EP1658624A2 - Integrierte schaltung und verfahren zur herstellung einer integrierten schaltung - Google Patents

Integrierte schaltung und verfahren zur herstellung einer integrierten schaltung

Info

Publication number
EP1658624A2
EP1658624A2 EP04786186A EP04786186A EP1658624A2 EP 1658624 A2 EP1658624 A2 EP 1658624A2 EP 04786186 A EP04786186 A EP 04786186A EP 04786186 A EP04786186 A EP 04786186A EP 1658624 A2 EP1658624 A2 EP 1658624A2
Authority
EP
European Patent Office
Prior art keywords
integrated circuit
polymer
layer
dielectric layer
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04786186A
Other languages
German (de)
English (en)
French (fr)
Inventor
Marcus Halik
Andreas Walter
Hagen Klauk
Günter Schmid
Ute Zschieschang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Infineon Technologies AG
Original Assignee
Infineon Technologies AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies AG filed Critical Infineon Technologies AG
Publication of EP1658624A2 publication Critical patent/EP1658624A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K10/00Organic devices specially adapted for rectifying, amplifying, oscillating or switching; Organic capacitors or resistors having potential barriers
    • H10K10/40Organic transistors
    • H10K10/46Field-effect transistors, e.g. organic thin-film transistors [OTFT]
    • H10K10/462Insulated gate field-effect transistors [IGFETs]
    • H10K10/468Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics
    • H10K10/471Insulated gate field-effect transistors [IGFETs] characterised by the gate dielectrics the gate dielectric comprising only organic materials
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L61/00Compositions of condensation polymers of aldehydes or ketones; Compositions of derivatives of such polymers
    • C08L61/04Condensation polymers of aldehydes or ketones with phenols only
    • C08L61/06Condensation polymers of aldehydes or ketones with phenols only of aldehydes with phenols
    • C08L61/14Modified phenol-aldehyde condensates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F8/00Chemical modification by after-treatment
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D129/00Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Coating compositions based on hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Coating compositions based on derivatives of such polymers
    • C09D129/02Homopolymers or copolymers of unsaturated alcohols
    • C09D129/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F2810/00Chemical modification of a polymer
    • C08F2810/20Chemical modification of a polymer leading to a crosslinking, either explicitly or inherently
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/14Side-groups
    • C08G2261/142Side-chains containing oxygen
    • C08G2261/1422Side-chains containing oxygen containing OH groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/33Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain
    • C08G2261/334Monomer units or repeat units incorporating structural elements in the main chain incorporating non-aromatic structural elements in the main chain containing heteroatoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/42Non-organometallic coupling reactions, e.g. Gilch-type or Wessling-Zimmermann type
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/05Alcohols; Metal alcoholates
    • C08K5/053Polyhydroxylic alcohols
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/41Compounds containing sulfur bound to oxygen
    • C08K5/42Sulfonic acids; Derivatives thereof

Definitions

  • the invention relates to an integrated circuit according to the preamble of claim 1 and a method for producing an integrated circuit with an organic semiconductor according to claim 8.
  • a field-effect transistor is especially considered organic if the semiconductive layer is made of an organic material.
  • RF-ID radio frequency identification
  • thermo distortion of most eligible inexpensive substrates eg polyethylene terephthalate (PET), polyethylene naphthalate (PEN)
  • PET polyethylene terephthalate
  • PEN polyethylene naphthalate
  • this temperature limit can be up to 200 ° C. increase, but with the restriction that the distortion of the substrate is indeed reduced, but not prevented.
  • a critical process step in electronic components is the deposition of the dielectric layer, in particular the gate dielectric layer of an OFET.
  • Very high demands are placed on the quality of dielectrics in OFETs in terms of thermal, chemical, mechanical and electrical properties.
  • Silicon dioxide (Si0 2 ) is currently the most commonly used gate dielectric in OFETs, based on the broad availability in semiconductor technology. Thus, transistor structures are described in which a doped silicon wafer serves as the gate electrode, and thermal SiO 2 grown thereon forms the gate dielectric. This Si0 2 is prepared at temperatures of about 800 -1000 ° C. Other processes (eg CVD) for the deposition of Si0 2 on different substrates also work at temperatures above 400 ° C. A group at PennState University has developed a process (ion beam sputtering) that allows to deposit high quality Si0 2 at process temperatures of 80 ° C. This is illustrated in the articles by CD Sheraw, JA Nichols, DJ Gundlach, JR Huang, CC Kuo, H.
  • inorganic nitrides such as SiN x .
  • TaN x Similar to the preparation of inorganic oxides, the deposits require inorganic Nitrides high temperatures or high process costs. For example, see the article by BK Crone, A. Dodabalapur, R. Sarpeshkar, RW Filas, YY Lin, Z. Bao, JH O'Neill, W.Li, and HE Katz, J. Appl. Phys. 89, 512 (2001).
  • organic polymers such as poly-4-vinylphenol (PVP), poly-4-vinylphenol-co-2-hydroxyethyl methacrylate or polyimide (PI) have been used. These polymers are characterized by their comparatively simple processability. So they are e.g. from the
  • the present invention has for its object to provide an integrated circuit with an organic semiconductor and a method, wherein the production of dielectric layers of OEFT's at low temperatures is possible.
  • the integrated circuit with an organic semiconductor is composed of a polymer formulation
  • the integrated circuits according to the invention are, in particular, OFETs with organic layers which have outstanding dielectrical properties.
  • the integrated circuits can be easily produced at low temperatures (up to 150 ° C) due to the specific polymer formulation used. In principle, this polymer formulation can also be used in conjunction with other electronic components.
  • At least one base polymer is a phenol-containing polymer or copolymer, in particular poly-4-vinylphenol, poly-4-vinylphenol-co-methacrylic acid-2 - hydroxyethyl ester or poly-4-vinylphenol-co-methacrylic acid methyl ester.
  • At least one electrophilic crosslinker component is a di- or tribenzyl alcohol compound, in particular 4-hydroxymethylbenzyl alcohol.
  • the thermal acid catalyst used is at least one sulfonic acid, in particular 4-toluenesulfonic acid, since it is capable of transferring a proton to the hydroxy group of a benzyl alcohol below 150 ° C.
  • Advantageous solvents are an alcohol, in particular n-butanol, propylene glycol monomethyl ether acetate (PGMEA), dioxane, N-methylpyrrolidone (NMP), ⁇ -butyrolactone, xylene or a mixture.
  • PMEA propylene glycol monomethyl ether acetate
  • NMP N-methylpyrrolidone
  • ⁇ -butyrolactone xylene or a mixture.
  • the proportion of base polymer, crosslinking component and acid generator has a proportion of between 5 and 20% by mass.
  • the object is also achieved by a method for producing an integrated circuit, in particular an OFET with a dielectric layer, having the features of claim 1. According to the invention
  • At least one further structuring of the OFET is then advantageously carried out.
  • Polymer formulation by spin coating, printing or spraying.
  • the crosslinking reaction is advantageously carried out under an inert gas, in particular a N 2 atmosphere.
  • an active layer for forming an OFET in particular from the semiconducting pentacene, is applied to the source-drain layer.
  • a passivation layer is arranged on the active layer.
  • Fig. 1 is a schematic representation of an organic field effect transistor
  • FIG. 2 shows an example of a crosslinking reaction of a polymeric gate dielectric with PVP and 4-hydroxymethylbenzyl alcohol as crosslinker
  • FIG. 3a shows an output characteristic of an OFET with an electrophilically networked gate dielectric
  • FIG. 3b shows a characteristic curve of an OFET with electrophilically networked gate dielectric
  • OFETs are electronic components consisting of multiple layers (layers), all of which are structured to generate integrated circuits through interconnections of individual layers.
  • 1 shows the basic structure of such a transistor in a bottom-contact architecture.
  • a gate electrode 2 is arranged, which is covered by a gate dielectric layer 3.
  • the substrate 1 with the gate electrode 2 already arranged thereon is the starting material to which the gate dielectric layer 3 is applied.
  • the gate dielectric layer 3 there are disposed a drain layer 4a and a source layer 4b, both connected to the active semiconducting layer 5 in FIG.
  • a passivation layer 6 is arranged above the active layer 5.
  • circuits according to the invention and their manufacture solve the problem of providing OFETs with gate dielectric layers, in particular with organic ICs having excellent mechanical, chemical and electrical properties at simultaneously low process temperatures.
  • an OFET has a dielectric layer which can be produced from a mixture (polymer formulation) with basically four constituents: a base polymer, a crosslinking component, a thermal acid generator and a solvent.
  • a mixture polymer formulation
  • An embodiment of the circuit according to the invention cited here by way of example has a polymer formulation with the following constituents
  • a solvent e.g. Alcohols, PGMEA.
  • This polymer formulation is applied to a suitably prepared substrate 1 (gate structures 2 are already defined on the substrate 1).
  • Polymer formulation may e.g. printed, spin-coated or sprayed on. By subsequent drying at moderate temperatures (about 100 ° C), the polymer formulation is fixed to the substrate and then converted into its final structure in a thermal crosslinking step.
  • Fig. 2 is shown schematically how PVP is cross-linked with 4-hydroxymethylbenzyl alcohol at a temperature of 150 ° C with elimination of water.
  • the compounds shown below can be used as electrophilic crosslinkers:
  • R 2 alkyl having 1 to 10 Kohl ⁇ stoHatom ⁇ n or aryl
  • the crucial step for the production of gate dielectric layers 3 with the required properties is this crosslinking reaction and its initiation at temperatures which are not critical for the substrate. These are temperatures from 20 ° C to a maximum of 150 ° C.
  • the use of the method reduces the required crosslinking temperature by more than 50 ° C compared to the previously known methods (see article by Halik et al. (2002)).
  • the base polymer determines the basic properties of the gate dielectric layer 3.
  • the basic polymers are in principle suitable for all phenol-containing polymers and their copolymers, such as e.g. Poly-4-vinyl-phenol, poly-4-vinylphenol - co-methacrylic acid-2-hydroxyethyl ester or poly-4-vinylphenol-co-methacrylic acid methyl ester.
  • the mechanical properties of the polymer layer and the resistance to chemicals can be significantly controlled.
  • the temperature of the initiation of the crosslinking reaction can be controlled.
  • the choice of solvent determines the film forming properties of the formulation.
  • Formulation 1 is a 10% solution in
  • PMEA Propylene glycol monomethyl ether acetate
  • Formulation 2 is a 10% solution in PGMEA. There are 100 parts of base polymer, 20 parts of crosslinker and 2.5 parts of acid generator. The proportion of crosslinker is therefore twice as high as in Formulation 1.
  • a photoresist is applied to the cross-linked polymer layer (gate dielectric layer 3) (S 1813, 3000 rpm, 30 seconds) and dried at 100 ° C. for 2 minutes. Subsequently, the later contact holes are defined by exposure and development of the photoresist. The Opening of the contact holes by means of oxygen plasma (2 times 45s at 100W).
  • the source-drain layer 4 is deposited and patterned by standard methods (30 nm Au thermally evaporated, photolithographic structuring and wet-chemical etching with I / KI solution).
  • the layer thickness of the gate dielectric layers 2 for formulation 1 210 nm.
  • the roughness of the layer is 0.5 nm to 50 ⁇ m.
  • the roughness of the layer is 0, 6 nm to 50 microns.
  • the transistors or circuits are completed by the active component 5 (pentacene here) is thermally evaporated. Apart from the passivation layer 6, the structure of an OFET according to FIG. 1 is thus produced.
  • FIG. 3 a shows an output characteristic family of a pentacene OFET with electrophilically crosslinked gate dielectric.
  • Fig. 3b shows for the same structure
  • FIG. 4 shows a drawing of an oscilloscope representation. The characteristic of a 5 Stages of the ring oscillator, wherein the ring oscillator operates with a signal delay of 120 microseconds per stage.
  • the invention is not limited in its execution to the above-mentioned preferred embodiments. Rather, a number of variants are conceivable which make use of the device according to the invention and the method according to the invention even in fundamentally different embodiments.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thin Film Transistor (AREA)
  • Formation Of Insulating Films (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
EP04786186A 2003-08-29 2004-08-24 Integrierte schaltung und verfahren zur herstellung einer integrierten schaltung Withdrawn EP1658624A2 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10340609A DE10340609A1 (de) 2003-08-29 2003-08-29 Polymerformulierung und Verfahren zur Herstellung einer Dielektrikumsschicht
PCT/DE2004/001904 WO2005023876A2 (de) 2003-08-29 2004-08-24 Integrierte schaltung und verfahren zur herstellung einer integrierten schaltung

Publications (1)

Publication Number Publication Date
EP1658624A2 true EP1658624A2 (de) 2006-05-24

Family

ID=34258372

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04786186A Withdrawn EP1658624A2 (de) 2003-08-29 2004-08-24 Integrierte schaltung und verfahren zur herstellung einer integrierten schaltung

Country Status (7)

Country Link
US (1) US20060202198A1 (zh)
EP (1) EP1658624A2 (zh)
JP (1) JP2007504642A (zh)
KR (1) KR100718358B1 (zh)
CN (1) CN1875432A (zh)
DE (1) DE10340609A1 (zh)
WO (1) WO2005023876A2 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100606655B1 (ko) * 2004-09-22 2006-08-01 한국전자통신연구원 광반응성 유기고분자 게이트 절연막 조성물 및 이를이용한 유기박막 트랜지스터
US20060113569A1 (en) * 2004-11-03 2006-06-01 Akinwande Akintunde I Control of threshold voltage in organic field effect transistors
US20060231829A1 (en) * 2005-04-13 2006-10-19 Xerox Corporation TFT gate dielectric with crosslinked polymer
KR100794720B1 (ko) * 2006-08-28 2008-01-21 경희대학교 산학협력단 유기 박막 트랜지스터 표시판 및 그 제조 방법
TWI375119B (en) * 2008-10-02 2012-10-21 Ind Tech Res Inst Composition for forming photosensitive dielectric material and application thereof
US8623447B2 (en) 2010-12-01 2014-01-07 Xerox Corporation Method for coating dielectric composition for fabricating thin-film transistors
EP3198614B1 (en) * 2014-09-25 2019-02-27 Basf Se Ether-based polymers as photo-crosslinkable dielectrics
DE102021125407A1 (de) 2021-09-30 2023-03-30 Polymer Competence Center Leoben Gmbh Verfahren zur Herstellung eines Dielektrikums für einen Kondensator und Verfahren zur Herstellung eines Kondensators und Kondensator

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3826363A1 (de) * 1988-08-03 1990-02-08 Merck Patent Gmbh Saeurehaertbare bindemittelsysteme mit 1,2-disulfonen
US5717003A (en) * 1988-08-03 1998-02-10 Ciba Specialty Chemicals Corporation Acid-curable binder systems containing 1,2-disulfones
JP3873372B2 (ja) * 1997-05-26 2007-01-24 住友化学株式会社 ポジ型フォトレジスト組成物
CA2306384A1 (en) * 1997-10-14 1999-04-22 Patterning Technologies Limited Method of forming an electronic device
US6143204A (en) * 1998-06-19 2000-11-07 Lonza Inc. Stabilization of iodopropynl compounds
DE10043204A1 (de) * 2000-09-01 2002-04-04 Siemens Ag Organischer Feld-Effekt-Transistor, Verfahren zur Strukturierung eines OFETs und integrierte Schaltung
DE10061297C2 (de) * 2000-12-08 2003-05-28 Siemens Ag Verfahren zur Sturkturierung eines OFETs
DE10105914C1 (de) * 2001-02-09 2002-10-10 Siemens Ag Organischer Feldeffekt-Transistor mit fotostrukturiertem Gate-Dielektrikum und ein Verfahren zu dessen Erzeugung
US7011932B2 (en) * 2001-05-01 2006-03-14 E. I. Du Pont De Nemours And Company Polymer waveguide fabrication process
JP2002341525A (ja) * 2001-05-14 2002-11-27 Fuji Photo Film Co Ltd ポジ型フォトレジスト転写材料およびそれを用いた基板表面の加工方法
DE10131669A1 (de) * 2001-06-29 2003-01-16 Infineon Technologies Ag Herstellung von organischen Halbleitern mit hoher Ladungsträgermobilität durch pi-konjugierte Vernetzungsgruppen
KR100428002B1 (ko) * 2001-08-23 2004-04-30 (주)그라쎌 유기 고분자 게이트 절연막을 구비하는 유기 반도체트랜지스터의 제조 방법
DE10143630A1 (de) * 2001-09-06 2003-03-27 Bayer Ag Strahlenhärtende Beschichtungsmittel
US20040242759A1 (en) * 2003-05-30 2004-12-02 Bhave Mandar R. Bottom anti-reflective coating compositions comprising silicon containing polymers to improve adhesion towards photoresists
DE10329262B3 (de) * 2003-06-23 2004-12-16 Infineon Technologies Ag Verfahren zur Behandlung eines Substrates und ein Halbleiterbauelement
DE10340608A1 (de) * 2003-08-29 2005-03-24 Infineon Technologies Ag Polymerformulierung und Verfahren zur Herstellung einer Dielektrikumsschicht
US20050062174A1 (en) * 2003-09-19 2005-03-24 Osram Opto Semiconductors Gmbh Encapsulated organic electronic device
KR20050058062A (ko) * 2003-12-11 2005-06-16 삼성전자주식회사 유기절연막 형성용 조성물 및 이를 사용하여 제조된유기절연막
DE102004005247A1 (de) * 2004-01-28 2005-09-01 Infineon Technologies Ag Imprint-Lithographieverfahren

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005023876A2 *

Also Published As

Publication number Publication date
DE10340609A1 (de) 2005-04-07
CN1875432A (zh) 2006-12-06
WO2005023876A3 (de) 2005-08-18
WO2005023876A2 (de) 2005-03-17
US20060202198A1 (en) 2006-09-14
JP2007504642A (ja) 2007-03-01
KR20060069479A (ko) 2006-06-21
KR100718358B1 (ko) 2007-05-14

Similar Documents

Publication Publication Date Title
US7825404B2 (en) Integrated circuit comprising an organic semiconductor, and method for the production of an integrated circuit
DE10328811B4 (de) Verbindung zur Bildung einer selbstorganisierenden Monolage, Schichtstruktur, Halbleiterbauelement mit einer Schichtstruktur und Verfahren zur Herstellung einer Schichtstruktur
US20060131563A1 (en) Phase-separated composite films and methods of preparing the same
DE112009001944T5 (de) Oberflächenbehandelte Substrate für organische Dünnschichttransistoren mit oben liegendem Gate
US20050208779A1 (en) Imprint lithography process
DE602004002549T2 (de) Zusammensetzung zur Herstellung eines organischen und isolierenden Filmes sowie der daraus hergestellte Film
DE112010001651T5 (de) Verfahren zur Herstellung eines organischen Dünnschichttransistors
DE10240105A1 (de) Herstellung organischer elektronischer Schaltkreise durch Kontaktdrucktechniken
US20060202198A1 (en) Integrated circuit, and method for the production of an integrated circuit
DE102011087561B4 (de) Verfahren zur Herstellung einer elektronischen Vorrichtung und dielektrische Zusammensetzungen
DE10329262B3 (de) Verfahren zur Behandlung eines Substrates und ein Halbleiterbauelement
DE10131669A1 (de) Herstellung von organischen Halbleitern mit hoher Ladungsträgermobilität durch pi-konjugierte Vernetzungsgruppen
WO2003038921A1 (de) Isolator für ein organisches elektronikbauteil
DE102004010094B3 (de) Halbleiterbauelement mit mindestens einer organischen Halbleiterschicht und Verfahren zu dessen Herstellung
DE10152939B4 (de) Polythiophene mit hohen Ladungsträgerbeweglichkeiten
WO2003107450A1 (de) Substrat für einen organischen feld-effekt transistor, verwendung des substrates, verfahren zur erhöhung der ladungsträgermobilität und organischer feld-effekt transistor (ofet)
EP1704606B1 (de) Verfahren zur Herstellung eines organischen Transistors mit selbstjustierender Gate-Elektrode
WO2005001952A1 (de) Verbindung zur bildung einer selbstorganisierenden monolage, eine schichtstruktur, ein halbleiterbauelement und ein verfahren zur herstellung einer schichtstruktur
EP1644995B1 (de) Halbleiterbauelement und verfahren zu dessen herstellung
DE102005005589A1 (de) Hybrider, organischer Feldeffekttransistor mit oberflächenmodifiziertem Kupfer als Source- und Drain-Elektrode
WO2004055922A2 (de) Verfahren zur herstellung von organischen feldeffekttransistoren mit top-kontakt-architektur aus leitfähigen polymeren
DE102009047315A1 (de) Organischer Feldeffekttransistor und Verfahren zur Herstellung desselben

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060207

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IE IT NL

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IE IT NL

17Q First examination report despatched

Effective date: 20070905

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: INFINEON TECHNOLOGIES AG

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100302