EP1667489A2 - CFC-Heizstrahler - Google Patents

CFC-Heizstrahler Download PDF

Info

Publication number
EP1667489A2
EP1667489A2 EP05025398A EP05025398A EP1667489A2 EP 1667489 A2 EP1667489 A2 EP 1667489A2 EP 05025398 A EP05025398 A EP 05025398A EP 05025398 A EP05025398 A EP 05025398A EP 1667489 A2 EP1667489 A2 EP 1667489A2
Authority
EP
European Patent Office
Prior art keywords
cfc
quartz glass
carbon
transparent
radiant heater
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP05025398A
Other languages
English (en)
French (fr)
Other versions
EP1667489A3 (de
EP1667489B1 (de
Inventor
Sven Dr. Linow
Stefan Fuchs
Siegfried Grob
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Heraeus Noblelight GmbH
Original Assignee
Heraeus Noblelight GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Heraeus Noblelight GmbH filed Critical Heraeus Noblelight GmbH
Publication of EP1667489A2 publication Critical patent/EP1667489A2/de
Publication of EP1667489A3 publication Critical patent/EP1667489A3/de
Application granted granted Critical
Publication of EP1667489B1 publication Critical patent/EP1667489B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B3/00Ohmic-resistance heating
    • H05B3/10Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor
    • H05B3/12Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material
    • H05B3/14Heating elements characterised by the composition or nature of the materials or by the arrangement of the conductor characterised by the composition or nature of the conductive material the material being non-metallic
    • H05B3/145Carbon only, e.g. carbon black, graphite
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B2203/00Aspects relating to Ohmic resistive heating covered by group H05B3/00
    • H05B2203/032Heaters specially adapted for heating by radiation heating

Definitions

  • the present invention relates to an IR radiant heater with at least one flat filament made of carbon, in a transparent or at least partially transparent housing for IR radiation.
  • Such an IR radiator is realized according to EP 0 881 858 with a single filament arranged in a round tube and in DE 44 38 871 and DE 44 19 285 with a plurality of filaments of carbon arranged next to one another.
  • the carbon materials used here consist of parallel carbon fibers, which are connected by means of resin. These structures are graphitized prior to installation in the radiator.
  • EP 0 881 858 is unsuitable for uniform planar irradiation.
  • DE 44 38 871 and DE 44 19 285 relate to the use of comparable filaments, but with the aim of achieving a two-dimensional (2D) radiation.
  • the carbon filaments disclosed there can not be combined to any planar heating elements, since the material can only be stretched and arranged with the same width. Although this makes it possible to realize the arrangements shown in DE 44 38 871, they do not give uniform emission intensities nor can curved or round shapes be realized, or even structures shaped in 3D.
  • Fig. 5a is in the marginal bands due to the different length of the different fibers a considerable Show variation of the temperature and thus the radiated power per unit length.
  • the present invention also relates to the use of CFC material for radiant heaters.
  • JP 7-161725 describes cutting a heating pattern of planar material using silicon carbide (SiC).
  • SiC heating element is located in an open housing made of quartz glass, on which on the side used for heat treatment a graphite disc (see Figure 1, No. (8)) is placed.
  • the graphite disc is heated by the SiC heater and then warms the material secondarily.
  • Such heating elements made of SiC or graphite are brittle and rigid, so that they react very fragile.
  • the heating element is also electrically contacted rigidly by means of screws, so that an additional risk of breakage arises here due to the thermal expansion. To ensure adequate mechanical strength of such heating elements, they must be made massive. Due to the then low electrical resistance very high currents will flow during operation at low voltages. This requires complex power supplies and the electrical leads are very difficult to lead in a vacuum-tight quartz body. For this reason, the quartz glass housing is designed here open.
  • EP 0 899 777 B1 describes a carbon heater having a heater member of longitudinally stretched interwoven carbon fiber bundles, such as a ribbon or wire form. These woven carbon fiber bundles are expressly not converted by means of graphite into a CFC. These bundles remain so flexible and the risk of brittle fracture is avoided.
  • the described wire or ribbon-shaped heater elements have a high electrical resistance, so that the heater can be designed for operation at common voltages. Due to the very small number of fibers in the band, however, only a very small amount of current flows at maximum power of a few amps, so that overall the performance of such a unit with 30 kW m 2 tends to be low.
  • the heater link is placed in channels that have been milled into a first quartz plate. Subsequently, the heating device is closed by means of a second quartz part that is placed on the first and connected thereto. The connection is made by applying a weight of 10 kg and a hot process in which the entire device is heated to 1450 ° C for 3 h.
  • the resulting connection of the two quartz parts is not a continuous weld and can gap apart due to mechanical and thermal loads after prolonged operation.
  • CFC carbon fiber reinforced carbon
  • the aim of the invention is to develop an IR radiator, which can be operated at normal mains voltages, at the same time has high power and lifetime and allows high flexibility in the design options with respect to the required forms of the process.
  • Such webs remain flexible and tear-resistant even after impregnation and conversion into a CFC. Even filaments of complex shape cut from CFC sheets remain flexible and tear-resistant.
  • the thickness of the material is low, preferably ⁇ 1 mm, and more preferably ⁇ 0.3 mm, it also achieves an electrical resistance of the filaments, which allows operation at normal operating voltages (208 V, 230 V, 400 V, 480 V) , Usual current feedthroughs for IR emitters allow about 25 A, so that considerable power per filament can be realized.
  • This provides a heating technique that is the highest standard for clean applications, as required in the semiconductor industry.
  • flat quartz glass elements of the housing are welded together to form a housing.
  • the housing may be made of a high purity material, such as e.g. Quartz glass.
  • the CFC heating filament can be arranged in the housing on brackets, wherein the shape of the brackets is preferably chosen so that the support surface is kept low, ideally limited to one line.
  • Suitable supports are, for example, rods made of quartz glass, aluminum oxide or another non-conductive material of high melting point, which are ideally equipped as a body with a sharp edge on which rests the filament.
  • the power of the radiant heater is preferably more than 30 kW / m 2 , in particular 50 to 250 kW / m 2 for radiant heaters with a service life of 5,000 to 10,000 hours.
  • a further preferred embodiment consists in radiant heaters with a power of over 200 kW / m 2 , in particular more than 250 kW / m 2 for shorter-lived spotlights.
  • the particularly preferred field of application are long-lasting radiant heaters with a power of between 100 and 200 kW / m 2 .
  • two spatial dimensions are many times larger, preferably one order of magnitude larger, than the third dimension. It has been proven to evacuate the housing or to fill it with inert gas.
  • the electrical contacting of the filament is preferably carried out via brackets made of molybdenum, with additional layers of suitable carbon materials between the filament and the bracket for an ideal electrical and mechanical contact.
  • Preferred CFC patterns are disc-shaped, meander-shaped, helical, have the shape of an omega, or a folded-in omega or are circular with a recess.
  • the CFC pattern can be cut out of a CFC sheet with the required accuracy and with gentle treatment of the material of special purity with a laser or water jet.
  • FIG. 1 a shows a plan view of a heating element 1.
  • FIG. 1b shows a perspective view of a heating element 1.
  • FIG. 2 a shows a plan view of a base plate 2.
  • FIG. 2b shows a perspective view of the base plate 2.
  • FIG. 3 a shows a plan view of a cover plate 3.
  • FIG. 3b shows a side view of the cover plate 3.
  • Figure 4 shows a perspective view of the bottom plate 2 with the mounted feeds of the electrical contacts 26 and the mounted pump supports 27th
  • Figure 5 shows an overall perspective view of the device from below.
  • a heating element according to FIG. 1a or 1b is cut out of a sheet of CFC material.
  • the bottom plate 2 according to Figure 2a or 2b is made of opaque quartz glass. In its surface are support webs 22 for the heating tape 1, spacers 23, which are welded to the cover plate and retaining pins 21 for fixing the heating tape 1. Outside, an edge 24 is provided for welding to the cover plate. Further, two holes 25 are provided for the electrical contacts.
  • Figures 3a and 3b show a cover plate 3 made of quartz glass with recessed openings 31 for welding the cover plate with the spacers 23 of the bottom plate. 2
  • the bottom plate 2 is equipped with mounted feeds of the electrical contacts 26 and the mounted pump nozzle 27.
  • the radiant heater according to FIG. 5 has a CFC heating element 1 (FIGS. 1 a and 1 b), which meandering fills the entire surface to be heated.
  • a CFC heating element 1 (FIGS. 1 a and 1 b), which meandering fills the entire surface to be heated.
  • the front side 3 is a clear quartz glass pane 3.
  • the panes 2 and 3 are closed to a dense space, which is evacuated via the pipes for the power supply lines.
  • the carbon belt 1 can be heated at a power of 200 kW / m 2 to about 1300 ° C.
  • the opaque disk is designed as a base plate 2, on which spacers 23 are arranged.
  • the bottom plate 2 is of an inner and outer ring 24 limited.
  • the CFC pattern 1 lies loosely on the support webs 22 and a clear quartz glass plate 3 terminates with the rings.
  • the carbon belt 1 can be heated at a power of 200 kW / m 2 to about 1300 ° C.
  • the CFC pattern 1 is cut out of a CFC surface with a laser, the spacers 23 and the rings and the quartz glass plates 2, 3 of highly pure quartz glass, so that in addition to the metallic power supply and the web ends with the Only high-purity quartz glass as a radiator housing and high-purity carbon as the radiation source 1 are used for connecting current feedthrough molybdenum retaining clips.
  • An opaque quartz glass plate 2 of sufficient thickness is cut into a required shape for the bottom 2, then the depressions are milled and ground. In this case, the edge 24 and the spacers 23 remain at their original height and the support webs 22 for the filament are at a lower level. Finally, the openings at which the pipes for electrical contacting and the current feedthrough are drilled are drilled. Edges may be smoothed or fire polished.
  • quartz glass tubes are attached to the holes, in each of which a current feedthrough is arranged.
  • pipes 27 for applying vacuum and for introducing purge gas are located on these pipes.
  • the cover plate 3 for the top is cut from pure quartz glass and ground. In particular, recesses 31 are introduced for later welding of the plate to the spacers 23 of the opaque plate 2.
  • the heating element 1 is cut from a CFC sheet material by means of a water jet and then coated in a reactor with pyrocarbon.
  • Power feedthroughs are made in the form of bruises.
  • a molybdenum pin At the inner end of the current feedthrough is a molybdenum pin.
  • the terminal for receiving the heating element 1 is attached.
  • the current feedthrough is welded to the tube of the current feedthrough, so that the clamps for receiving the filament are already in the later level of the filament. Subsequently, the tape is inserted into the bottom and the tape ends are connected by clamping the sheet of molybdenum retaining clip with the current feedthrough.
  • graphite platelets are added for mechanical protection and to improve the electrical contact.
  • the cover plate 3 is placed and the resulting interior is purged with argon, so that during the welding process no water vapor or oxygen can oxidize the carbon or molybdenum.
  • the two quartz elements 2, 3 are welded together.
  • the weld is joined by applying additional quartz glass along the edge and at the recesses 31 in the cover plate, which are opposite the spacers 23 for the cover plate.
  • the recesses in the cover plate are completely filled and also the edges between the upper and lower plate are filled to the extent that no recesses are present.
  • the body is annealed under vacuum or under inert gas.
  • the protective gas is passed directly into the body and rinsed during the entire tempering process.
  • the interior of the radiator is either evacuated or filled with a protective gas and the radiator deducted.
  • the electrical contacts are attached externally.

Landscapes

  • Resistance Heating (AREA)
  • Electrodes For Cathode-Ray Tubes (AREA)
  • Lubricants (AREA)
  • Developing Agents For Electrophotography (AREA)
  • Surface Heating Bodies (AREA)

Abstract

Die Erfindung betrifft einen IR-Heizstrahler mit mindestens einem flächigen CarbonHeizelement (1) in einem für IR-Strahlung transparenten oder zumindest teilweise transparenten Gehäuse, wobei mindestens ein Carbonheizelement (1) eine flächig angeordnete CFC-Bahn ist, und zwischen Platten (2, 3) angeordnet ist, von denen mindestens eine transparent oder teilweise transparent ist.

Description

  • Die vorliegende Erfindung betrifft einen IR-Heizstrahler mit mindestens einem flächigen Filament aus Carbon, in einem für IR-Strahlung transparenten oder zumindest teilweise transparenten Gehäuse.
  • Ein derartiger IR-Strahler wird nach EP 0 881 858 mit einem einzigen in einem runden Rohr angeordneten Filament und in den DE 44 38 871 und DE 44 19 285 mit mehreren nebeneinander angeordneten Filamenten aus Carbon realisiert. Die hierbei verwendeten Carbon-Materialien bestehen aus parallel angeordneten Carbon Fasern, die mittels Resin verbunden sind. Diese Strukturen werden vor dem Einbau in den Strahler grafitisiert.
  • Der in der EP 0 881 858 offenbarte Strahler ist für eine gleichmäßige flächenhafte Bestrahlung ungeeignet.
  • Die DE 44 38 871 und DE 44 19 285 beziehen sich auf die Verwendung vergleichbarer Filamente, jedoch mit dem Ziel eine flächenhafte (2D) Abstrahlung zu erreichen.
  • Die dort offenbarten Carbon-Filamente lassen sich allerdings nicht zu beliebigen flächenhaften Heizelementen zusammensetzen, da das Material nur gestreckt und mit gleichbleibender Breite angeordnet werden kann. Damit lassen sich zwar die in der DE 44 38 871 gezeigten Anordnungen verwirklichen, diese ergeben jedoch weder gleichmäßige Abstrahlintensitäten, noch können so gebogene oder runde Formen verwirklicht werden, oder gar in 3D geformte Strukturen.
  • Gerade die in der DE 44 38 871, Abb. 5a gezeigte Anordnung wird in den am Rand befindlichen Bändern aufgrund der unterschiedlichen Länge der unterschiedlichen Fasern eine erhebliche Variation der Temperatur und damit der abgestrahlten Leistung je Längeneinheit zeigen.
  • Anordnungen mit einer Vielzahl von schmalen Bändern, wie in der DE 44 19 285 benötigen eine Vielzahl von aufwändigen und teuren Kontaktierungen der einzelnen Bänder untereinander.
  • Solche Carbonbänder lassen sich allerdings nicht in beliebigen flächenhaften Mustern anordnen, weil die Bänder nur geringe Abweichungen von einer parallelen Anordnung zulassen. Bänder lassen sich zwar senkrecht zu ihrer flächigen Ausgestaltung beliebig gestalten. Derartigen Anordnungen fehlt jedoch der flächenhafte Charakter einer Abstrahlungsoberfläche.
  • Die vorliegende Erfindung betrifft andererseits auch die Verwendung von CFC-Material für Heizstrahler.
  • JP 7-161725 beschreibt das Ausschneiden eines Heizmusters aus planarem Material, wobei Siliziumcarbid (SiC) verwendet wird. Hierbei befindet sich das SiC-Heizelement in einem offenen Gehäuse aus Quarzglas, auf das auf der für Wärmebehandlung genutzten Seite eine Grafitscheibe (siehe Bild 1, Nr. (8)) aufgelegt ist. Die Grafitscheibe wird über den SiC-Heizer aufgeheizt und wärmt dann sekundär das Gut. Solche Heizelemente aus SiC oder Grafit sind spröde und starr, so dass sie sehr bruchempfindlich reagieren. Das Heizelement ist zudem mittels Schrauben starr elektrisch kontaktiert, so dass hier aufgrund der Wärmeausdehnung eine zusätzliche Bruchgefahr entsteht. Um eine ausreichende mechanische Festigkeit solcher Heizelemente zu gewährleisten, müssen diese massiv ausgeführt werden. Aufgrund des dann vorliegenden geringen elektrischen Widerstandes werden im Betrieb bei geringen Spannungen sehr hohe Ströme fließen. Dies erfordert aufwändige Netzteile und die elektrischen Zuleitungen sind nur sehr schwierig in einen vakuumdichten Quarzkörper zu führen. Aus diesem Grunde ist hier auch das Quarzglasgehäuse offen gestaltet.
  • Die EP 0 899 777 B1 beschreibt eine Kohlenstoffheizeinrichtung mit einem Heizeinrichtungsglied aus in Längsrichtung gestreckten, miteinander verwebten Kohlenstofffaserbündeln, wie einer Bandform oder Drahtform. Diese verwebten Kohlenstofffaserbündel sind ausdrücklich nicht mittels Grafit in ein CFC überführt. Diese Bündel bleiben so sehr flexibel und die Gefahr des Sprödbruchs wird so vermieden. Die beschriebenen draht- oder bandförmigen Heizeinrichtungsglieder weisen einen hohen elektrischen Widerstand aus, so dass die Heizeinrichtung für den Betrieb an gängigen Spannungen ausgelegt werden kann. Aufgrund der sehr geringen Anzahl an Fasern im Band, fließt jedoch auch bei maximaler Leistung nur ein recht geringer Strom von wenigen Ampere, so dass insgesamt die Leistung einer solchen Einheit mit 30 kW m2 eher gering ausfällt.
  • Das Heizeinrichtungsglied wird in Kanäle eingelegt, die in eine erste Quarzplatte gefräst wurden. Anschließend wird die Heizeinrichtung mittels eines zweiten Quarzteils verschlossen, dass auf das erste aufgelegt wird und mit diesem verbunden. Die Verbindung erfolgt durch Auflegen eines Gewichtes von 10 kg und einem Heißprozess, bei dem die gesamte Einrichtung für 3 h auf 1450°C erwärmt wird.
  • Die so entstehende Verbindung der beiden Quarzteile ist keine durchgehende Schweißung und kann aufgrund von mechanischen und thermischen Belastungen nach längerem Betrieb auseinander klaffen.
  • Nach US 6,584,279 B2 ist ein IR-Strahler mit einer Leistung von bis zu 28 kW/m2 mit geflochtenen Kohlenstofffasern erhältlich.
  • In der Bremstechnik werden Carbon Fiber reinforced Carbon (CFC)-Scheiben aus CFC Material oder Si imprägniertem CFC angewendet.
  • Ziel der Erfindung ist es einen IR Strahler zu entwickeln, der bei üblichen Netzsspannungen betrieben werden kann, zugleich hohe Leistung und Lebensdauer aufweist und eine hohe Flexibilität in den Ausgestaltungsmöglichkeiten im Bezug auf die benötigten Formen des Prozesses erlaubt.
  • Erfindungsgemäß wurde überraschend festgestellt, dass bei Verwendung von komplex geformten Filamenten für Carbon-Strahler, die aus CFC Bahnen ausgeschnitten wurden, Flächenleistungen von über 30 kW/m2, insbesondere über 100 kW/m2 herstellbar sind. Weiter wurde überraschend festgestellt, dass wenn diese Filamente in Gehäuse eingebracht werden, die unterseitig aus opakem Quarzglas und auf der Oberseite aus klarem, höchstens an der Oberfläche gesandstrahlten oder gefrosteten Quarzglas bestehen, IR-Strahlung primär nur aus der Oberseite abstrahlt. Zwar strahlt das heiße Quarzglas selber im Bereich des langwelligen Infraroten oberhalb von 5 µm und die abgestrahlte Leistung ist in diesem Wellenlängenbereich unabhängig von dem verwendeten Quarzmaterial oder der Oberfläche. Auf der Unterseite der erfindungsgemäßen Vorrichtung tritt jedoch nur dieser sekundäre Anteil der Strahlung auf.
  • Bei Wahl des geeigneten CFC Materials hohen spezifischen elektrischen Widerstandes, wie er sich z.B. bei Verwendung eines Garnes ergibt, dass aus einer Vielzahl von kurzen Faserabschnitten hergestellt wurde und anschließend zu einer Stoffbahn verwebt wurde, kann ein geeigneter spezifischer elektrischer Widerstand eingestellt werden.
  • Solche Bahnen bleiben auch nach Imprägnierung und Umwandlung in ein CFC flexibel und reißfest. Auch aus CFC-Bögen geschnittene Filamente komplexer Form bleiben flexibel und reißfest.
  • Da die Stärke des Materials gering ist, bevorzugt < 1 mm und besonders bevorzugt < 0,3 mm, erreicht man auch einen elektrischen Widerstand der Filamente, der den Betrieb bei üblichen Betriebsspannungen (208 V, 230 V, 400 V, 480 V) ermöglicht. Übliche Stromdurchführungen für IR Strahler erlauben ca. 25 A, so dass erhebliche Leistungen je Filament verwirklicht werden können.
  • Erfindungsgemäß wurde überraschend festgestellt, dass in flachen Heizstrahlern mit Mustern aus einer CFC-Bahn Leistungen von über 30 kW/m2 insbesondere über 100 kW erzielbar sind und Strahler mit einer Leistung von 8-12 KW herstellbar sind und das flächige Strahler einseitig abstrahlen, wenn ein flächiges Carbonmuster zwischen zwei Flächen angeordnet ist, von denen eine opak und die andere klar ist. Die Erfindung ist auch mit mehreren CFC-Bahnen realisierbar.
  • Damit wird eine Erwärmungstechnik bereitgestellt, die für Reinstanwendungen, wie sie in der Halbleiterindustrie gefordert werden, höchster Standard ist.
  • In bevorzugten Ausführungen der Erfindung werden flächige Quarzglaselemente des Gehäuses miteinander zu einem Gehäuse verschweißt. Das Gehäuse kann aus einem hochreinen Material gefertigt werden, wie z.B. Quarzglas. Das CFC-Heizfilament kann im Gehäuse auf Halterungen angeordnet sein, wobei die Form der Halterungen vorzugsweise so gewählt wird, dass die Auflagefläche gering gehalten ist, Idealerweise auf eine Linie beschränkt. Als Halterungen eignen sich beispielsweise Stäbe aus Quarzglas, Aluminiumoxyd oder einem anderen nichtleitenden Material hohen Schmelzpunktes, die Idealerweise als Körper mit einer scharfen Kante ausgestattet sind, auf der das Filament aufliegt.
  • Vorzugsweise beträgt die Leistung des Heizstrahlers mehr als 30 kW/m2, insbesondere 50 bis 250 kW/m2 für Heizstrahler mit einer Lebensdauer von 5.000 bis 10.000 Stunden.
  • Eine weitere bevorzugte Ausführungsform besteht in Heizstrahlern mit einer Leistung von über 200 kW/m2, insbesondere über 250 kW/m2 für kurzlebigere Strahler.
  • Das besonders bevorzugte Anwendungsgebiet sind langlebige Heizstrahler mit einer Leistung zwischen 100 bis 200 kW/m2.
  • In der bevorzugten Form eines Flächenstrahlers sind zwei Raumdimensionen um ein vielfaches, vorzugsweise um eine Größenordnung größer ausgeprägt als die dritte Dimension. Es hat sich bewährt, das Gehäuse zu evakuieren oder mit Edelgas zu füllen.
  • Die elektrische Kontaktierung des Filamentes erfolgt vorzugsweise über Klammern aus Molybdän, wobei zusätzliche Lagen aus geeigneten Carbon-Materialien zwischen dem Filament und der Klammer für eine ideale elektrische und mechanische Kontaktierung sorgen.
  • Bevorzugte CFC-Muster sind scheibenförmig, mäanderförmig, schneckenförmig, haben die Form eines Omega, bzw. eines in sich gefalteten Omega oder sind kreisförmig mit einer Aussparung. Das CFC-Muster lässt sich mit der benötigten Genauigkeit und bei schonender Behandlung des Materials mit besonderer Reinheit mit einem Laser oder Wasserstrahl aus einem CFC- Bogen ausschneiden.
  • Im folgenden wird die Erfindung mit Bezug auf die Abbildungen veranschaulicht.
  • Figur 1a zeigt eine Draufsicht auf ein Heizelement 1.
  • Figur 1b zeigt eine perspektivische Ansicht eines Heizelementes 1.
  • Figur 2a zeigt eine Draufsicht auf eine Bodenplatte 2.
  • Figur 2b zeigt eine perspektivische Ansicht der Bodenplatte 2.
  • Figur 3a zeigt eine Draufsicht auf eine Abdeckplatte 3.
  • Figur 3b zeigt eine Seitenansicht der Abdeckplatte 3.
  • Figur 4 zeigt eine perspektivische Ansicht der Bodenplatte 2 mit den montierten Zuführungen der elektrischen Kontakte 26 und den montierten Pumpstützen 27.
  • Figur 5 zeigt eine perspektivische Gesamtansicht der Vorrichtung von unten.
  • Ein Heizelement nach Figur 1a oder 1 b wird aus einem Bogen aus CFC-Material ausgeschnitten.
  • Die Bodenplatte 2 nach Figur 2a oder 2b wird aus opakem Quarzglas hergestellt. In ihrer Fläche befinden sich Auflagestege 22 für das Heizband 1, Abstandshalter 23, die mit der Abdeckplatte verschweißt werden und Haltestifte 21 zum Fixieren des Heizbandes 1. Außen ist umlaufend ein Rand 24 zum Verschweißen mit der Abdeckplatte vorgesehen. Weiter sind zwei Bohrungen 25 für die elektrischen Kontakte vorgesehen.
  • Figuren 3a und 3b zeigen eine Abdeckplatte 3 aus Quarzglas mit eingesenkten Öffnungen 31 zum Verschweißen der Abdeckplatte mit den Abstandshaltern 23 der Bodenplatte 2.
  • In Figur 4 ist die Bodenplatte 2 mit montierten Zuführungen der elektrischen Kontakte 26 und den montierten Pumpstutzen 27 ausgestattet.
  • In Figur 5 sind zusätzlich die elektrischen Zuleitungen 28 und Sockel 29 angebracht.
  • Der Heizstrahler nach Figur 5 weist ein CFC-Heizelement 1 (Figur 1 a und 1 b) auf, das mäandernd die gesamte zu beheizende Fläche ausfüllt. Unterhalb der Enden des Filamentes (1) setzen an der Bodenplatte 2 (Figur 2a/2b) aus opakem Quarzglas (OM-100 gemäß Heraeus-Broschüre aus dem Jahr 2002) zwei Rohre aus Quarzglas zur Aufnahme der elektrischen Kontakte 26 und der Stromdurchführungen an. Die Vorderseite 3 ist eine klare Quarzglasscheibe 3. Die Scheiben 2 und 3 sind zu einem dichten Raum verschlossen, der über die Rohre für die Stromzuleitungen evakuiert ist. In dieser Ausführung kann das Carbonband 1 bei einer Leistung von 200 kW/m2 auf etwa 1300°C erhitzt werden.
  • In einer einfachen Ausführung nach Figur 2a und 2b ist die opake Scheibe als Bodenplatte 2 ausgebildet, auf der Abstandshalter 23 angeordnet sind. Die Bodenplatte 2 wird von einem inneren und äußeren Ring 24 begrenzt. Das CFC-Muster 1 liegt lose auf den Auflegestegen 22 und eine klare Quarzglasplatte 3 schließt mit den Ringen ab.
  • In Figur 2 befinden sich die Stromdurchführungen außerhalb der kreisförmigen Abstrahlungseinheit und bedingen für die Glasplatten 2, 3 und Ringe eine Abweichung von der Scheiben- bzw. Ringform.
  • In dieser Ausführung kann das Carbonband 1 bei einer Leistung von 200 kW/m2 auf etwa 1300°C erhitzt werden.
  • Für höchst reine Anwendungen wird das CFC-Muster 1 aus einer CFC-Fläche mit einem Laser ausgeschnitten, bestehen die Abstandshalter 23 sowie die Ringe und die Quarzglasplatten 2, 3 aus höchst reinem Quarzglas, so dass neben den metallischen Stromzuführungen und den die Bahnenden mit den Stromdurchführungen verbindenden Molybdänhalteklammern lediglich hochreines Quarzglas als Strahlergehäuse und hochreiner Kohlenstoff als Strahlungsquelle 1 zur Anwendung kommen.
  • Herstellungsbeispiel
  • Eine opake Quarzglasplatte 2 ausreichender Dicke wird in eine die benötigte Form für die Unterseite 2 geschnitten, anschließend werden die Einsenkungen ausgefräst und geschliffen. Hierbei bleiben der Rand 24 und die Abstandshalter 23 auf ursprünglicher Höhe und die Auflagestege 22 für das Filament auf niedrigerer Höhe stehen. Zuletzt werden die Durchbrüche, an denen die Rohre für die elektrische Kontaktierung und die Stromdurchführung angesetzt werden, gebohrt. Kanten werden gegebenenfalls geglättet oder feuerpoliert.
  • Anschließend werden an den Bohrungen Rohre aus Quarzglas angesetzt, in denen je eine Stromdurchführung angeordnet wird. An diesen Rohren befinden sich zusätzlich Stutzen 27 für das Anlegen von Vakuum und zum Einleiten von Spülgas.
  • Die Abdeckplatte 3 für die Oberseite wird aus reinem Quarzglas geschnitten und geschliffen. Insbesondere werden Aussparungen 31 zum späteren Verschweißen der Platte mit den Abstandshaltern 23 der opaken Platte 2 eingebracht.
  • Das Heizelement 1 wird aus einem CFC-Bogenmaterial mittels Wasserstrahl geschnitten und anschließend in einem Reaktor mit Pyrokohlenstoff beschichtet.
  • Stromdurchführungen werden in Form von Quetschungen gefertigt. An dem inneren Ende der Stromdurchführung befindet sich ein Molybdänstift. An diesem wird die Klemme für die Aufnahme des Heizelementes 1 angebracht.
  • Die Stromdurchführung wird mit dem Rohr der Stromdurchführung verschweißt, so dass die Klemmen für die Aufnahme des Filamentes sich bereits in der späteren Ebene des Filaments befinden. Anschließend wird das Band in die Unterseite eingelegt und die Bandenden werden durch das Blech der Molybdän-Halteklammer klemmend mit der Stromdurchführung verbunden. Dabei werden zum mechanischen Schutz und zur Verbesserung der elektrischen Kontaktierung zusätzlich Grafitplättchen untergelegt.
  • Die Abdeckplatte 3 wird aufgelegt und der so entstehende Innenraum wird mit Argon gespült, so dass während des Schweißprozesses kein Wasserdampf oder Sauerstoff das Carbon oder das Molybdän oxydieren kann.
  • Dann werden die beiden Quarzelemente 2, 3 miteinander verschweißt. Hierbei wird die Schweißung durch Aufbringen von zusätzlichem Quarzglas entlang der Kante und an den Aussparungen 31 in der Deckplatte, die den Abstandshaltern 23 für die Deckplatte gegenüberliegen, verbunden. Nach Ablauf der Schweißung sind die Aussparungen in der Deckplatte vollständig aufgefüllt und auch die Kanten zwischen Ober und Unterplatte sind soweit ausgefüllt, dass keine Rücksprünge mehr vorliegen.
  • Anschließend wird der Körper unter Vakuum oder unter Schutzgas getempert. Das Schutzgas wird direkt in den Körper geleitet und spült diesen während des gesamten Tempervorganges.
  • Nach dem Tempern wird die Oberfläche geschliffen, poliert, gelappt oder gesandstrahlt und abschließend mittels Säure gereinigt. Nach diesem Vorgang liegt eine absolut ebene Oberseite vor.
  • Der Innenraum des Strahlers wird entweder evakuiert oder mit einem Schutzgas gefüllt und der Strahler abgezogen.
    Die elektrischen Kontakte werden außen angebracht.

Claims (8)

  1. IR-Heizstrahler mit mindestens einem flächigen Carbon-Heizelement (1) in einem für IR-Strahlung transparenten oder zumindest teilweise transparenten Gehäuse, dadurch gekennzeichnet, dass mindestens ein Carbonheizelement (1) eine flächig angeordnete CFC-Bahn ist, und zwischen Platten (2, 3) angeordnet ist von denen mindestens eine transparent oder teilweise transparent ist.
  2. IR-Strahler nach Anspruch 1, dadurch gekennzeichnet, dass eine Platte (2) für IR-Strahlung reflektierend ist.
  3. Vorrichtung nach Anspruch 2, dadurch gekennzeichnet, dass die reflektierende Platte (2) opakes Quarzglas aufweist.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, dass das opake Quarzglas eine diffuse Reflektion von mehr als 90%, bevorzugt über 95% aufweist.
  5. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass eine Bodenplatte (2) aus opakem Quarzglas mit einer transparenten Deckplatte (3) verschweißt oder verklebt oder verlötet ist.
  6. IR-Heizstrahler nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Gehäuse in zwei Dimensionen mindestens um den Faktor 5, insbesondere um 1 bis 2 Größenordnungen größer ausgeprägt ist, als in der dritten Dimension.
  7. Verfahren zur Herstellung eines IR-Heizstrahlers mit mindestens einem flächigen Carbonelement (1), das in einem transparenten oder teilweisen transparenten Gehäuse angeordnet wird, dadurch gekennzeichnet, dass das Carbonheizelement (1) aus einem flächigen CFC-Material ausgeschnitten wird.
  8. Verfahren zur Herstellung eines IR-Heizstrahlers mit mindestens einem flächigen Carbonelement (1), dadurch gekennzeichnet, dass das flächige Carbonelement (1) zwischen einer klaren (3) und einer opaken (2) Fläche angeordnet wird.
EP05025398A 2004-12-01 2005-11-22 CFC-Heizstrahler Not-in-force EP1667489B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004058077A DE102004058077A1 (de) 2004-12-01 2004-12-01 CFC-Heizstrahler

Publications (3)

Publication Number Publication Date
EP1667489A2 true EP1667489A2 (de) 2006-06-07
EP1667489A3 EP1667489A3 (de) 2006-07-19
EP1667489B1 EP1667489B1 (de) 2008-03-19

Family

ID=35825325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05025398A Not-in-force EP1667489B1 (de) 2004-12-01 2005-11-22 CFC-Heizstrahler

Country Status (7)

Country Link
US (1) US8655160B2 (de)
EP (1) EP1667489B1 (de)
JP (1) JP2006164974A (de)
KR (1) KR20060061242A (de)
CN (1) CN1784086B (de)
AT (1) ATE390030T1 (de)
DE (2) DE102004058077A1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3182794B1 (de) * 2015-12-18 2020-12-09 E.G.O. Elektro-Gerätebau GmbH Heizeinrichtung mit einem träger und verfahren zu ihrer herstellung

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010511304A (ja) * 2006-11-27 2010-04-08 モメンティブ パフォーマンス マテリアルズ インコーポレイテッド 石英で密閉されたヒータアセンブリ
KR100918918B1 (ko) 2009-01-16 2009-09-23 (주)리트젠 적외선램프의 필라멘트 및 그 제조방법
WO2014118792A1 (en) * 2013-01-31 2014-08-07 Hewlett-Packard Development Company, L.P. Physical resource allocation
US10737290B2 (en) 2015-09-15 2020-08-11 Heraeus Noblelight Gmbh Efficient infrared absorption system for edge sealing medium density fiberboard (MDF) and other engineered wood laminates using powder and liquid coatings
US10857566B2 (en) * 2015-09-15 2020-12-08 Heraeus Noblelight Gmbh Efficient infrared absorption system for edge sealing medium density fiberboard (MDF) and other engineered wood laminates using powder and liquid coatings
DE102016118137A1 (de) * 2016-09-26 2018-03-29 Heraeus Noblelight Gmbh Infrarotflächenstrahler
DE102018003531A1 (de) * 2018-04-30 2019-10-31 Aytac Görüken Elektrischer Kopf zum Rauchen einer Wasspfeife mit Tabak
KR102432994B1 (ko) * 2020-10-16 2022-08-16 최환혁 기판 예열 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07161725A (ja) 1993-12-06 1995-06-23 Sumitomo Osaka Cement Co Ltd ウエハー加熱装置および加熱装置用電極部材
DE4419285A1 (de) 1994-06-01 1995-12-07 Heraeus Noblelight Gmbh Strahlungsanordnung
DE4438871A1 (de) 1994-11-03 1996-05-09 Heraeus Noblelight Gmbh Infrarotstrahler mit einem flächenhaft ausgebildeten Widerstandskörper als Strahlungsquelle
EP0881858A2 (de) 1993-05-21 1998-12-02 Ea Technology Limited Verbesserte Infrarot-Strahlungsquelle
US6584279B2 (en) 2000-05-25 2003-06-24 Toshiba Ceramics Co., Ltd. Heater sealed with carbon wire heating element
EP0899777B1 (de) 1997-07-31 2004-09-29 Toshiba Ceramics Co., Ltd. Aus Kohlenstoff bestehender Heizkörper

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2620270B2 (ja) * 1987-12-28 1997-06-11 株式会社ナガノ 加熱装置
JP2854864B2 (ja) * 1988-02-19 1999-02-10 株式会社ナガノ 炭素繊維/炭素コンポジット製面発熱体
JP2939279B2 (ja) * 1989-12-28 1999-08-25 株式会社ナガノ 面状加熱装置
JPH06260430A (ja) 1993-03-08 1994-09-16 Eiko:Kk プレートヒータ及びその製法
JPH08315965A (ja) * 1994-09-29 1996-11-29 Tokyo Electron Ltd 加熱装置及びその製造方法、並びに処理装置
US6013903A (en) * 1996-09-24 2000-01-11 Mifune; Hideo Flame reaction material carrier and method of manufacturing flame reaction member
US6611659B2 (en) * 1999-04-24 2003-08-26 Airbus Deutschland Gmbh Electrically heated aircraft composite floor panel
CN100340135C (zh) * 2001-08-31 2007-09-26 徐国长 碳分子重组碳纤维导电发热网状带及其制备方法
KR100547189B1 (ko) * 2003-04-23 2006-01-31 스타전자(주) 그라파이트 펠트를 이용하는 탄소 발열 장치의 제조 방법
CN1458810A (zh) * 2003-05-30 2003-11-26 北京东方慧辰碳纤维科技有限公司 一种碳材料的高温远红外辐射电热体及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0881858A2 (de) 1993-05-21 1998-12-02 Ea Technology Limited Verbesserte Infrarot-Strahlungsquelle
JPH07161725A (ja) 1993-12-06 1995-06-23 Sumitomo Osaka Cement Co Ltd ウエハー加熱装置および加熱装置用電極部材
DE4419285A1 (de) 1994-06-01 1995-12-07 Heraeus Noblelight Gmbh Strahlungsanordnung
DE4438871A1 (de) 1994-11-03 1996-05-09 Heraeus Noblelight Gmbh Infrarotstrahler mit einem flächenhaft ausgebildeten Widerstandskörper als Strahlungsquelle
EP0899777B1 (de) 1997-07-31 2004-09-29 Toshiba Ceramics Co., Ltd. Aus Kohlenstoff bestehender Heizkörper
US6584279B2 (en) 2000-05-25 2003-06-24 Toshiba Ceramics Co., Ltd. Heater sealed with carbon wire heating element

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3182794B1 (de) * 2015-12-18 2020-12-09 E.G.O. Elektro-Gerätebau GmbH Heizeinrichtung mit einem träger und verfahren zu ihrer herstellung

Also Published As

Publication number Publication date
KR20060061242A (ko) 2006-06-07
DE102004058077A1 (de) 2006-06-08
CN1784086B (zh) 2010-05-05
EP1667489A3 (de) 2006-07-19
US8655160B2 (en) 2014-02-18
JP2006164974A (ja) 2006-06-22
ATE390030T1 (de) 2008-04-15
DE502005003294D1 (de) 2008-04-30
CN1784086A (zh) 2006-06-07
US20060115244A1 (en) 2006-06-01
EP1667489B1 (de) 2008-03-19

Similar Documents

Publication Publication Date Title
EP1667489B1 (de) CFC-Heizstrahler
DE69433780T2 (de) Verbesserte Infrarot-Strahlungsquelle
DE69826594T2 (de) Aus Kohlenstoff bestehender Heizkörper
DE60133628T2 (de) Vorrichtung zur schnellen und gleichmässigen heizung eines halbleitersubstrats durch infrarotstrahlung
DE102011109578B4 (de) Verfahren zur Herstellung eines elektrisch leitenden Materials, elektrisch leitendes Material sowie Strahler mit elektrisch leitendem Material
DE102011109577A1 (de) Elektrisch leitendes Material sowie Strahler mit elektrisch leitendem Material sowie Verfahren zu dessen Herstellung
EP0465766B1 (de) Infrarot-Flächenstrahler
DE4438870B4 (de) Infrarotstrahler mit langgestrecktem Widerstandskörper als Strahlenquelle
EP0708705A1 (de) Vorrichtung zum stirnseitigen verschweissen von kunststoffprofilen, insbesondere von rohren
DE112005003684B4 (de) Wärmebehandlungshaltevorrichtung und Wärmebehandlungsvorrichtung und Verfahren
DE2359004C3 (de) Vorrichtung zur Erwärmung von aus einkristallinem Material bestehenden Substraten
DE102010011156B4 (de) Vorrichtung zur thermischen Behandlung von Halbleitersubstraten
WO2018019915A1 (de) Mikroheizleiter
WO2002023591A1 (de) Strahlungsquelle und bestrahlungsanordnung
DE102006038925A1 (de) Vorrichtung zum Heizen einer Probe
EP0948877A1 (de) Sphäroidisch abstrahlender infrarot-strahler
DE2338807C3 (de) Verfahren und Vorrichtung zum Herstellen kleiner elektrischer Glühlampen
DE2619622B2 (de) Infrarotstrahlungsanlage
DE2832027B2 (de) Kathode für Elektronenemission
DE4438871A1 (de) Infrarotstrahler mit einem flächenhaft ausgebildeten Widerstandskörper als Strahlungsquelle
DE10051904B4 (de) Strahlungsquelle und Bestrahlungsanordnung
DE102021004175B3 (de) Abstandsvorrichtung für Heizsystem zum Aufheizen von großflächigen Substraten, Heizsystem und Aufheizverfahren
EP2000003B1 (de) Infrarot-bestrahlungseinheit
DE3004188A1 (de) Verfahren und vorrichtung zur formgebung eines heizelementes
DE966812C (de) Elektrische Entladungsroehre mit Gas- und bzw. oder Dampf-Atmosphaere

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051125

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17Q First examination report despatched

Effective date: 20070208

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KIRKER & CIE S.A.

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 502005003294

Country of ref document: DE

Date of ref document: 20080430

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080826

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080630

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080719

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

26N No opposition filed

Effective date: 20081222

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080619

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

BERE Be: lapsed

Owner name: HERAEUS NOBLELIGHT G.M.B.H.

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081122

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080920

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080319

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20080620

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101119

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101125

Year of fee payment: 6

Ref country code: GB

Payment date: 20101118

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20111123

Year of fee payment: 7

Ref country code: FR

Payment date: 20111130

Year of fee payment: 7

Ref country code: NL

Payment date: 20111124

Year of fee payment: 7

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130601

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121122

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121122

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502005003294

Country of ref document: DE

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121122

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130