôler et ajuster la pression gazeuse totale du mélange gazeux dans l'enceinte à vide.
  • Pour pomper les gaz hors de l'enceinte à vide, on utilise généralement au moins une pompe secondaire adaptée aux basses pressions à obtenir, au moins une pompe primaire adaptée pour refouler à la pression atmosphérique, une première canalisation dont une entrée est raccordée à une sortie de l'enceinte à vide et dont une sortie est raccordée à une aspiration de la pompe secondaire, et une canalisation intermédiaire dont une entrée est raccordée à un refoulement de la pompe secondaire et dont une sortie est raccordée à une aspiration de la pompe primaire. Cette disposition est rendue nécessaire par le fait que l'atmosphère dans l'enceinte à vide est à très basse pression, et que les technologies de pompe nécessitent généralement la mise en série d'une pompe secondaire et d'une pompe primaire.
  • Les dispositifs connus présentent toutefois des inconvénients, par le fait que les proportions des gaz présents dans une enceinte à vide telle qu'une chambre de procédés ne sont pas maîtrisées. Par exemple, dans le cas du procédé de gravure aluminium, les gaz injectés sont craqués par un plasma, puis ils réagissent avec les différents matériaux présents sur le substrat. La concentration des résidus gazeux va dépendre directement de la façon dont la pompe secondaire va pomper les différentes espèces, ce qui peut dans certains cas ne pas être optimum dans le procédé. En effet, selon la masse et la taille des molécules gazeuses présentes dans le mélange, la pompe secondaire peut évacuer en priorité les gaz actifs qui sont utiles à la réalisation du procédé, et laisser dans l'enceinte à vide les gaz inactifs qui résultent de la réaction des gaz actifs avec les matériaux et qui sont donc inutiles à la réalisation du procédé. On comprend que cela a pour effet de ralentir voire de dégrader les performances du procédé.
  • Il y a donc un besoin pour favoriser l'évacuation des gaz inactifs hors des enceintes à vide telles que les chambres de procédés, en évitant autant que possible l'évacuation des gaz actifs qui n'ont pas encore réagi.
  • Les moyens de contrôle et de régulation de la pression gazeuse globale dans une enceinte à vide comprennent généralement différents moyens tels qu'une injection de gaz dans l'enceinte à vide, et une vanne de régulation placée dans la première canalisation en amont de la pompe secondaire, c'est-à-dire en sortie de l'enceinte à vide. Il se trouve qu'une telle vanne de régulation tend à favoriser le pompage des gaz légers, qui sont généralement les gaz actifs, et tend à freiner l'évacuation des gaz lourds tels que les gaz issus des réactions. Cela est donc défavorable au but recherché.
  • Pour éviter cela, le document US 6,200,107 propose de déplacer la vanne de régulation et de la disposer dans une canalisation de dérivation en parallèle sur la pompe secondaire, entre la première canalisation et la canalisation intermédiaire. Selon ce document, la vanne de régulation constitue ainsi le moyen unique permettant de réguler la pression dans une chambre de procédés, et favorise l'évacuation des gaz inactifs issus des réactions dans la chambre.
  • Ce même document dissuade clairement d'utiliser une vanne de régulation en amont de la pompe secondaire, ou une vanne de régulation en aval de la pompe secondaire, ou une injection de gaz dans la canalisation intermédiaire, ou même une variation de la vitesse de rotation de la pompe primaire.
  • La solution proposée dans ce document ne donne pas satisfaction, par le fait qu'une action sur la vanne de régulation placée dans la canalisation de dérivation produit nécessairement à la fois une variation de la pression globale dans l'enceinte à vide, et une modification des proportions des gaz dans l'enceinte à vide. Il n'est alors pas possible d'optimiser un procédé par un contrôle complet à la fois de la pression globale gazeuse dans l'enceinte à vide et des proportions des gaz dans le mélange gazeux dans l'enceinte à vide.
  • Cette solution présente en outre l'inconvénient majeur de polluer la chambre de procédés en terme de particules, car elle réinjecte du gaz qui a circulé à travers la pompe secondaire et qui s'est donc potentiellement chargé en particules.
  • Semblables dispositifs sont également connus de US 5 944 049 A et FR 2 854 667 A .
  • Le problème proposé par la présente invention est de trouver un autre moyen pour établir et contrôler un mélange gazeux à faible pression dans une enceinte à vide, qui permette à la fois de contrôler la pression gazeuse globale dans l'enceinte à vide et de contrôler les proportions des différents gaz dans le mélange gazeux présent dans l'enceinte à vide.
  • L'invention vise ainsi à optimiser les procédés mis en oeuvre dans les enceintes à vide, tels que les procédés de fabrication de semi-conducteurs.
  • Un autre but de l'invention est d'éviter tout risque de pollution supplémentaire susceptible d'être produite par le dispositif selon l'invention.
  • Pour cela, la présente invention résulte de l'observation selon laquelle les pompes secondaires de type moléculaire, turbomoléculaire ou hybride ont une capacité de pompage qui varie en fonction de la pression en sortie de la pompe, et cette variation de capacité de pompage n'est pas identique pour tous les gaz. Il en résulte que les pompes effectuent un pompage sélectif modifiable par la pression de sortie.
  • Ainsi, l'idée qui est à la base de l'invention est qu'en choisissant correctement la pression de sortie de la pompe secondaire, on peut agir de façon favorable sur les pressions partielles des gaz dans l'enceinte à vide pour contrôler les paramètres d'un procédé.
  • Partant de cette idée, l'invention propose un dispositif pour établir et contrôler un mélange gazeux approprié à faible pression dans une enceinte à vide, comprenant :
    • au moins une pompe secondaire de type moléculaire, turbomoléculaire ou hybride,
    • au moins une pompe primaire, adaptée pour refouler à la pression atmosphérique,
    • une première canalisation dont une entrée est raccordée à une sortie de l'enceinte à vide et dont une sortie est raccordée à une aspiration de la pompe secondaire,
    • une canalisation intermédiaire dont une entrée est raccordée à un refoulement de la pompe secondaire et dont une sortie est raccordée à une aspiration de la pompe primaire,
    • des premiers moyens de contrôle et d'ajustement adaptés pour contrôler et ajuster la pression gazeuse totale du mélange gazeux dans l'enceinte à vide en fonction d'une consigne de pression totale,
    • des seconds moyens de contrôle et d'ajustement, distincts des premiers moyens de contrôle et d'ajustement, disposés en aval de la pompe secondaire, et agissant sur la pression de refoulement de la pompe secondaire dans la gamme de pressions où les modifications de pression entraînent des variations sensibles de vitesses sélectives de pompage des différents gaz du mélange, de façon à adapter la capacité de pompage sélectif de la pompe secondaire et à ajuster ainsi les proportions des gaz du mélange gazeux dans l'enceinte à vide.
  • Par le fait que l'on combine des premiers moyens de contrôle et d'ajustement qui maintiennent en permanence la pression gazeuse totale du mélange gazeux dans l'enceinte à vide, et des seconds moyens de contrôle et d'ajustement qui ajustent les proportions des gaz, on obtient un contrôle complet de l'atmosphère dans l'enceinte à vide, ce qui permet notamment d'optimiser réellement les procédés mis en oeuvre dans l'enceinte à vide.
  • De préférence, les premiers moyens de contrôle et d'ajustement sont disposés en amont de la pompe secondaire, et comprennent une vanne de régulation interposée dans la première canalisation et/ou des moyens d'injection contrôlée de gaz dans l'enceinte à vide.
  • Selon un premier mode de réalisation, les seconds moyens de contrôle et d'ajustement comprennent une vanne de régulation interposée dans la canalisation intermédiaire.
  • Selon un second mode de réalisation, les seconds moyens de contrôle et d'ajustement comprennent un dispositif d'injection de gaz pour injecter un gaz neutre dans la canalisation intermédiaire.
  • Selon un troisième mode de réalisation, les seconds moyens de contrôle et d'ajustement comprennent un moyen de pilotage de vitesse pour piloter la vitesse de la pompe primaire.
  • Selon l'invention, dans les seconds moyens de contrôle et d'ajustement, on pourra combiner une vanne de régulation et/ou des moyens d'injection de gaz et/ou une variation de vitesse de pompe primaire.
  • Selon une première possibilité, le dispositif peut agir en boucle fermée, en fonction d'informations mesurées dans l'enceinte à vide elle-même. Pour cela, le dispositif comprend :
    • des capteurs de pressions partielles, aptes à déterminer les pressions partielles d'un ou plusieurs gaz du mélange gazeux dans l'enceinte à vide, et à produire des données de pressions partielles,
    • un contrôleur de pressions partielles, recevant les données de pressions partielles produites par les capteurs de pressions partielles, comparant ces données à une consigne de pressions partielles en recherchant les écarts entre les proportions mesurées des gaz et les proportions correspondantes de la consigne de pressions partielles, et générant un signal de sortie qui pilote les seconds moyens de contrôle et d'ajustement pour adapter la capacité de pompage sélectif de la pompe secondaire dans le sens qui réduit l'écart entre les proportions mesurées des gaz et les proportions correspondantes de la consigne de pressions partielles.
  • Selon une possibilité de ce mode de réalisation, le dispositif peut être tel que :
    • le contrôleur de pressions partielles génère sur sa sortie une consigne de pression de refoulement,
    • un capteur de pression de refoulement mesure la pression de refoulement dans la canalisation intermédiaire et génère des données de mesure de pression de refoulement,
    • un contrôleur de pression de refoulement reçoit la consigne de pression de refoulement et les données de pression de refoulement, et pilote des moyens de régulation de la pression de refoulement pour réduire l'écart entre la consigne de pression de refoulement et les données de mesure de la pression de refoulement.
  • En alternative, le dispositif peut agir en boucle ouverte, recevant par exemple une consigne provenant d'un moyen de commande externe qui gère le procédé mis en oeuvre dans l'enceinte à vide.
  • Dans tous les cas, le dispositif selon l'invention peut comprendre en outre un dispositif de commande qui pilote les seconds moyens de contrôle et d'ajustement selon un programme spécifique pour adapter la capacité de pompage sélectif de la pompe secondaire aux différentes étapes successives d'un procédé de traitement se déroulant dans l'enceinte à vide.
  • Selon un autre aspect, l'invention propose un procédé pour établir et contrôler un mélange gazeux approprié à faible pression dans une enceinte à vide à l'aide d'un dispositif tel que défini ci-dessus. Dans ce procédé, on agit sur la pression de refoulement de la pompe secondaire pour adapter sa capacité de pompage sélectif et pour ajuster ainsi les proportions des gaz dans le mélange gazeux.
  • Selon un premier mode de réalisation, on agit sur la pression de refoulement en modifiant la conductance de la canalisation intermédiaire.
  • Selon un deuxième mode de réalisation, on agit sur la pression de refoulement en injectant un gaz neutre dans la canalisation intermédiaire.
  • Selon un troisième mode de réalisation, on agit sur la pression de refoulement en modifiant la vitesse de la pompe primaire.
  • Selon l'invention, les trois modes d'action ci-dessus peuvent être combinés ensemble ou deux par deux.
  • Dans tous les cas, on peut avantageusement agir sur la pression de refoulement de la pompe secondaire en fonction des étapes successives d'un procédé de traitement se déroulant dans l'enceinte à vide.
  • Selon une application possible, le procédé selon l'invention agit sur la pression de refoulement de la pompe secondaire dans le sens d'une augmentation de pompage d'humidité pendant un processus de vidage contrôlé de l'enceinte à vide.
  • Selon une autre application, le procédé agit sur la pression de refoulement de la pompe secondaire dans le sens d'un maintien constant de la pression partielle d'au moins un gaz dans l'enceinte à vide.
  • Le dispositif défini ci-dessus peut trouver application pour la compensation des variations de caractéristiques de pompage d'une pompe secondaire. Ces variations peuvent se produire dans le temps par suite de dépôts successifs sur les parois de la pompe, ou peuvent se produire lors d'un changement d'une pompe qui doit être remplacée par une autre.
  • Une application particulièrement intéressante est l'évacuation préférentielle des gaz lourds dans les chambres de procédés de gravure sèche dans la fabrication de semi-conducteurs ou de microsystèmes électromécaniques (MEMS). On peut ainsi augmenter sensiblement la vitesse de gravure.
  • Une autre application intéressante peut être de maîtriser la qualité de dépôts CVD (dépôt chimique en phase vapeur) par action sur la pression de refoulement de la pompe secondaire.
  • Le dispositif peut trouver également une application pour compenser les dérives d'un système de pompage des gaz dans une enceinte à vide, dérives en tous genres pouvant se produire pour toutes raisons connues ou inconnues.
  • D'autres objets, caractéristiques et avantages de la présente invention ressortiront de la description suivante de modes de réalisation particuliers, faite en relation avec les figures jointes, parmi lesquelles :
    • la figure 1 est une vue schématique d'un dispositif selon un mode de réalisation de la présente invention ;
    • la figure 2 illustre un mode de réalisation des seconds moyens de contrôle et d'ajustement selon l'invention ;
    • la figure 3 illustre un autre mode de réalisation des seconds moyens de contrôle et d'ajustement selon l'invention ;
    • la figure 4 illustre un autre mode de réalisation des seconds moyens de contrôle et d'ajustement selon l'invention ;
    • la figure 5 est une vue schématique illustrant un dispositif selon un second mode de réalisation de l'invention ;
    • la figure 6 illustre les pressions partielles d'un mélange de deux gaz dans une enceinte à vide à pression totale constante pour deux pressions différentes de sortie d'une pompe turbomoléculaire qui pompe les gaz ; et
    • la figure 7 illustre les courbes de variation des vitesses de pompage de trois gaz différents en fonction de la pression de sortie dans une pompe turbomoléculaire.
  • On considère tout d'abord les figures 6 et 7, qui illustrent la propriété particulière des pompes moléculaires, turbomoléculaires ou hybrides sur laquelle est basée la présente invention.
  • La figure 6 illustre les pressions partielles d'un mélange de deux gaz à pression totale constante à l'entrée d'une pompe turbomoléculaire, données en unités arbitraires, pour deux pressions différentes de sortie de la pompe turbomoléculaire. La vitesse de la pompe turbomoléculaire est constante.
  • La zone 1 illustre la pression partielle de l'argon pour une pression de sortie de 2,155 Torrs en sortie de la pompe turbomoléculaire, tandis que la zone 2 illustre la pression partielle de l'hélium dans les mêmes conditions, pour un mélange d'argon et d'hélium à une pression totale donnée.
  • Les zones 3 et 4 illustrent respectivement, pour mélange des mêmes gaz argon et hélium ayant la même pression totale, les pressions partielles respectives de l'argon et de l'hélium pour une pression de sortie de 0,359 Torrs en sortie de la pompe turbomoléculaire.
  • On constate que, à la pression de sortie de 2,155 Torrs, la pression partielle d'argon est un peu inférieure à la pression partielle d'hélium. Par contre, à la pression de sortie de 0,359 Torrs, la pression partielle d'argon est beaucoup plus élevée, tandis que la pression partielle d'hélium est beaucoup plus petite.
  • Si l'on considère maintenant la figure 7, pour chacun des gaz hélium, azote et argon, les courbes 5, 6 et 7 représentent respectivement les vitesses de pompage, en litres par seconde, de l'hélium, de l'azote ou de l'argon, en fonction de la pression de sortie d'une pompe turbomoléculaire.
  • On constate que les vitesses de pompage sont toutes trois décroissantes, pour les trois gaz hélium, azote et argon, mais que les variations diffèrent. Par exemple, la vitesse de pompage de l'argon est relativement constante jusqu'à une pression de sortie d'environ 0,8 millibars, et décroît assez rapidement ensuite. La vitesse de pompage de l'azote est relativement constante jusqu'à une pression de sortie de 0,4 millibars, et décroît ensuite plus rapidement que la vitesse de pompage de l'argon. Enfin, la vitesse de pompage de l'hélium est fortement décroissante dès la pression de sortie de 0,2 millibars.
  • Par conséquent, en fixant par exemple une pression de sortie de 0,6 millibars, on voit que les vitesses de pompage de l'azote et de l'argon sont sensiblement égales et relativement élevées, tandis que la vitesse de pompage de l'hélium sera très inférieure. Par contre, pour une pression de sortie d'environ 0,2 millibars, les vitesses de pompage des trois gaz seront relativement voisines les unes des autres.
  • Ainsi, en modifiant la pression de sortie de la pompe turbomoléculaire, on modifie la capacité de pompage sélectif de la pompe, pour favoriser le pompage de l'un ou l'autre des gaz.
  • La présente invention met à profit ce phénomène pour améliorer l'établissement et le contrôle d'un mélange gazeux à faible pression dans une enceinte à vide.
  • On considère maintenant la figure 1, qui illustre une structure générale d'un dispositif selon un mode de réalisation de l'invention. Le dispositif est destiné à établir et contrôler un mélange gazeux approprié à faible pression dans une enceinte à vide 8 telle qu'une chambre de procédés pour fabrication de composants semi-conducteurs, et comprend une pompe secondaire 9 de type moléculaire, turbomoléculaire ou hybride, une pompe primaire 10 adaptée pour refouler à une sortie 11 à la pression atmosphérique, une première canalisation 12 dont une entrée 13 est raccordée à une sortie 14 de l'enceinte à vide 8 et dont une sortie 15 est raccordée à une aspiration 16 de la pompe secondaire 9, et une canalisation intermédiaire 17 dont une entrée 18 est raccordée à un refoulement 19 de la pompe secondaire 9 et dont une sortie 20 est raccordée à une aspiration 21 de la pompe primaire 10.
  • Le dispositif comprend des premiers moyens de contrôle et d'ajustement 22, adaptés pour contrôler et ajuster la pression gazeuse totale du mélange gazeux dans l'enceinte à vide 8.
  • En pratique, les premiers moyens de contrôle et d'ajustement 22 peuvent comprendre des moyens d'injection contrôlée de gaz 23 pour injecter un gaz dans l'enceinte à vide 8, et/ou une vanne de régulation 24 interposée dans la première canalisation 12 et pilotée par un contrôleur de pression d'enceinte 25 en fonction des données de mesure de pression totale produites par une jauge de pression 26 dans l'enceinte à vide 8. Le contrôleur de pression d'enceinte 25 peut par exemple être un microcontrôleur programmé pour maintenir constante la pression totale dans l'enceinte à vide 8, en fonction d'une consigne de pression totale 27.
  • Selon l'invention, le dispositif comprend en outre des seconds moyens de contrôle et d'ajustement 28, distincts des premiers moyens de contrôle et d'ajustement 22, disposés en aval de la pompe secondaire 9, et agissant sur la pression de refoulement de la pompe secondaire 9 dans la canalisation intermédiaire 17, dans la gamme de pressions où les modifications de pression entraînent des variations sensibles de la vitesse sélective de pompage des différents gaz du mélange par la pompe secondaire 9. De la sorte, on adapte la capacité de pompage sélectif de la pompe secondaire 9, et on peut ajuster ainsi les proportions des gaz du mélange gazeux dans l'enceinte à vide 8.
  • En pratique, les seconds moyens de contrôle et d'ajustement 28 peuvent comprendre un moyen de régulation 29 contrôlant la conductance de la canalisation intermédiaire 17, piloté par un contrôleur de pression de refoulement 30 qui reçoit une consigne de pression de refoulement 32 et des données de pression de sortie produites par une jauge de pression de refoulement 31 dans la canalisation intermédiaire 17.
  • Sur les figures 2, 3 et 4 on a illustré trois modes de réalisation des seconds moyens de contrôle et d'ajustement. Dans chaque cas, on retrouve la pompe secondaire 9, la pompe primaire 10, le capteur de pression de refoulement 31, le contrôleur de pression de refoulement 30, et une consigne de pression de refoulement 32.
  • Sur la figure 2, le moyen de régulation est une vanne de régulation 29a, interposée dans la canalisation intermédiaire 17.
  • Sur la figure 3, le moyen de régulation est un dispositif d'injection de gaz 29b pour injecter un gaz neutre tel que l'azote dans la canalisation intermédiaire 17.
  • Sur la figure 4, le moyen de régulation est un moyen de pilotage de vitesse 29c, pour faire varier la vitesse de rotation de la pompe primaire 10.
  • Chacun de ces modes de réalisation des moyens de régulation 29 peut être utilisé seul ou en combinaison avec un ou deux autres moyens de régulation.
  • Dans le mode de réalisation de la figure 1, on a prévu en outre un dispositif de commande 33 qui génère la consigne de pression de refoulement 32. Le dispositif de commande 33 pilote ainsi les seconds moyens de contrôle et d'ajustement 28, par exemple selon un programme spécifique enregistré dans une mémoire et qui adapte la capacité de pompage sélectif de la pompe secondaire 9 aux différentes étapes successives d'un procédé de traitement se déroulant dans l'enceinte à vide 8.
  • Supposons par exemple que le procédé de traitement dans l'enceinte à vide 8 comprend deux étapes successives de traitement par deux mélanges gazeux différents, et que dans la première étape il faille évacuer essentiellement des gaz lourds tandis que dans la seconde étape il faille évacuer essentiellement des gaz légers, le dispositif de commande 33 pourra générer une consigne de pression de refoulement 32 forte au cours de la première étape et une consigne de pression de refoulement 32 relativement faible pour la seconde étape.
  • L'évolution de la consigne de pression de refoulement 32 pourra être adaptée à chaque procédé de traitement, en recherchant à chaque étape l'optimisation de la capacité de pompage sélectif de la pompe secondaire 9 pour optimiser le procédé de traitement.
  • On considère maintenant la figure 5, qui illustre un second mode de réalisation plus perfectionné du dispositif selon l'invention.
  • Dans ce second mode de réalisation, on retrouve les éléments essentiels du premier mode de réalisation de la figure 1, et ces éléments sont repérés par les mêmes références numériques. Pour cette raison, on ne reprendra pas une description détaillée de ces mêmes moyens.
  • La différence réside dans le fait que le dispositif comprend en outre des moyens de régulation des pressions partielles des gaz dans l'enceinte à vide 8.
  • On prévoit pour cela des capteurs de pressions partielles 34, aptes à déterminer les pressions partielles d'un ou plusieurs gaz du mélange gazeux dans l'enceinte à vide 8, et à produire sur leurs sorties 35 des données de pressions partielles envoyées par une ligne 36 à un contrôleur de pressions partielles 37.
  • On prévoit en outre un contrôleur de pressions partielles 37, qui reçoit ainsi les données de pressions partielles produites par les capteurs de pression partielle 34, qui compare ces données à une consigne de pressions partielles 38, et qui génère sur sa sortie 39 un signal de sortie qui pilote les seconds moyens de contrôle et d'ajustement 28 pour adapter la capacité de pompage sélectif de la pompe secondaire 9.
  • En pratique, le contrôleur de pressions partielles 37 compare les données de pressions partielles mesurées et les données de consigne de pressions partielles 38 en recherchant les écarts entre les proportions mesurées des gaz et les proportions correspondantes de la consigne de pressions partielles 38. Ensuite, en présence d'un écart, le contrôleur de pressions partielles 37 génère sur sa sortie 39 un signal de pression de refoulement qui pilote le moyen de régulation 29 pour agir sur la pression de refoulement de la pompe secondaire 9 pour adapter la capacité de pompage sélectif de la pompe secondaire 9 dans le sens d'une réduction de l'écart entre les proportions mesurées des gaz et les proportions correspondantes de la consigne de pressions partielles 38.
  • Par exemple, pour un mélange de deux gaz présents dans l'enceinte à vide 8 selon des pressions partielles mesurées respectives P1 et P2, les capteurs de pression partielle 34 communiquent les mesures P1 et P2 au contrôleur de pressions partielles 37 qui en fait le rapport P1/P2. Le contrôleur de pressions partielles reçoit également, dans la consigne de pressions partielles 38, les pressions P10 et P20 pour les mêmes gaz, et peut calculer le rapport P10/P20. Le contrôleur de pressions partielles 37 détermine alors l'écart entre les rapports P1/P2 et P10/P20, et en déduit, en fonction de données préalablement enregistrées en mémoire, si la pression de refoulement dans la canalisation intermédiaire 17 en refoulement de la pompe secondaire 9 doit être augmentée ou diminuée pour réduire cet écart.
  • Le contrôleur de pressions partielles 37 génère ainsi sur sa sortie 39 une consigne de pression de refoulement. Le capteur de pression de refoulement 31 mesure la pression de refoulement dans la canalisation intermédiaire 17 et génère des données de mesure de pression de refoulement. Le contrôleur de pression de refoulement 30 reçoit la consigne de pression de refoulement et les données de mesure de pression de refoulement, et pilote le moyen de régulation 29 pour réduire l'écart entre la consigne de pression de refoulement et les données de mesure de pression de refoulement.
  • En alternative, le contrôleur de pressions partielles peut piloter directement le moyen de régulation 29 pour réduire l'écart entre une consigne de pression partielle et la mesure de pression partielle.
  • Le dispositif selon l'invention peut trouver des applications diverses, au cours des étapes de procédés dans lesquels il y a un intérêt à adapter la proportion des gaz dans un mélange gazeux.
  • A titre d'exemple, on trouve un intérêt à cela pendant la procédure de vidage contrôlé d'une enceinte à vide, notamment en fin d'opération de vidage : dans ce cas, il est intéressant de pomper de façon accentuée l'humidité présente dans le mélange, et on pourra pour cela agir sur la pression de refoulement de la pompe secondaire dans le sens d'une augmentation de pompage d'humidité.
  • Selon un autre exemple, au cours de certaines étapes de procédés, on pourra trouver avantage à maintenir constante la pression partielle d'au moins un gaz dans l'enceinte à vide. On agira pour cela sur la capacité de pompage sélectif de la pompe secondaire, pour maintenir constante cette pression partielle.
  • La possibilité d'agir sur la capacité de pompage sélectif de la pompe secondaire pourra être également utile dans les cas où l'on veut compenser les dérives d'un système de pompage des gaz dans une enceinte à vide.
  • Une autre application intéressante réside dans la compensation des variations possibles des caractéristiques de pompage d'une pompe secondaire, soit du fait d'un vieillissement dans le temps, soit du fait des dépôts progressifs de matière sur les parois de la pompe, soit encore du fait d'un remplacement d'une pompe par une autre.
  • Dans une application aux procédés de gravure sèche pour fabrication de semi-conducteurs et de microsystèmes électromécaniques (MEMS), on pourra avantageusement évacuer préférentiellement les gaz lourds issus des réactions de gravure, par une augmentation de la pression de refoulement de la pompe secondaire. Il en résulte une augmentation sensible de la vitesse de gravure.
  • Le système de contrôle de la pression de refoulement de la pompe secondaire pourra être réalisé en boucle ouverte, c'est-à-dire sans asservissement, ou en boucle fermée par l'asservissement de la pression donnée par un capteur situé sur la ligne de vide à la sortie de la pompe secondaire.
  • L'asservissement pourra également être effectué d'une façon globale en mesurant les pressions partielles dans l'enceinte à vide, par exemple par des spectromètres de masse, des spectromètres optiques, et en agissant sur l'élément de contrôle de la pression de sortie pour obtenir la concentration désirée dans l'enceinte à vide.
  • La mise en oeuvre de ce dispositif sur un procédé de gravure du polysilicium permet de contrôler les vitesses de gravure.
  • La consigne de pression partielle des gaz peut résulter de mesures en temps réel de différents paramètres d'un procédé se déroulant dans l'enceinte à vide, ou d'indicateurs en temps différé. Les indicateurs en temps différé peuvent être des mesures liées à une optimisation de procédé, par exemple la vitesse d'attaque, la mesure de contamination, la dérive d'un paramètre de procédé dans le cas d'un indicateur lié au reconditionnement.
  • Dans un dispositif selon l'invention, on agit sur la pression de refoulement de la pompe secondaire 9 dans la gamme de pressions où ces modifications entraînent des variations sensibles de vitesse de pompage des gaz sélectivement suivant la nature des gaz, du fait des caractéristiques intrinsèques des pompes turbomoléculaires, moléculaires ou hybrides.
  • En appliquant des variations des vitesses de pompage partiel, le dispositif entraîne également une variation de la vitesse de pompage totale dans l'enceinte à vide, et donc une évolution possible de la pression totale dans l'enceinte à vide.
  • Le dispositif agit donc, simultanément, sur les moyens de régulation de la pression d'aspiration en amont de la pompe secondaire 9, pour réajuster la pression totale dans l'enceinte à vide et pour la maintenir constante.
  • Cela permet de dissocier complètement la commande de la pression totale dans une enceinte à vide, pilotée par la consigne de pression totale 27, et la commande des pressions partielles dans la même enceinte à vide 8, pilotée par la consigne de pressions partielles 38.
  • La présente invention n'est pas limitée aux modes de réalisation qui ont été explicitement décrits, mais elle en inclut les diverses variantes et généralisations qui sont à la portée de l'homme du métier.

Claims (19)

  1. - Dispositif pour établir et contrôler un mélange gazeux approprié à faible pression dans une enceinte à vide (8), comprenant :
    - au moins une pompe secondaire (9) de type moléculaire, turbomoléculaire ou hybride,
    - au moins une pompe primaire (10), adaptée pour refouler à la pression atmosphérique,
    - une première canalisation (12) dont une entrée (13) est raccordée à une sortie (14) de l'enceinte à vide (8) et dont une sortie (15) est raccordée à une aspiration (16) de la pompe secondaire (9),
    - une canalisation intermédiaire (17) dont une entrée (18) est raccordée à un refoulement (19) de la pompe secondaire (9) et dont une sortie (20) est raccordée à une aspiration (21) de la pompe primaire (10),
    - des premiers moyens de contrôle et d'ajustement (22) adaptés pour contrôler et ajuster la pression gazeuse totale du mélange gazeux dans l'enceinte à vide (8) en fonction d'une consigne de pression totale (27),
    caractérisé en ce qu'il comprend en outre :
    - des seconds moyens de contrôle et d'ajustement (28), distincts des premiers moyens de contrôle et d'ajustement (22), disposés en aval de la pompe secondaire (9), et agissant sur la pression de refoulement de la pompe secondaire (9) dans la gamme de pressions où les modifications de pression entraînent des variations sensibles de vitesses sélectives de pompage des différents gaz du mélange, de façon à adapter la capacité de pompage sélectif de la pompe secondaire (9) et à ajuster ainsi les proportions des gaz du mélange gazeux dans l'enceinte à vide (8).
  2. - Dispositif selon la revendication 1, caractérisé en ce que les premiers moyens de contrôle et d'ajustement (22) sont disposés en amont de la pompe secondaire (9), et comprennent une vanne de régulation (24) interposée dans la première canalisation (12) et/ou des moyens d'injection contrôlée de gaz (23) dans l'enceinte à vide (8).
  3. - Dispositif selon l'une des revendications 1 ou 2, caractérisé en ce que les seconds moyens de contrôle et d'ajustement (28) comprennent une vanne de régulation (29a) interposée dans la canalisation intermédiaire (17).
  4. - Dispositif selon l'une quelconque des revendications 1 à 3, caractérisé en ce que les seconds moyens de contrôle et d'ajustement (28) comprennent un dispositif d'injection de gaz (29b) pour injecter un gaz neutre dans la canalisation intermédiaire (17).
  5. - Dispositif selon l'une quelconque des revendications 1 à 4, caractérisé en ce que les seconds moyens de contrôle et d'ajustement (28) comprennent un moyen de pilotage de vitesse (29c) pour piloter la vitesse de la pompe primaire (10).
  6. - Dispositif selon l'une quelconque des revendications 1 à 5, caractérisé en ce qu'il comprend :
    - des capteurs de pressions partielles (34), aptes à déterminer les pressions partielles d'un ou plusieurs gaz du mélange gazeux dans l'enceinte à vide (8), et à produire des données de pressions partielles,
    - un contrôleur de pressions partielles (37), recevant les données de pressions partielles produites par les capteurs de pressions partielles (34), comparant ces données à une consigne de pressions partielles (38) en recherchant les écarts entre les proportions mesurées des gaz et les proportions correspondantes de la consigne de pressions partielles (38), et générant un signal de sortie qui pilote les seconds moyens de contrôle et d'ajustement (28) pour adapter la capacité de pompage sélectif de la pompe secondaire (9) dans le sens qui réduit l'écart entre les proportions mesurées des gaz et les proportions correspondantes de la consigne de pressions partielles (38).
  7. - Dispositif selon la revendication 6, caractérisé en ce que :
    - le contrôleur de pressions partielles (37) génère sur sa sortie (39) une consigne de pression de refoulement,
    - un capteur de pression de refoulement (31) mesure la pression de refoulement dans la canalisation intermédiaire (17) et génère des données de mesure de pression de refoulement,
    - un contrôleur de pression de refoulement (30) reçoit la consigne de pression de refoulement et les données de pression de refoulement, et pilote des moyens de régulation (29) de la pression de refoulement pour réduire l'écart entre la consigne de pression de refoulement et les données de mesure de la pression de refoulement.
  8. - Dispositif selon l'une quelconque des revendications 1 à 7, caractérisé en ce qu'il comprend un dispositif de commande (33) qui pilote les seconds moyens de contrôle et d'ajustement (28) selon un programme spécifique pour adapter la capacité de pompage sélectif de la pompe secondaire (9) aux différentes étapes successives d'un procédé de traitement se déroulant dans l'enceinte à vide (8).
  9. - Procédé pour établir et contrôler un mélange gazeux approprié à faible pression dans une enceinte à vide (8) à l'aide d'un dispositif selon l'une quelconque des revendications 1 à 8, caractérisé en ce qu'on agit sur la pression de refoulement de la pompe secondaire (9) pour adapter sa capacité de pompage sélectif et ajuster ainsi les proportions des gaz dans le mélange gazeux.
  10. - Procédé selon la revendication 9, caractérisé en ce qu'on agit sur la pression de refoulement en modifiant la conductance de la canalisation intermédiaire (17).
  11. - Procédé selon l'une des revendications 9 ou 10, caractérisé en ce qu'on agit sur la pression de refoulement en injectant un gaz neutre dans la canalisation intermédiaire (17).
  12. - Procédé selon l'une quelconque des revendications 9 à 11, caractérisé en ce qu'on agit sur la pression de refoulement en modifiant la vitesse de la pompe primaire (10).
  13. - Procédé selon l'une quelconque des revendications 9 à 12, caractérisé en ce qu'on agit sur la pression de refoulement de la pompe secondaire (9) en fonction des étapes successives d'un procédé de traitement se déroulant dans l'enceinte à vide (8).
  14. - Procédé selon l'une quelconque des revendications 9 à 13, caractérisé en ce qu'on agit sur la pression de refoulement de la pompe secondaire (9) dans le sens d'une augmentation de pompage d'humidité pendant un processus de vidage contrôlé de l'enceinte à vide (8).
  15. - Procédé selon l'une quelconque des revendications 9 à 13, caractérisé en ce qu'on agit sur la pression de refoulement de la pompe secondaire (9) dans le sens d'un maintien constant de la pression partielle d'au moins un gaz dans l'enceinte à vide (8).
  16. - Application d'un dispositif selon l'une quelconque des revendications 1 à 8 pour compenser les variations de caractéristiques de pompage d'une pompe secondaire (9).
  17. - Application d'un dispositif selon l'une quelconque des revendications 1 à 8 pour compenser les dérives d'un système de pompage des gaz dans une enceinte à vide (8).
  18. - Application d'un dispositif selon l'une quelconque des revendications 1 à 8 pour augmenter la vitesse d'un procédé de gravure sèche par augmentation de la pression de refoulement de la pompe secondaire (9).
  19. - Application d'un dispositif selon l'une quelconque des revendications 1 à 8 pour maîtriser la qualité de dépôts CVD (dépôt chimique en phase vapeur) par action sur la pression de refoulement de la pompe secondaire (9).
EP20050300948 2004-12-03 2005-11-18 Contrôle des pressions partielles de gaz pour optimisation de procédé Not-in-force EP1669609B1 (fr)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
FR0452853A FR2878913B1 (fr) 2004-12-03 2004-12-03 Controle des pressions partielles de gaz pour optimisation de procede

Publications (2)

Publication Number Publication Date
EP1669609A1 EP1669609A1 (fr) 2006-06-14
EP1669609B1 true EP1669609B1 (fr) 2008-02-06

Family

ID=34952720

Family Applications (1)

Application Number Title Priority Date Filing Date
EP20050300948 Not-in-force EP1669609B1 (fr) 2004-12-03 2005-11-18 Contrôle des pressions partielles de gaz pour optimisation de procédé

Country Status (6)

Country Link
US (2) US7793685B2 (fr)
EP (1) EP1669609B1 (fr)
AT (1) ATE385545T1 (fr)
DE (1) DE602005004640T2 (fr)
FR (1) FR2878913B1 (fr)
WO (1) WO2006059027A1 (fr)

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2878913B1 (fr) * 2004-12-03 2007-01-19 Cit Alcatel Controle des pressions partielles de gaz pour optimisation de procede
US7438534B2 (en) * 2005-10-07 2008-10-21 Edwards Vacuum, Inc. Wide range pressure control using turbo pump
JP5372353B2 (ja) * 2007-09-25 2013-12-18 株式会社フジキン 半導体製造装置用ガス供給装置
US8042566B2 (en) * 2008-07-23 2011-10-25 Atmel Corporation Ex-situ component recovery
US9324576B2 (en) 2010-05-27 2016-04-26 Applied Materials, Inc. Selective etch for silicon films
EP2458218A1 (fr) * 2010-11-30 2012-05-30 Converteam Technology Ltd Système de maintenance d'un vide poussé
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8999856B2 (en) 2011-03-14 2015-04-07 Applied Materials, Inc. Methods for etch of sin films
US9064815B2 (en) 2011-03-14 2015-06-23 Applied Materials, Inc. Methods for etch of metal and metal-oxide films
US9002465B2 (en) * 2012-04-06 2015-04-07 Boston Scientific Neuromodulation Corporation Verifying correct operation of an implantable neurostimulator device using current distribution circuitry
US9267739B2 (en) 2012-07-18 2016-02-23 Applied Materials, Inc. Pedestal with multi-zone temperature control and multiple purge capabilities
US9373517B2 (en) 2012-08-02 2016-06-21 Applied Materials, Inc. Semiconductor processing with DC assisted RF power for improved control
US9023734B2 (en) 2012-09-18 2015-05-05 Applied Materials, Inc. Radical-component oxide etch
US9132436B2 (en) 2012-09-21 2015-09-15 Applied Materials, Inc. Chemical control features in wafer process equipment
US8921234B2 (en) 2012-12-21 2014-12-30 Applied Materials, Inc. Selective titanium nitride etching
US9099286B2 (en) 2012-12-31 2015-08-04 908 Devices Inc. Compact mass spectrometer
US9093253B2 (en) * 2012-12-31 2015-07-28 908 Devices Inc. High pressure mass spectrometry systems and methods
US8525111B1 (en) 2012-12-31 2013-09-03 908 Devices Inc. High pressure mass spectrometry systems and methods
US10256079B2 (en) 2013-02-08 2019-04-09 Applied Materials, Inc. Semiconductor processing systems having multiple plasma configurations
US9362130B2 (en) 2013-03-01 2016-06-07 Applied Materials, Inc. Enhanced etching processes using remote plasma sources
US9040422B2 (en) 2013-03-05 2015-05-26 Applied Materials, Inc. Selective titanium nitride removal
US20140271097A1 (en) 2013-03-15 2014-09-18 Applied Materials, Inc. Processing systems and methods for halide scavenging
US20140311581A1 (en) * 2013-04-19 2014-10-23 Applied Materials, Inc. Pressure controller configuration for semiconductor processing applications
CN103277284B (zh) * 2013-06-21 2016-06-22 苏州盟通利机电设备有限公司 全自动真空抽气装置及其控制方法
US9493879B2 (en) 2013-07-12 2016-11-15 Applied Materials, Inc. Selective sputtering for pattern transfer
US9773648B2 (en) 2013-08-30 2017-09-26 Applied Materials, Inc. Dual discharge modes operation for remote plasma
US9576809B2 (en) 2013-11-04 2017-02-21 Applied Materials, Inc. Etch suppression with germanium
US9520303B2 (en) 2013-11-12 2016-12-13 Applied Materials, Inc. Aluminum selective etch
US9245762B2 (en) 2013-12-02 2016-01-26 Applied Materials, Inc. Procedure for etch rate consistency
WO2015108969A1 (fr) 2014-01-14 2015-07-23 908 Devices Inc. Collecte d'échantillons dans des systèmes compacts de spectrométrie de masse
US9499898B2 (en) 2014-03-03 2016-11-22 Applied Materials, Inc. Layered thin film heater and method of fabrication
US9299537B2 (en) 2014-03-20 2016-03-29 Applied Materials, Inc. Radial waveguide systems and methods for post-match control of microwaves
US9903020B2 (en) 2014-03-31 2018-02-27 Applied Materials, Inc. Generation of compact alumina passivation layers on aluminum plasma equipment components
US8921774B1 (en) 2014-05-02 2014-12-30 908 Devices Inc. High pressure mass spectrometry systems and methods
US8816272B1 (en) 2014-05-02 2014-08-26 908 Devices Inc. High pressure mass spectrometry systems and methods
US9309598B2 (en) 2014-05-28 2016-04-12 Applied Materials, Inc. Oxide and metal removal
US9425058B2 (en) 2014-07-24 2016-08-23 Applied Materials, Inc. Simplified litho-etch-litho-etch process
US9496167B2 (en) 2014-07-31 2016-11-15 Applied Materials, Inc. Integrated bit-line airgap formation and gate stack post clean
US9659753B2 (en) 2014-08-07 2017-05-23 Applied Materials, Inc. Grooved insulator to reduce leakage current
US9553102B2 (en) 2014-08-19 2017-01-24 Applied Materials, Inc. Tungsten separation
US9355862B2 (en) 2014-09-24 2016-05-31 Applied Materials, Inc. Fluorine-based hardmask removal
US9613822B2 (en) 2014-09-25 2017-04-04 Applied Materials, Inc. Oxide etch selectivity enhancement
US9966240B2 (en) 2014-10-14 2018-05-08 Applied Materials, Inc. Systems and methods for internal surface conditioning assessment in plasma processing equipment
US9355922B2 (en) 2014-10-14 2016-05-31 Applied Materials, Inc. Systems and methods for internal surface conditioning in plasma processing equipment
US11637002B2 (en) 2014-11-26 2023-04-25 Applied Materials, Inc. Methods and systems to enhance process uniformity
US10573496B2 (en) 2014-12-09 2020-02-25 Applied Materials, Inc. Direct outlet toroidal plasma source
US10224210B2 (en) 2014-12-09 2019-03-05 Applied Materials, Inc. Plasma processing system with direct outlet toroidal plasma source
US9502258B2 (en) 2014-12-23 2016-11-22 Applied Materials, Inc. Anisotropic gap etch
US11257693B2 (en) 2015-01-09 2022-02-22 Applied Materials, Inc. Methods and systems to improve pedestal temperature control
US9449846B2 (en) 2015-01-28 2016-09-20 Applied Materials, Inc. Vertical gate separation
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US9728437B2 (en) 2015-02-03 2017-08-08 Applied Materials, Inc. High temperature chuck for plasma processing systems
US9881805B2 (en) 2015-03-02 2018-01-30 Applied Materials, Inc. Silicon selective removal
US9741593B2 (en) 2015-08-06 2017-08-22 Applied Materials, Inc. Thermal management systems and methods for wafer processing systems
US9691645B2 (en) 2015-08-06 2017-06-27 Applied Materials, Inc. Bolted wafer chuck thermal management systems and methods for wafer processing systems
US9349605B1 (en) 2015-08-07 2016-05-24 Applied Materials, Inc. Oxide etch selectivity systems and methods
US10504700B2 (en) 2015-08-27 2019-12-10 Applied Materials, Inc. Plasma etching systems and methods with secondary plasma injection
US10504754B2 (en) 2016-05-19 2019-12-10 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US10522371B2 (en) 2016-05-19 2019-12-31 Applied Materials, Inc. Systems and methods for improved semiconductor etching and component protection
US9865484B1 (en) 2016-06-29 2018-01-09 Applied Materials, Inc. Selective etch using material modification and RF pulsing
US10629473B2 (en) 2016-09-09 2020-04-21 Applied Materials, Inc. Footing removal for nitride spacer
US10062575B2 (en) 2016-09-09 2018-08-28 Applied Materials, Inc. Poly directional etch by oxidation
US9934942B1 (en) 2016-10-04 2018-04-03 Applied Materials, Inc. Chamber with flow-through source
US10062585B2 (en) 2016-10-04 2018-08-28 Applied Materials, Inc. Oxygen compatible plasma source
US9721789B1 (en) 2016-10-04 2017-08-01 Applied Materials, Inc. Saving ion-damaged spacers
US10546729B2 (en) 2016-10-04 2020-01-28 Applied Materials, Inc. Dual-channel showerhead with improved profile
US10062579B2 (en) 2016-10-07 2018-08-28 Applied Materials, Inc. Selective SiN lateral recess
US9947549B1 (en) 2016-10-10 2018-04-17 Applied Materials, Inc. Cobalt-containing material removal
US10163696B2 (en) 2016-11-11 2018-12-25 Applied Materials, Inc. Selective cobalt removal for bottom up gapfill
US9768034B1 (en) 2016-11-11 2017-09-19 Applied Materials, Inc. Removal methods for high aspect ratio structures
US10026621B2 (en) 2016-11-14 2018-07-17 Applied Materials, Inc. SiN spacer profile patterning
US10242908B2 (en) 2016-11-14 2019-03-26 Applied Materials, Inc. Airgap formation with damage-free copper
US10566206B2 (en) 2016-12-27 2020-02-18 Applied Materials, Inc. Systems and methods for anisotropic material breakthrough
US10431429B2 (en) 2017-02-03 2019-10-01 Applied Materials, Inc. Systems and methods for radial and azimuthal control of plasma uniformity
US10403507B2 (en) 2017-02-03 2019-09-03 Applied Materials, Inc. Shaped etch profile with oxidation
US10043684B1 (en) 2017-02-06 2018-08-07 Applied Materials, Inc. Self-limiting atomic thermal etching systems and methods
US10319739B2 (en) 2017-02-08 2019-06-11 Applied Materials, Inc. Accommodating imperfectly aligned memory holes
US10943834B2 (en) 2017-03-13 2021-03-09 Applied Materials, Inc. Replacement contact process
US10319649B2 (en) 2017-04-11 2019-06-11 Applied Materials, Inc. Optical emission spectroscopy (OES) for remote plasma monitoring
US11276559B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Semiconductor processing chamber for multiple precursor flow
US11276590B2 (en) 2017-05-17 2022-03-15 Applied Materials, Inc. Multi-zone semiconductor substrate supports
US10497579B2 (en) 2017-05-31 2019-12-03 Applied Materials, Inc. Water-free etching methods
US10049891B1 (en) 2017-05-31 2018-08-14 Applied Materials, Inc. Selective in situ cobalt residue removal
US10920320B2 (en) 2017-06-16 2021-02-16 Applied Materials, Inc. Plasma health determination in semiconductor substrate processing reactors
US10541246B2 (en) 2017-06-26 2020-01-21 Applied Materials, Inc. 3D flash memory cells which discourage cross-cell electrical tunneling
US10727080B2 (en) 2017-07-07 2020-07-28 Applied Materials, Inc. Tantalum-containing material removal
US10541184B2 (en) 2017-07-11 2020-01-21 Applied Materials, Inc. Optical emission spectroscopic techniques for monitoring etching
US10354889B2 (en) 2017-07-17 2019-07-16 Applied Materials, Inc. Non-halogen etching of silicon-containing materials
US10043674B1 (en) 2017-08-04 2018-08-07 Applied Materials, Inc. Germanium etching systems and methods
US10170336B1 (en) 2017-08-04 2019-01-01 Applied Materials, Inc. Methods for anisotropic control of selective silicon removal
US10297458B2 (en) 2017-08-07 2019-05-21 Applied Materials, Inc. Process window widening using coated parts in plasma etch processes
US10283324B1 (en) 2017-10-24 2019-05-07 Applied Materials, Inc. Oxygen treatment for nitride etching
US10128086B1 (en) 2017-10-24 2018-11-13 Applied Materials, Inc. Silicon pretreatment for nitride removal
US10256112B1 (en) 2017-12-08 2019-04-09 Applied Materials, Inc. Selective tungsten removal
US10903054B2 (en) 2017-12-19 2021-01-26 Applied Materials, Inc. Multi-zone gas distribution systems and methods
US11328909B2 (en) 2017-12-22 2022-05-10 Applied Materials, Inc. Chamber conditioning and removal processes
US10854426B2 (en) 2018-01-08 2020-12-01 Applied Materials, Inc. Metal recess for semiconductor structures
US10679870B2 (en) 2018-02-15 2020-06-09 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus
US10964512B2 (en) 2018-02-15 2021-03-30 Applied Materials, Inc. Semiconductor processing chamber multistage mixing apparatus and methods
TWI716818B (zh) 2018-02-28 2021-01-21 美商應用材料股份有限公司 形成氣隙的系統及方法
US10593560B2 (en) 2018-03-01 2020-03-17 Applied Materials, Inc. Magnetic induction plasma source for semiconductor processes and equipment
US10319600B1 (en) 2018-03-12 2019-06-11 Applied Materials, Inc. Thermal silicon etch
US10497573B2 (en) 2018-03-13 2019-12-03 Applied Materials, Inc. Selective atomic layer etching of semiconductor materials
US10573527B2 (en) 2018-04-06 2020-02-25 Applied Materials, Inc. Gas-phase selective etching systems and methods
US10490406B2 (en) 2018-04-10 2019-11-26 Appled Materials, Inc. Systems and methods for material breakthrough
US10699879B2 (en) 2018-04-17 2020-06-30 Applied Materials, Inc. Two piece electrode assembly with gap for plasma control
US10886137B2 (en) 2018-04-30 2021-01-05 Applied Materials, Inc. Selective nitride removal
US10755941B2 (en) 2018-07-06 2020-08-25 Applied Materials, Inc. Self-limiting selective etching systems and methods
US10872778B2 (en) 2018-07-06 2020-12-22 Applied Materials, Inc. Systems and methods utilizing solid-phase etchants
US10672642B2 (en) 2018-07-24 2020-06-02 Applied Materials, Inc. Systems and methods for pedestal configuration
US11049755B2 (en) 2018-09-14 2021-06-29 Applied Materials, Inc. Semiconductor substrate supports with embedded RF shield
US10892198B2 (en) 2018-09-14 2021-01-12 Applied Materials, Inc. Systems and methods for improved performance in semiconductor processing
US11062887B2 (en) 2018-09-17 2021-07-13 Applied Materials, Inc. High temperature RF heater pedestals
US11417534B2 (en) 2018-09-21 2022-08-16 Applied Materials, Inc. Selective material removal
US11682560B2 (en) 2018-10-11 2023-06-20 Applied Materials, Inc. Systems and methods for hafnium-containing film removal
US11121002B2 (en) 2018-10-24 2021-09-14 Applied Materials, Inc. Systems and methods for etching metals and metal derivatives
US11437242B2 (en) 2018-11-27 2022-09-06 Applied Materials, Inc. Selective removal of silicon-containing materials
GB2579360A (en) * 2018-11-28 2020-06-24 Edwards Ltd Multiple chamber vacuum exhaust system
US11721527B2 (en) 2019-01-07 2023-08-08 Applied Materials, Inc. Processing chamber mixing systems
US10920319B2 (en) 2019-01-11 2021-02-16 Applied Materials, Inc. Ceramic showerheads with conductive electrodes
FR3112177B1 (fr) * 2020-07-09 2022-07-08 Pfeiffer Vacuum Ligne de vide et procédé de contrôle d’une ligne de vide
FR3112086B1 (fr) * 2020-07-09 2022-07-08 Pfeiffer Vacuum Dispositif de traitement des gaz et ligne de vide
DE102022100843A1 (de) 2022-01-14 2023-07-20 VON ARDENNE Asset GmbH & Co. KG Verfahren, Steuervorrichtung, Speichermedium und Vakuumanordnung

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4529860A (en) * 1982-08-02 1985-07-16 Motorola, Inc. Plasma etching of organic materials
US4699570A (en) * 1986-03-07 1987-10-13 Itt Industries, Inc Vacuum pump system
US5108983A (en) * 1989-11-21 1992-04-28 Georgia Tech Research Corporation Method for the rapid deposition with low vapor pressure reactants by chemical vapor deposition
JP3847357B2 (ja) * 1994-06-28 2006-11-22 株式会社荏原製作所 真空系の排気装置
US5628364A (en) * 1995-12-04 1997-05-13 Terrane Remediation, Inc. Control system for governing in-situ removal of subterranean hydrocarbon-based fluids
US5944049A (en) * 1997-07-15 1999-08-31 Applied Materials, Inc. Apparatus and method for regulating a pressure in a chamber
US5979225A (en) * 1997-08-26 1999-11-09 Applied Materials, Inc. Diagnosis process of vacuum failure in a vacuum chamber
JP3929185B2 (ja) * 1998-05-20 2007-06-13 株式会社荏原製作所 真空排気装置及び方法
FR2786566B1 (fr) * 1998-11-26 2000-12-29 Cit Alcatel Procede et dispositif de detection de fuites sur echangeurs automobiles
DE10043783A1 (de) * 2000-09-06 2002-03-14 Leybold Vakuum Gmbh Verfahren und Vorrichtung zur Regelung des Vakuums in einer Kammer
JP4335469B2 (ja) * 2001-03-22 2009-09-30 株式会社荏原製作所 真空排気装置のガス循環量調整方法及び装置
FR2854667B1 (fr) * 2003-05-09 2006-07-28 Cit Alcatel Controle de pression dans la chambre de procedes par variation de vitesse de pompes, vanne de regulation et injection de gaz neutre
KR20060090232A (ko) * 2003-09-26 2006-08-10 더 비오씨 그룹 피엘씨 진공 펌프에 의해 펌핑된 유체 내의 오염물의 검출
US7253107B2 (en) * 2004-06-17 2007-08-07 Asm International N.V. Pressure control system
FR2878913B1 (fr) * 2004-12-03 2007-01-19 Cit Alcatel Controle des pressions partielles de gaz pour optimisation de procede

Also Published As

Publication number Publication date
US7793685B2 (en) 2010-09-14
WO2006059027A1 (fr) 2006-06-08
US8297311B2 (en) 2012-10-30
FR2878913B1 (fr) 2007-01-19
DE602005004640T2 (de) 2009-01-29
ATE385545T1 (de) 2008-02-15
DE602005004640D1 (de) 2008-03-20
FR2878913A1 (fr) 2006-06-09
EP1669609A1 (fr) 2006-06-14
US20110005607A1 (en) 2011-01-13
US20060118178A1 (en) 2006-06-08

Similar Documents

Publication Publication Date Title
EP1669609B1 (fr) Contrôle des pressions partielles de gaz pour optimisation de procédé
EP2417621B1 (fr) Procede de dopage au bore de plaquettes de silicium.
FR2501909A1 (fr) Procede d'attaque par l'hydrogene de semiconducteurs et d'oxydes de semiconducteurs
US20050120955A1 (en) Film forming apparatus
EP0995908A1 (fr) Pompe moléculaire
FR2794036A1 (fr) Procede et appareil pour accentuer le nettoyage de chambre de traitement
EP0231544B1 (fr) Chambre de réacteur pour croissance épitaxiale en phase vapeur des matériaux semi-conducteurs
EP1746287B1 (fr) Pompage rapide d'enceinte avec économie d'énergie
WO2006134289A1 (fr) Procede de pilotage de la pression dans une chambre de procede
WO2007048937A1 (fr) Methode de surveillance d'un plasma, dispositif pour la mise en œuvre de cette methode, application de cette methode au depot d'un film sur corps creux en pet
FR2645344A1 (fr) Dispositif pour le depot sous vide de films sur des supports
EP3377672B1 (fr) Procede de formation d'oxyde et/ou de nitrure d'aluminium
EP1348039B1 (fr) Installation dans laquelle est realisee une operation necessitant un contr le de l'atmosphere a l'interieur d'une enceinte
EP3380647B1 (fr) Procédé de traitement de surface d'un film en mouvement et installation pour la mise en oeuvre de ce procédé
FR2807951A1 (fr) Procede et systeme de pompage des chambres de transfert d'equipement de semi-conducteur
WO1997019464A1 (fr) Boite de stockage d'un objet destine a etre protege d'une contamination physico-chimique
FR2688344A1 (fr) Procede de fabrication d'un dispositif a semiconducteur, d'un compose ii-vi comprenant du mercure.
FR2900277A1 (fr) Procede de formation d'une portion monocristalline a base de silicium
FR2804542A1 (fr) Procede et dispositif pour la formation de couches minces de composes de silicium et de germanium
EP1541709A1 (fr) Arrangement pour le contrôle du flux d'agents de nettoyage dans un dispositif de recirculation
WO2014155166A1 (fr) Procede de dissolution d'une couche de dioxyde de silicium
FR2984423A1 (fr) Dispositif de pompage et equipement de fabrication d'ecrans plats correspondant
WO2001057491A1 (fr) Procede et dispositif d'echantillonnage de gaz optimalise
FR2843487A1 (fr) Procede d'elaboration de couche mince comprenant une etape de correction d'epaisseur par oxydation sacrificielle, et machine associee
FR2992822A1 (fr) Equipement de traitement de surface par plasma genere ex-situ et procede associe.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061214

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALCATEL LUCENT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: FRENCH

REF Corresponds to:

Ref document number: 602005004640

Country of ref document: DE

Date of ref document: 20080320

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20080409

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: CABINET ROLAND NITHARDT CONSEILS EN PROPRIETE INDU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080517

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080606

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080506

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20081107

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080506

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

BERE Be: lapsed

Owner name: ALCATEL LUCENT

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080807

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080507

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101223

Year of fee payment: 6

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080206

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20111122

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCOW

Free format text: ALCATEL LUCENT;3, AVENUE OCTAVE GREARD;75007 PARIS (FR)

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121118

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121118

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ADIXEN VACUUM PRODUCTS, FR

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121118

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141126

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20141120

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005004640

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130