EP1646448A1 - Photokatalytisch aktive beschichtung eines substrats - Google Patents

Photokatalytisch aktive beschichtung eines substrats

Info

Publication number
EP1646448A1
EP1646448A1 EP04766238A EP04766238A EP1646448A1 EP 1646448 A1 EP1646448 A1 EP 1646448A1 EP 04766238 A EP04766238 A EP 04766238A EP 04766238 A EP04766238 A EP 04766238A EP 1646448 A1 EP1646448 A1 EP 1646448A1
Authority
EP
European Patent Office
Prior art keywords
substrate
photocatalytically active
tio
particles
zro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04766238A
Other languages
English (en)
French (fr)
Inventor
Wolfgang Frings
Stefan Sepeur
Frank Gross
Reimund Krechan
Christoph Weyer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Profine GmbH
Original Assignee
Profine GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Profine GmbH filed Critical Profine GmbH
Priority to EP04766238A priority Critical patent/EP1646448A1/de
Publication of EP1646448A1 publication Critical patent/EP1646448A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/066Zirconium or hafnium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/06Silicon, titanium, zirconium or hafnium; Oxides or hydroxides thereof
    • B01J21/063Titanium; Oxides or hydroxides thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0219Coating the coating containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0215Coating
    • B01J37/0228Coating in several steps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/344Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of electromagnetic wave energy

Definitions

  • the invention relates to a photocatalytically active coating of a substrate, composed of a protective layer and photocatalytically active particles applied thereon, the protective layer having no photocatalytic activity.
  • the effect of photocatalysis has long been known and is used in particular for the oxidation of substrates under sunlight or artificial light.
  • the oxidation can e.g. serve in the chemical industry for the targeted oxidation of chemical compounds.
  • the main application is in the non-directional oxidation of nitrogen oxides, dirt particles or substances with an unpleasant smell.
  • a side effect of the photocatalytic activity is the high hydrophilicity of such a surface. This leads to a strong wetting of the surface with water, so that dirt particles very easily, e.g. by rainwater, can be washed off such a surface.
  • the main area of application for self-cleaning surfaces is glass windows or facade components made of glass-like materials, since most photocatalytically active materials have sufficient transparency.
  • Photocatalytically active coatings for outdoor use must have sufficient mechanical and chemical stability. This should not be done at the expense of the activity of the coating; this also has to be done in low sunlight, e.g. have a sufficiently high activity in winter.
  • the photocatalytic activity of a coating acts not only against the desired substrates, but also against the carrier material of the coating. In the case of the photocatalytically active glass windows mentioned, this is irrelevant, since inorganic materials such as glass are inert to oxidation reactions.
  • EP 0 630 679 B1 discloses the calcination of a TiO 2 sol at higher temperatures. This results in a closed TiO 2 layer with overlying TiO 2 particles, the photocatalytic layer obtained in this way lying directly on the support. Such a coating cannot be used for thermolabile and / or oxidation-sensitive support materials.
  • EP 1 074 525 AI discloses the use of N-type semiconductor materials as top and bottom layers, where charge transfer takes place from the carrier material through the bottom layer to the photocatalytically active top layer. processes of the carrier material to be expected.
  • EP 0 816 466 Al describes the use of TiO 2 / SiO 2 mixtures as a photocatalytically active coating. The SiO portion of the mixture is intended to prevent the photocatalytic decomposition of the support material, but at the same time leads to a coating of the photocatalytically active TiO particles, ie to their deactivation.
  • EP 1 118 385 A1 discloses the production of a two-layer system with a chemically inert lower layer and a photocatalytically active upper layer.
  • the top layer contains a binder material, which in turn can lead to a partial deactivation of the photocatalytically active particles.
  • a calcining process is carried out to produce the coating, which can lead to deformations or color changes of the support in the case of thermally unstable support materials.
  • EP 1 016 458 A1 also describes a two-stage coating system with a photocatalytically active top layer and a bottom layer protecting the substrate.
  • the underlayer consists of an organic-inorganic hybrid polymer, i.e. from a covalent combination of metal oxides and polymers.
  • the polymers are oxidatively degradable and can be attacked by the photocatalytically active top layer.
  • EP 1 066 788 AI discloses a coating in which the photocatalytically active top layer in addition to the actual photocatalyst (TiO) compounds of metals of V., VI. and VII. contains subgroup of the periodic table of the elements as cocatalyst.
  • US 2002/45073 AI describes a process for the production of photocatalytically active layers from a crystalline phase, preferably TiO.
  • a crystalline phase preferably TiO.
  • an underlayer is first applied to a substrate, which either produces or favors the crystallinity of the upper layer.
  • the crystalline phase of the top layer is produced in a tempering step at an elevated temperature.
  • Both the lower and upper layers are produced in a physical or non-wet chemical process by sputtering or CVD deposition. These processes are too complex for large substrate surfaces.
  • DE 101 58433 A1 discloses the coating of substrates with a primer layer, to which photocatalytically active titanium dioxide particles are applied.
  • the primer layer is intended to serve as a water reservoir and therefore has a certain porosity.
  • the use of a porous primer layer can lead to undesired decomposition phenomena caused by the photocatalytic particles in the case of substrates such as plastics that are sensitive to oxidation.
  • the coatings disclosed in DE 101 58 433 AI require for connection to the substrate surface, its physical-chemical activation, for example by corona radiation. Furthermore, a fast setting of the layers at temperatures as low as possible is essential for thermally labile substrates. For example, when coating PVC window profiles, temperatures of over 100 ° C lead to deformations, which, however, prevent the profile from being processed further.
  • the reaction conditions disclosed here can only be used to a limited extent for true-to-shape materials. task
  • the object of the present invention was therefore to provide photocatalytically active coatings which are also suitable for thermally labile or oxidation-sensitive support materials. Presentation of the invention
  • the present invention relates to a photocatalytically active coating of a substrate composed of at least two layers produced by wet chemistry with at least one first underlayer applied to the substrate and consisting of an inorganic polymer and at least one second top layer consisting of TiO 2 particles, the Lower layer contains less than 0.5% by weight of TiO 2 particles, is non-porous and has at least 5% by weight of ZrO 2
  • the underlayer according to the invention has no pores, covers the substrate completely and thus ensures the protection of oxidation-sensitive surfaces from the photocatalytically induced decomposition by the top layer. This is particularly advantageous when coating window profiles made of PVC, since they also contain titanium dioxide. If the titanium dioxide contained in the PVC mass is exposed, the plastic will decompose even faster. The thermal curing of the underlayer can take place at such low temperatures that shaped semi-finished products such as profiles do not suffer any deformation.
  • the underlayer largely has no TiO 2 particles. This means that starting from the substrate, at least 85%, preferably at least 90%, very preferably at least 95% of the layer thickness of the underlayer is practically free of TiO 2 particles, that is to say less than 0.5% by weight and in particular less than 0.1% by weight % TiO 2 particles.
  • the underlayer can consist of at least two layers of the same or different composition applied one after the other.
  • the requirements for the proportion of TiO 2 and ZrO 2 apply to the sum of the partial layers, but can also be set for each individual layer. So it is possible that one of the layers consists entirely of ZrO and another layer of an SiO / ZrO mixture.
  • the sub-layers can also have the same composition, but different Thickness, for example due to the application of suspensions of different solids contents.
  • Coatings according to the invention are therefore particularly suitable for coating substrates made of one or more polymeric materials and / or metals.
  • One or more polymers selected from the group consisting of polyvinyl chloride (PVC), polypropylene (PP), polyethylene (PE), polyacrylates and methacrylates, such as e.g.
  • PMMA Polymethyl methacrylate
  • PS polystyrene
  • PC polycarbonate
  • PU polyurethanes
  • SBR Polymethyl methacrylate
  • ABS polystyrene
  • ASA polyurethane
  • NBR polyurethanes
  • the substrates can already be semi-finished, possibly with complex geometric shapes such as extruded profiles.
  • the use of co-extradata is recommended here.
  • Semi-finished PVC products such as window or door profiles can be provided with a top layer of the polymers mentioned, in particular PMMA.
  • FIG. 1 shows the schematic structure of a coating according to the invention, where S stands for substrate, U for chemically inert underlayer made of the inorganic polymer and P for the photocatalytically active layer made of TiO 2 particles.
  • the thickness of the first layer (U in FIG. 1, underlayer) in the dry, crosslinked state is preferably 100-500 nm, particularly preferably 200-500 and in particular 300-500 nm.
  • the thickness of the second, photocatalytically active layer (P in FIG. 2, top layer) in the dry state is preferably 20-100, particularly preferably 20-50 nm.
  • the inorganic polymer of the sub-layer (s) is preferably composed of one or more metal oxides from the group SiO, ZrO, Al O, Nb O, Ta O, CaO covalently bonded to one another.
  • an inorganic polymer in the context of this invention e.g. compound produced by the sol-gel method of DE 101 58 433 AI, which formally consists of the metal oxides mentioned. This also includes linking larger units or blocks such as ZrO particles over SiO 2 bridges.
  • Inorganic polymers which contain SiO and ZrO in a weight ratio of 50:50 to 95: 5, in particular 75:25 to 90:10 and 85:15 to 90:10, have proven to be useful as the lower layer.
  • Such layers can optionally also contain 0.01 to 2% by weight (based on the underlayer) of at least one further metal oxide such as Al O, Nb O, Ta O or CaO or also carbon in the form of carbon black r 2 3 2 3 2 3
  • the TiO 2 particles of the photocatalytically active top layer preferably have a diameter of 5-30 nm, in particular 10 to 25 nm; the use of Particles of the anatase modification are recommended over those of the rutile structure.
  • the photocatalytic activity of the TiO particles can be reduced by the coating process.
  • the substrates can be exposed to sunlight or a corresponding artificial UV radiation for 1-5 hours.
  • Another object of the present invention is a process for producing photocatalytically active coatings on a substrate by process steps a. Wet chemical coating of a substrate with an inorganic polymer by applying a suspension of the inorganic polymer or its chemical precursor in an organic suspension medium, b. All or part of the organic suspending agent is removed to give an underlayer. c. Apply a dispersion of TiO 2 particles in an organic dispersant to the underlayer. d. All or part of the organic dispersant is removed to give an upper layer. e. Heat treatment of the top and bottom layers at 20 to 120 ° C for 10 to 300 sec, with the proviso that the bottom layer contains less than 0.5% TiO particles, is non-porous and contains at least 5% by weight ZrO.
  • the suspension used in process step a) contains the inorganic polymer or its chemical precursor.
  • Chemical precursors are understood to be compounds from which the inorganic polymers or the metal oxides mentioned can be produced, in particular one or more metal oxides from the group SiO, ZrO, Al O, Nb O, Ta O, CaO, and / or the corresponding alkoxides , Chlorides, nitrates, hydroxides, formates or acetates, each individually or as a mixture.
  • Particularly suitable feedstocks for SiO 2 are silica sol, silica gel and / or silica, organosilanes such as alkoxy- or alkoxyhydroxysilanes, in particular tetraalkoxysilanes; for ZrO the zirconium alkoxides such as Zirconium butanolate or propanolate.
  • organosilanes such as alkoxy- or alkoxyhydroxysilanes, in particular tetraalkoxysilanes
  • ZrO zirconium alkoxides such as Zirconium butanolate or propanolate.
  • other metal oxides e.g. AI O, possibly in the form of SiO doped with aluminum oxide.
  • the suspensions in process step a) can have a solids content of 0J to 25% by weight, with solids contents of 1 to 5% by weight being preferred for obtaining a homogeneous layer.
  • a suspension with a solid substance content of 1 to 5% by weight consisting of SiO (or a corresponding chemical precursor) with the% by weight 50, 75, 85, 90, 95 and ZrO (or a corresponding chemical precursor) with the corresponding% by weight 50, 25, 15, 1-0 and 5 used.
  • the SiO portion in turn preferably consists of a silica sol with a particle diameter of approximately 5 to 50 nm and an organosilane as precursor, preferably tetraalkoxysilane, in a silane / silica sol ratio of 50:50 to 20:80 by weight based on the SiO solid .%.
  • the ZrO portion is preferably used in the form of a zirconium alkoxide, here again preferably the propanolate or butanolate.
  • Suitable organic suspending agents are alcohols, such as ethanol, propanol, isopropanol, isobutanol, n-butanol, water, formic acid, and / or acetic acid, in general or as a mixture to which a higher-boiling (between 100 and 200 ° C.) wetting agent such as alkyl glycols or glycol, in particular ethylene glycol, propylene glycol or butylene glycol, alone or as a mixture. Alcohols such as isopropanol or n-butanol are also suitable as wetting agents. To avoid precipitation reactions, the pH of the suspension is adjusted to approximately 3.5 with formic acid or acetic acid.
  • the wetting agent is particularly necessary in the coating of polymeric and thus hydrophobic substrates in order to cover them completely and pore-free with the suspension, i.e. to enable the lower layer or dispersion of the upper layer.
  • the proportion of the wetting agent is preferably 2-10% by weight of the dispersion or suspension.
  • the wetting agent can additionally contain ionic or non-ionic surfactants; Based on the suspension / dispersion, amounts of 0.01% to 0.5% by weight have proven successful.
  • the suspension is applied to the substrate surface using suitable means. This can be done by brushing or dipping, spraying processes have proven to be particularly efficient.
  • the layer thickness when wet is approx. 10 - 100 ⁇ m.
  • Window profiles have proven themselves in spraying techniques, possibly with several spray heads of different geometries.
  • the underlayer applied in process step a) is pre-dried to obtain a wet layer.
  • the alcohol component of the suspension is completely or partially removed. Due to the low boiling temperature, this can take place at 20-40 ° C, preferably at room temperature, so that practically no further heat treatment is required. It is only necessary to ensure suitable extraction of the alcohol vapors or their recovery.
  • the dispersion containing TiO preferably consists of the organic suspending agents already mentioned (referred to here as dispersing agents), wetting agents and / or surfactants and preferably has a solids content of about 0.1 to 2.5, in particular 0J to 1% by weight.
  • TiO 2 particles are preferably used in the crystalline anatase modification and in particular have a diameter of approximately 5 to 25 nm.
  • the above-mentioned Sprayer proven.
  • the photocatalytically active layer must be applied to the still wet sublayer in such a way that the TiO 2 particles adhere to the sublayer, but there is practically no mixing of the layers.
  • the wet layer thickness is approx. 5 - 30 ⁇ m.
  • This process step corresponds to step c) in the production of the lower layer and is preferably carried out at room temperature with suction of the alcohol component.
  • heat treatment and thus fixing of the layers at temperatures from 20 to 120 ° C., preferably 20 to 100 ° C., particularly preferably 50 to 80 ° C.
  • heat treatment at 100 to 120 ° C may be indicated.
  • the duration of the heat treatment depends on the temperature applied and can be up to 300 seconds at low temperatures. A heat treatment of approximately 30 to 60 seconds is preferred.
  • the heat treatment is preferably carried out using TR radiators, microwave generators or lasers, since here only the surface of the substrate to be coated is heated.
  • Process steps a) to e) can be carried out in a continuous process based on FIG. 2.
  • the designations a to e in FIG. 2 correspond to method steps a) to e), the lower layer U and c) the upper layer P being applied in steps a).
  • suitable conveyor belts or the like it is possible to carry out process steps a) and c) or b) and d) in a common facility.
  • the underlayer is applied to the substrate in several steps, i.e. Process steps a) and b) are carried out at least twice in succession.
  • the top layer can be applied to the substrate in several steps, i.e. Process steps c) and d) are carried out at least twice in succession.
  • suspensions with the same composition but different solids content in the individual work steps. So for example, a first layer with a suspension of a solids content of 1% by weight and the following layer with a suspension of a solids content of 5% by weight can be applied. This procedure enables a well-adhering, homogeneous, non-porous and crack-free underlayer, especially with hydrophobic substrates such as PVC.
  • FIGS. 3 to 16 show SEM images of the surfaces of PVC substrates, freshly applied underlayers and underlayers, which were tested for stability by means of a XENO or climatic chamber.
  • FIGS. 3 to 16 show that the lower layers according to the invention adhere to the substrate even after extreme test weathering and a protective layer opposite represent the photocatalytic oxidation of the top layer.
  • window profiles, door profiles, roller shutter segments, window benches, architectural facings, door leaves, gutters, downpipes and plastic or aluminum shells for facing window or door frames with the coating mentioned are the subject of the invention.
  • These objects are often made of PVC, with or without further polymers, fillers or additives.
  • the semi-finished products are expediently produced in the usual manner, e.g. Window or door profiles by extrusion. These semi-finished products are then coated according to the invention and then assembled in the usual way to the finished object (window frame).
  • the substrates to be coated can be preheated to a temperature below the Vicat softening point of the substrate before process step a).
  • a preheating temperature of 35 ° -65 ° C has proven itself.
  • tempering at the temperature mentioned or calibration of the substrate can be carried out.
  • Another subject of the present invention is therefore lacquered or unpainted aluminum shells, optionally coated with the plastics mentioned, for cladding plastic window or door frames with the above-described photocatalytically active coating or the methods described.
  • the materials thus photocatalytically finished have a highly hydrophilic surface and are particularly easy to clean. If these materials are used outdoors and are exposed to sunlight and rainwater, self-cleaning occurs because dirt can be oxidatively attacked by the photocatalytically active surface and easily rinsed off by rainwater. Examples Underlayer. version 1
  • a prefabricated PVC window profile bar from profine GmbH was first cleaned with isopropanol and dried.
  • the suspension of the lower layer was then sprayed on with a wet film thickness of approx. 30 ⁇ m and dried at room temperature for 30 seconds.
  • the dispersion of the upper layer is misted onto the lower layer in a thickness of approx. 10 ⁇ m.
  • the two layers were sprayed on with stationary compressed air spray guns, the profile rod being carried out at a constant speed under the spray guns.
  • After the upper layer has dried briefly at room temperature (approx. 30 sec.),
  • the coating is thermally crosslinked at approx. 80 ° C for approx. 60 sec.
  • the profile rod was carried out at a constant speed under the emitter, so that each point on the surface of the profile was heated on average to the temperature mentioned for the period mentioned.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Catalysts (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)

Abstract

Die Erfindung betrifft eine photokatalytisch aktive Beschichtung eines Substrats, aufgebaut aus einer Schutzschicht und hierauf aufgebrachten photokatalytisch aktiven Partikeln, wobei die Schutzschicht keine photokatalytische Aktivität aufweist. Die Schutzschicht enthält bevorzugt Zr02 und Si02.

Description

Beschreibung Photokatalytisch aktive Beschichtung eines Substrats Technisches Umfeld
[001] Die Erfindung betrifft eine photokatalytisch aktive Beschichtung eines Substrats, aufgebaut aus einer Schutzschicht und hierauf aufgebrachten photokatalytisch aktiven Partikeln, wobei die Schutzschicht keine photokatalytische Aktivität aufweist.
[002] Der Effekt der Photokatalyse ist lange bekannt und wird insbesondere zur Oxidation von Substraten unter Sonnenlicht oder künstlichem Licht eingesetzt. Die Oxidation kann z.B. in der chemischen Industrie zur gezielten Oxidation von chemischen Verbindungen dienen. Hauptsächlicher Einsatz erfolgt allerdings in der ungerichteten Oxidation von Stickstoffoxiden, Schmutzpartikeln oder von Substanzen mit unangenehmen Geruch.
[003] Ein Nebeneffekt der photokatalytischen Aktivität ist die hohe Hydrophilie einer solchen Oberfläche. Dies führt zu einer starken Benetzung der Oberfläche mit Wasser, so dass Schmutzpartikel sehr leicht, z.B. durch Regenwasser, von einer solchen Oberfläche abgewaschen werden können. Haupteinsatzgebiet von selbstreinigenden Oberflächen sind Glasfenster bzw. Fassadenbauteile aus glasähnlichen Materialien, da die meisten photokatalytisch aktiven Materialien eine ausreichende Transparenz aufweisen.
[004] Photokatalytisch aktive Beschichtungen für den Außenbereich müssen eine ausreichende mechanische und chemische Stabilität aufweisen. Die sollte nicht zu Lasten der Aktivität der Beschichtung erfolgen; diese muss auch bei geringer Sonneneinstrahlung, z.B. im Winter, eine ausreichend hohe Aktivität aufweisen.
[005] Weiterhin ist zu beachten, dass die photokatalytische Aktivität einer Beschichtung nicht nur gegen die gewünschten Substrate, sondern auch gegen das Trägermaterial der Beschichtung wirkt. Im Fall der genannten photokatalytisch aktiven Glasfenster ist dies unerheblich, da anorganische Materialien wie Glas gegenüber Oxidations- reaktionen inert sind.
[006] Zur Herstellung von photokatalytisch aktiven Beschichtungen offenbart EP 0 630 679 Bl die Calzinierung eines TiO -Sols bei höheren Temperaturen. Dies resultiert in einer g "eschlossenen TiO 2 -Schicht mit aufliegenden TiO 2 -Partikeln, wobei die so erhaltene photokatalytische Schicht direkt auf dem Träger aufliegt. Eine solche Beschichtung ist für thermolabile und/oder oxidationsempfmdliche Trägermaterialien nicht einsetzbar. [007] EP 1 074 525 AI offenbart den Einsatz von N-Typ-HalbleiterDmaterialien als Ober- und Unterschicht. Hier findet ein Ladungstransfer vom Trägermaterial durch die Unterschicht zur photokatalytisch aktiven Oberschicht statt, d.h. es sind auch hier Zerset- zungsprozesse des Trägermaterials zu erwarten. [008] In EP 0 816 466 AI ist die Verwendung von TiO 2 /SiO 2 -Mischungen als photoka- talytisch aktive Beschichtung beschrieben. Der SiO -Anteil der Mischung soll die photokatalytische Zersetzung des Trägermaterials verhindern, führt jedoch gleichzeitig zu einer Beschichtung der photokatalytisch aktiven TiO -Partikel, d.h. zu deren Deaktivierung.
[009] Analog offenbart EP 1 118 385 AI die Herstellung eines zweischichtigen Systems mit einer chemisch inerten Unterschicht und einer photokatalytisch aktiven Oberschicht. Die Oberschicht enthält ein Bindermaterial, das wiederum zu einer teilweisen Deaktivierung der photokatalytisch aktiven Partikel führen kann. Weiterhin wird zur Herstellung der Beschichtung ein Calzinierprozess durchgeführt, der bei thermisch labilen Trägermaterialien zu Verformungen oder zu Farbveränderungen des Trägers führen kann.
[010] Auch EP 1 016 458 AI beschreibt ein zweistufiges Beschichtungssystem mit einer photokatalytisch aktiven Oberschicht und einer das Substrat schützenden Unterschicht. Die Unterschicht besteht aus einem organisch-anorganischem Hybridpolymer, d.h. aus einer kovalenten Verbindung von Metalloxiden und Polymeren. Die Polymere sind allerdings oxidativ abbaubar und können durch die photokatalytisch aktive Oberschicht angegriffen werden.
[011] EP 1 066 788 AI offenbart eine Beschichtung, bei der die photokatalytisch aktive Oberschicht neben dem eigentlichen Photokatalysator (TiO ) Verbindungen von Metallen der V., VI. und VII. Nebengruppe des Periodensystems der Elemente als Co- katalysator enthält.
[012] US 2002/45073 AI beschreibt ein Verfahren zur Herstellung von photokatalytisch aktiven Schichten aus einer kristallinen Phase, bevorzugt TiO . Hierzu wird auf ein Substrat zunächst eine Unterschicht aufgebracht, die die Kristallinität der Oberschicht entweder herstellt oder begünstigt. Die kristalline Phase der Oberschicht wird in einem Temperschritt bei erhöhter Temperatur hergestellt. Sowohl Unter- als auch Oberschicht werden in einem physikalischen bzw. nicht-nasschemischen Verfahren durch Sputtern oder CVD- Abscheidung hergestellt. Diese Verfahren sind für große Substratoberflächen zu aufwendig.
[013] DE 101 58433 AI offenbart die Beschichtung von Substraten mit einer Pri- merschicht, auf die photokatalytisch aktiven Titandioxid-Partikel aufgebracht werden. Die Primerschicht soll als Wasserspeicher dienen und weist daher eine gewisse Porosität auf. Der Einsatz einer porösen Primerschicht kann bei oxidationsemp- findlichen Substraten wie Kunststoffen zu unerwünschten, durch die photokata- lytischen Partikel ausgelösten, Zersetzungserscheinungen führen.
[014] Die in DE 101 58 433 AI offenbarten Beschichtungen benötigen zur Anbindung an die Substratoberfläche deren physikalisch-chemische Aktivierung z.B. durch Corona- strahlung. Weiterhin ist für thermisch labile Substrate eine schnelle Abbindung der Schichten bei möglichst niedrigen Temperaturen unabdingbar. So führen bei der Be- schichtung von Fensterprofilen aus PVC Temperaturen von über 100 °C zu Deformationen, die aber eine passgenaue Weiterverarbeitung des Profils verhindern. Die hier offenbarten Reaktionsbedingungen sind für formgetreue Werkstoffe nur bedingt einsetzbar. Aufgabe
[015] Aufgabe der vorliegenden Erfindung war es daher, photokatalytisch aktive Beschichtungen bereit zu stellen, die auch für thermisch labile, bzw. oxidationsemp- findliche Trägermaterialien geeignet ist. Darstellung der Erfindung
[016] Gegenstand der vorliegenden Erfindung ist eine photokatalytisch aktive Beschichtung eines Substrats aus mindestens zwei nasschemisch hergestellten Schichten mit mindestens einer ersten, auf das Substrat aufgebrachten, aus einem anorganischen Polymer bestehenden Unterschicht und mindestens einer zweiten, aus TiO -Partikeln bestehenden Oberschicht, wobei die Unterschicht weniger als 0.5 Gew.% TiO -Partikel enthält, porenfrei ist und mindestens 5 Gew.% ZrO 2 aufweist
[017] Die erfindungsgemäße Unterschicht weist keine Poren auf, deckt das Substrat vollständig ab und sorgt so für den Schutz von oxidationsempfmdlichen Oberflächen vor der photokatalytisch induzierten Zersetzung durch die Oberschicht. Dies ist insbesondere bei der Beschichtung von Fensterprofilen aus PVC von Vorteil, da diese ebenfalls Titandioxid enthalten. Würde das in der PVC-Masse enthaltene Titandioxid freigelegt, resultiert eine noch schnellere Zersetzung des Kunststoffs. Die thermische Aushärtung der Unterschicht kann bei so niedrigen Temperaturen erfolgen, dass geformte Halbzeuge wie Profile keine Verformungen erleiden.
[018] Weiterhin weist die Unterschicht weitgehend keine TiO -Partikel auf. Dies bedeutet, dass ausgehend vom Substrat mindestens 85 %, bevorzugt mindestens 90%, ganz bevorzugt mindestens 95% der Schichtdicke der Unterschicht praktisch frei von TiO -Partikeln sind, also weniger als 0,5 Gew.% und insbesondere weniger als 0,1 Gew.% TiO 2 -Partikel aufweisen.
[019] Die Unterschicht kann aus mindestes zwei, nacheinander aufgetragenen Schichten gleicher oder unterschiedlicher Zusammensetzung bestehen. Die Maßgaben für den Anteil an TiO 2 und ZrO 2 gelten für die Summe der Teilschichten, können aber auch für jede einzelne Schicht eingestellt werden. So ist es möglich, das eine der Schichten vollständig aus ZrO besteht und eine weitere Schicht aus einem SiO /ZrO -Gemisch. Die Teilschichen können auch eine gleiche Zusammensetzung, aber unterschiedliche Dicke, z.B. durch die Auftragung von Suspensionen unterschiedlicher Feststoffgehalte aufweisen.
[020] Erfindungsgemäße Beschichtungen eignen sich daher insbesondere zur Beschichtung von Substraten aus einem oder mehreren polymeren Materialien und/oder Metallen. Als polymeres Material können ein oder mehrere Polymere, ausgewählt aus der Gruppe Polyvinylchlorid (PVC), Polypropylen (PP), Polyethylen (PE), Po- lyacrylate und -metacrylate, wie z.B. Polymethylmetacrylat (PMMA), Polystyrol (PS), Polycarbonat (PC), Polyester, Epoxide, Polyurethane (PU), Polyisocyanate, SBR, ABS, ASA, NBR oder Mischpolymerisate aus Acrylnitril, Styrol, Butadien, Me- thacrylat oder Isopren, jeweils als Homo- oder Copolymer, als Coextrudat oder als Po- lymerblend eingesetzt werden.
[021] Die Substrate können bereits zu Halbzeugen, ggf. mit komplexen geometrischen Formen wie z.B. extrudierte Profile geformt sein. Hier bietet sich der Einsatz von Co- extradaten an. So können z.B. PVC-Halbzeuge wie Fenster- oder Türprofile mit einer Deckschicht aus den genannten Polymeren, insbesondere PMMA, versehen werden.
[022] Figur 1 zeigt den schematischen Aufbau einer erfindungsgemäßen Beschichtung, wobei S für Substrat, U für chemisch inerte Unterschicht aus dem anorganischen Polymer und P für die photokatalytisch aktive Schicht aus TiO -Partikeln steht.
[023] Die Dicke der ersten Schicht (U in Fig. 1, Unterschicht) beträgt in trockenem, vernetztem Zustand bevorzugt 100 - 500 nm, besonders bevorzugt 200 - 500 und insbesondere 300 - 500 nm.
[024] Die Dicke der zweiten, photokatalytisch aktiven Schicht (P in Fig. 2, Oberschicht) beträgt in trockenem Zustand bevorzugt 20 - 100, besonders bevorzugt 20 - 50 nm.
[025] Das anorganische Polymer der Unterscbicht(en) ist bevorzugt aus einem oder mehreren kovalent miteinander verbundenen Metalloxiden aus der Gruppe SiO , ZrO , AI O , Nb O , Ta O , CaO aufgebaut. Als anorganisches Polymer wird im Rahmen dieser Erfindung eine z.B. mit dem Sol-Gel- Verfahren der DE 101 58 433 AI hergestellte Verbindung, die formal aus den genannten Metalloxiden besteht, angesehen. Dies beinhaltet auch die Verknüpfung größerer Einheiten oder Blöcke wie z.B. ZrO -Partikel über SiO 2 -Brücken.
[026] Als Unterschicht haben sich anorganische Polymere, die SiO und ZrO im Gewichtsverhältnis 50:50 bis 95:5, insbesondere 75:25 bis 90:10 bzw. 85:15 bis 90:10 enthalten, bewährt. Solche Schichten können optional noch 0,01 bis 2 Gew.% (bezogen auf die Unterschicht) mindestens eines weiteren Metalloxids wie beispielsweise AI O , Nb O , Ta O oder CaO oder auch Kohlenstoff in Form von Ruß r 2 3 2 3 2 3 enthalten. [027] Die TiO -Partikel der photokatalytisch aktiven Oberschicht weisen bevorzugt einen Durchmesser von 5 - 30 nm, insbesondere 10 bis 25 nm auf; die Verwendung von Partikeln der Anatas-Modifikation ist gegenüber solchen der Rutil-Struktur zu empfehlen.
[028] Die photokatalytische Aktivität der TiO -Partikel kann durch den Beschich- tungsprozess reduziert sein. Zur Reaktivierung der Oberschicht können die Substrate für 1 - 5 Stunden dem Sonnenlicht oder einer entsprechenden künstlichen UV- Bestrahlung ausgesetzt werden.
[029] Weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung photokatalytisch aktiver Beschichtungen auf einem Substrat durch die Verfahrensschritte a. Nasschemisches Beschichten eines Substrats mit einem anorganischen Polymer durch Auftragen einer Suspension des anorganischen Polymeren oder dessen chemische Vorläufer in einem organischen Suspensionsmittel, b. Ganz oder teilweise Entfernung des organischen Suspensionsmittels unter Erhalt einer Unterschicht. c. Auftragen einer Dispersion aus TiO -Partikeln in einem organischen Dispersionsmittel auf die Unterschicht. d. Ganz oder teilweise Entfernung des organischen Dispersionsmittel unter Erhalt einer Oberschicht. e. Wärmebehandlung der Unter- und Oberschicht bei 20 bis 120°C für 10 bis 300 sec, mit der Maßgabe, dass die Unterschicht weniger als 0.5 % TiO -Partikel enthält, porenfrei ist und mindestens 5 Gew.% ZrO enthält.
[030] Verfahrensschritt a
[031] Die in Verfahrensschritt a) eingesetzte Suspension enthält das anorganische Polymer oder dessen chemische Vorläufer. Als chemische Vorläufer werden Verbindungen verstanden, aus denen die anorganischen Polymere bzw. die genannten Metalloxide hergestellt werden können, insbesondere ein oder mehrere Metalloxide aus der Gruppe SiO , ZrO , AI O , Nb O , Ta O , CaO, und/oder die entsprechenden Alkoxide, Chloride, Nitrate, Hydroxide, Formiate oder Acetate, jeweils einzeln oder als Gemisch.
[032] Besonders geeignete Einsatzstoffe für SiO 2 sind Kieselsol, Kieselgel und/oder Kieselsäure, Organosilane wie Alkoxy- oder Alkoxyhydroxysilane, insbesondere Te- traalkoxysilane; für ZrO die Zirkoniumalkoxide wie z.B. Zirkoniumbutanolat oder - propanolat. Optional ist die Verwendung von weiteren Metalloxiden, wie z.B. AI O , ggf. in Form von mit Aluminiumoxid dotiertem SiO .
[033] Die Suspensionen in Verfahrensschritt a) können einen Feststoffgehalt von 0J bis 25 Gew.% aufweisen, wobei Feststoffgehalte von 1 bis 5 Gew.% zum Erhalt einer homogenen Schicht bevorzugt sind.
[034] In einer besonderen Variante der Erfindung wird eine Suspension mit einem Fest- stoff gehalt von 1 bis 5 Gew.%, bestehend aus SiO (oder einem entsprechendem chemischen Vorläufer) mit den Gew% 50, 75, 85, 90, 95 und ZrO (oder einem entsprechendem chemischen Vorläufer) mit den entsprechenden Gew.% 50, 25, 15, 1-0 und 5 eingesetzt. Der SiO -Anteil besteht wiederum bevorzugt aus einem Kieselsol mit einem Partikeldurchmesser von ca. 5 bis 50 nm und einem Organosilan als Precursor, bevorzugt Tetraalkoxysilan, in einem auf den SiO -Feststoff bezogenen Silan- /Kieselsolverhältnis von 50:50 bis 20:80 Gew.%. Der ZrO -Anteil wird bevorzugt in Form eines Zirkomum-Alkoxids, hier wiederum bevorzugt des Propanolats oder Butanolats eingesetzt.
[035] Als organisches Suspensionsmittel eignen sich Alkohole wie Ethanol, Propanol, Isopropanol, Isobutanol, n-Butanol, Wasser, Ameisensäure, und/oder Essigsäure alleme oder als Gemisch, denen ein höher siedendes (zwischen 100 und 200 °C) Benetzungsmittel wie Alkylglykole oder Glycol hier insbesondere Ethylenglycol, Propy- lenglycol oder Butylenglycol alleine oder als Gemisch zugesetzt wird. Auch Alkohole wie Isopropanol oder n-Butanol sind als Benetzungsmittel geeignet. Zur Vermeidung von Fällungsreaktionen wird der pH- Wert der Suspension mit Ameisensäure oder Essigsäure auf ca. 3,5 eingestellt.
[036] Das Benetzungsmittel ist insbesondere bei der Beschichtung von polymeren und damit hydrophoben Substraten erforderlich, um deren vollständige und porenfreie Bedeckung mit der Suspension d.h. der Unterschicht bzw. Dispersion der Oberschicht zu ermöglichen. Der Anteil des Benetzungsmittels liegt bevorzugt bei 2 - 10 Gew.% der Dispersion bzw. Suspension. Das Benetzungsmittel kann zusätzlich ionische oder nicht-ionische Tenside enthalten; bezogen auf die Suspension/Dispersion haben sich Mengen von 0,01 % bis 0,5 Gew.% bewährt.
[037] Die Suspension wird mit geeigneten Mitteln auf die Substratoberfläche aufgetragen. Dies kann durch Bestreichen oder Eintauchen erfolgen, als besonders effizient haben sich Sprühverfahren herausgestellt. Die Schichtdicke im nassen Zustand beträgt ca. 10 - 100 μm. Insbesondere bei Substraten mit komplexen Oberflächenstrukturen, wie z.B. Fensterprofilen haben sich Sprühtechniken, ggf. mit mehreren geometrisch verschieden angeordneten Sprühköpfen bewährt.
[038] Verfahrensschritt b
[039] Die in Verfahrensschritt a) aufgetragene Unterschicht wird unter Erhalt einer nassfeuchten Schicht vorgetrocknet. Hierzu wird die Alkoholkomponente der Suspension ganz oder teilweise entfernt. Auf Grund der niedrigen Siedetemperatur kann dies bei 20-40°C erfolgen, bevorzugt bei Raumtemperatur, sodass praktisch keine weitere Wärmebehandlung erforderlich ist. Es ist lediglich für eine geeignete Absaugung der Alkoholdämpfe bzw. deren Wiedergewinnung Sorge zu tragen.
[040] Verfahrensschritt c [041] Die TiO -haltige Dispersion besteht bevorzugt aus den bereits genannten organischen Suspensionsmitteln (hier als Dispersionsmittel bezeichnet), Benetzungsmitteln und/oder Tensiden und weist bevorzugt einen Feststoffgehalt von ca. 0,1 bis 2,5 insbesondere 0J bis 1 Gew.% TiO 2 -Partikel auf. Die TiO 2 -Partikel werden bevorzugt in der kristallinen Anatas-Modifikation eingesetzt und weisen insbesondere einen Durchmesser von ca. 5 bis 25 nm auf.
[042] Auch in diesem Verfahrensschritt haben sich die o.g. Spriiheinrichtungen bewährt. Die Auftragung der photokatalytisch aktiven Schicht auf die noch nassfeuchte Unterschicht hat so zu erfolgen, dass ein Festkleben der TiO -Partikel auf der Unterschicht erfolgt, jedoch praktisch keine Vermischung der Schichten stattfindet. Die Schichtdicke in nassem Zustand beträgt ca. 5 - 30 μm.
[043] Verfahrensschritt d
[044] Dieser Verfahrensschritt entspricht Schritt c) bei der Herstellung der Unterschicht und wird bevorzugt bei Raumtemperatur unter Absaugung der Alkoholkomponente durchgeführt.
[045] Verfahrensschritt e
[046] Anschließend erfolgt die Wärmebehandlung und damit Fixierung der Schichten bei Temperaturen von 20 bis 120°C, bevorzugt 20 bis 100°C, besonders bevorzugt 50 bis 80 °C. In Sonderfällen kann eine Wärmebehandlung bei 100 bis 120 °C angezeigt sein. Die Dauer der Wärmebehandlung hängt von der aufgebrachten Temperatur ab und kann bei niedrigen Temperaturen bis zu 300 sec. betragen. Bevorzugt ist eine Wärmebehandlung von ca. 30 bis 60 sec. Die Wärmebehandlung wird bevorzugt mit TR- Strahlern, Mikrowellengeneratoren oder Lasern durchgeführt, da hier lediglich eine oberflächige Erwärmung des zu beschichteten Substrats erfolgt.
[047] Die Verfahrensschritte a) bis e) können in einem kontinuierlichen Prozess in Anlehnung an Fig. 2 durchlaufen werden. Die Bezeichnungen a bis e in Fig. 2 entsprechen den Verfahrenschritten a) bis e), wobei in den Schritten a) die Unterschicht U und c) die Oberschicht P aufgetragen wird. Durch geeignete Transportbänder oder ähnliches ist es möglich, die Verfahrensschritte a) und c) bzw. b) und d) in jeweils einer gemeinsamen Einrichtung durchzuführen.
[048] In einer Variante des erfindungsgemäßen Verfahrens wird die Unterschicht in mehreren Schritten auf des Substrat aufgebracht, d.h. Verfahrensschritte a) und b) werden mindestens zweimal hintereinander durchgeführt.
[049] Analog kann die Oberschicht in mehreren Schritten auf des Substrat aufgebracht werden, d.h. Verfahrensschritte c) und d) werden mindestens zweimal hintereinander durchgeführt.
[050] Hierbei hat es sich bewährt, in den einzelnen Arbeitsgängen Suspensionen mit gleicher Zusammensetzung, aber unterschiedlichem Feststoffgehalt einzusetzen. So kann beispielsweise eine erste Schicht mit einer Suspension eines Feststoffgehalts von 1 Gew. %, und die folgende Schicht mit einer Suspension eines Feststoffgehalts von 5 Gew. % aufgebracht werden. Diese Verfahrensweise ermöglicht gerade bei hydrophoben Substraten wie PVC eine gut adhärierende, homogene, poren -und rissfreie Unterschicht.
[051] Die Figuren 3 bis 16 zeigen REM- Aufnahmen der Oberflächen von PVC- Substraten, frisch aufgetragenen Unterschichten und Unterschichten, die mittels XENO- oder Klimaschrank auf ihre Stabilität getestet wurden.
[052] Tabelle 1
[053] Die übliche Porenstruktur von PVC (FigJ) ist durch die Beschichtung geschlossen. Einige natürliche Spannungsrisse ergeben sich durch unterschiedliche Ausdehnungsgrade von Schicht und Substrat. Diese dichte Oberfläche bleibt auch nach künstlicher Bewitterung, wie Frost und Hitze, sowie UV-Belastung erhalten. UV- Strahlung in unnatürlicher Intensität (XENO-Lampe) bewirkt auch thermische Effekte im PVC, was zur Häufung von Spannungsrissen führt. Die Haftung der Schicht auf dem Substrat bleibt jedoch erhalten, wie Fig7 zeigt.
T054] Die Figuren 3 bis 16 zeigen, das die erfindungsgemäßen Unterschichten auch nach der extremen Testbewitterung am Substrat haften und eine Schutzschicht gegenüber die photokatalytische Oxidation der Oberschicht darstellen.
[055] Weiterhin sind Fensterprofile, Türprofile, Rollladensegmente, FensterObänke, Architekturverblendungen, Türblätter, Regenrinnen, Regenfallrohre und Kunststoff- oder Aluminiumschalen zur Verblendung von Fenster- oder Türrahmen mit der genannten Beschichtung Gegenstand der Erfindung.
[056] Diese Objekte sind häufig aus PVC, mit oder ohne weiteren Polymeren, Füllstoffen oder Additiven hergestellt. Zweckmäßigerweise werden die Halbzeuge in gewohnter Weise hergestellt, z.B. Fenster- oder Türprofile durch Extrusion. Diese Halbzeuge werden anschließend erfindungsgemäß beschichtet und danach in gewohnter Weise zum fertigen Objekt (Fensterrahmen) montiert.
[057] Bei der Beschichtung von vorgefertigten Halbzeugen aus polymeren Materialien ist während der Trocknungsschritte b) und/oder d) auf eine mögliche Verformung der Objekte zu achten. Optional können die zu beschichteten Substrate vor Verfahrensschritt a) auf eine Temperatur unter dem Vicat-Erweichungspunkt des Substrats vorgewärmt werden. Im Fall von PVC-haltigen Substraten wie Fensterprofilen hat sich eine Vorwärmtemperatur von 35°-65° C bewährt. Bei den Trocknungsschritten b) und/ oder d) muss in dieser Verfahrensvariante nur noch eine geringe Temperaturerhöhung erfolgen, sodass eine Verformung des Objekts weitgehend vermieden wird. Alternativ kann nach Abschluss der Verfahrensschritte a) bis e) eine Temperung bei der genannten Temperatur oder eine Kalibrierung des Substrats durchgeführt werden.
[058] Bei der Anwendung im Fenster-/Türbau sei besonders auf die Offenbarung der DE 10 002 658 AI hingewiesen. Hier wird ein Profilsystem zur Herstellung von Fensteroder Türrahmen aus Kunststoff beschrieben, die mit Aluminium- oder Kunststoffschalen verkleidet sind. Die Aluminiumschalen können mit Kunststoffüberzügen, hier insbesondere Pulverlacke auf Epoxid-, Polyester- oder PVC-Basis in nahezu beliebigen Farben beschichtet werden. Die mit Kunststoffen überzogenen Aluminiumschalen können ebenfalls erfindungsgemäß beschichtet werden.
[059] Ein weiterer Gegenstand der vorliegenden Erfindung sind daher lackierte oder un- lackierte, optional mit den genannten Kunststoffen beschichtete Aluminiumschalen zur Verkleidung von Fenster- oder Türrahmen aus Kunststoff mit der oben beschriebenen photokatalytisch aktiven Beschichtung bzw. den beschriebenen Verfahren.
[060] Die so photokatalytisch ausgerüsteten Materialen weisen eine stark hydrophile Oberfläche auf und sind besonders leicht zu reinigen. Sind diese Materialien im Außenbereich eingesetzt und Sonnenbestrahlung sowie Regenwasser ausgesetzt, tritt eine Selbstreinigung ein, da Schmutz durch die photokatalytisch aktive Oberfläche oxidativ angegriffen und von Regenwasser leicht abgespült werden kann. Beispiele [061] Unterschicht. Variante 1
[062] 20,8 g Tetraethoxysilan, 1,2 g Zirkonbutanolat und 20 g Isopropanol werden unter Rühren mit 10,0 g 0,1 %iger Salzsäure versetzt und eine Stunde bei Raumtemperatur gerührt. Die klare Lösung wird anschließend mit 89,4 g Wasser verdünnt. Zum besseren Verlauf werden als Tensid 0,2 g Byk 348 zugesetzt.
[063] Obererschicht. Variante 1
[064] 10,0 g Titandioxid Disperal P25 (Degussa) und 0,1 g nichtionisches Tensid Genapol UD 050 werden in 90,0 g l%iger Ameisensäure vorgelegt. Die Mischung wird 20 min bei 16.000 U/min mit einem Turrax dispergiert. Die weisse Suspension wird hiernach unter schnellem Rühren mit 900,0 g Wasser verdünnt, wobei man eine homogene milchige Lösung erhält.
[065] Unterschicht. Variante 2
[066] 20,8 g Tetraethoxysilan, 1 ,2 g Zirkonbutanolat und 20 g Isopropanol werden unter Rühren mit 10,0 g 0J%iger Salzsäure versetzt und eine Stunde bei Raumtemperatur gerührt. Die klare Lösung wird anschließend mit 89,4 g Isopropanol verdünnt.
[067] Oberschicht. Variante 2
[068] 28,4 g (0,10 mol) Titanisopropanolat werden in 170 g Isopropanol gelöst und unter Rühren mit 0,4 g 2M Salzsäure versetzt. Die Lösung wird eine Stunde bei Raumtemperatur gerührt. Danach wird l%ige Essigsäure langsam unter schnellem Rühren zu der klaren Lösung gegossen und noch 30 min gelassen. Die Lösung wird danach in einen Autoklaven gefüllt, langsam auf 200°C erhitzt und 8 h bei dieser Temperatur gehalten. Danach wird langsam auf Raumtemperatur abkühlen gelassen.
[069] Beschichtung
[070] Eine vorgefertigte Fensterprofilstange aus PVC der Firma profine GmbH wurde zunächst mit Isopropanol gereinigt und getrocknet. Anschließend wurde die Suspension der Unterschicht mit einer Nassfilm-Dicke von ca. 30 μm aufgesprüht und bei Raumtemperatur 30 sec. angetrocknet. Auf die Unterschicht wird die Dispersion der Oberschicht in einer Dicke von ca. 10 μm auf genebelt. Das Aufsprühen der beiden Schichten erfolgte mit stationären Druckluft-Sprühpistolen, wobei die Profilstange mit einer konstanten Geschwindigkeit unter den Sprühpistolen durchgeführt wurde. Nach kurzem Abtrocknen der Oberschicht bei Raumtemperatur (ca. 30 sec.) erfolgt die thermische Vernetzung der Beschichtung bei ca. 80 °C für ca. 60 sec. mittels eines ca. 1 m langen, parallel zur Profilstange angebrachten IR-Strahlers. Auch hier wurde die Profilstange mit einer konstanten Geschwindigkeit unter dem Strahler durchgeführt, so dass jede Stelle der Oberfläche des Profils im Mittel auf die genannte Temperatur für den genannten Zeitraum erwärmt wurde.
[071] Es wurde in beiden Fällen eine photokatalytisch aktive und kratzfeste Beschichtung der Profile erhalten.

Claims

Ansprüche
[001] 1. Photokatalytisch aktive Beschichtung eines Substrats aus mindestens zwei nasschemisch hergestellten Schichten mit mindestens einer ersten, auf das Substrat aufgebrachten, aus einem anorganischen Polymer bestehenden Unterschicht und mindestens einer zweiten, aus TiO 2 -Partikeln bestehenden Oberschicht, dadurch gekennzeichnet, dass die Unterschicht weniger als 0.5 Gew.% TiO -Partikel enthält, porenfrei ist und mindestens 5 Gew.% ZrO aufweist. [002] 2. Photokatalytisch aktive Beschichtung nach Anspruch 1, dadurch gekennzeichnet, dass das anorganische Polymer aus einem oder mehreren kovalent miteinander verbundenen Metalloxiden aus der Gruppe SiO , ZrO , AI O , Nb O , Ta O , CaO aufgebaut ist. 3 2 3 2 3
[003] 3. Photokatalytisch aktive Beschichtung nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass die Unterschicht aus mindestes zwei, nacheinander aufgetragenen Schichten gleicher oder unterschiedlicher Zusammensetzung besteht.
[004] 4. Photokatalytisch aktive Beschichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass als Substrat ein oder mehrere Polymere ausgewählt aus der Gruppe PVC, PP, PE, PMMA, PS, PC, Polyester, Epoxide, Polyurethane, Polyisocyanate, SBR, ABS, ASA, NBR oder Mischpolymerisate aus Acrylnitril, Styrol, Butadien, Methacrylat oder Isopren, jeweils als Homo- oder Copolymer, als Coextrudat oder als Polymerblend eingesetzt werden.
[005] 5. Verfahren zur Herstellung photokatalytisch aktiver Beschichtungen auf einem Substrat, gekennzeichnet durch die Verfahrensschritte a. Nasschemisches Beschichten eines Substrats mit einem anorganischen Polymer durch Auftragen einer Suspension des anorganischen Polymeren oder dessen chemische Vorläufer in einem organischen Suspensionsmittel, b. Ganz oder teilweise Entfernung des organischen Suspensionsmittels unter Erhalt einer Unterschicht. c. Auftragen einer Dispersion aus TiO -Partikeln in einem organischen Dispersionsmittel auf die Unterschicht. d. Ganz oder teilweise Entfernung des organischen Dispersionsmittel unter Erhalt einer Oberschicht. e. Wärmebehandlung der Unter- und Oberschicht bei 20 bis 120 °C für 10 bis 300 sec, mit der Maßgabe, dass die Unterschicht weniger als 0.5 Gew.% TiO -Partikel enthält, porenfrei ist und mindestens 5 Gew.% ZrO enthält. [006] 6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass die in Verfah- rensschritt a) eingesetzte Suspension ein oder mehrere Metalloxide aus der Gruppe SiO 2 , ZrO L , AI 1\ O i , Nb 2 O3 , Ta O i , CaO, und/oder die entsprechenden Alkoxide, Chloride, Nitrate, Hydroxide, Formiate oder Acetate, jeweils einzeln oder als Gemisch enthält.
[007] 7. Verfahren nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, dass das organische Suspensions- und Dispersionsmittel Ethanol, Propanol, Isopropanol, Isobutanol, n-Butanol, Glycol, Ethylenglycol, Propylenglycol, Bu- tylenglycol, Wasser, Ameisensäure, und/oder Essigsäure alleine oder als Gemisch enthält.
[008] 8. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Verfahrensschritte a) und b) mindestens zweimal hintereinander durchgeführt werden.
[009] 9. Verfahren nach einem der Ansprüche 6 bis 8, dadurch gekennzeichnet, dass die Verfahrensschritte c) und d) mindestens zweimal hintereinander durchgeführt werden.
[010] 10. Fensterprofile, Türprofile, Rollladensegmente, FensterObänke, Architekturverblendungen, Türblätter, Regenrinnen, Regenfallrohre und Kunststoff- oder Aluminiumschalen zur Verblendung von Fenster- oder Türrahmen, mit einer Beschichtung gemäß einem der Ansprüche 1 bis 4.
EP04766238A 2003-07-16 2004-07-15 Photokatalytisch aktive beschichtung eines substrats Withdrawn EP1646448A1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP04766238A EP1646448A1 (de) 2003-07-16 2004-07-15 Photokatalytisch aktive beschichtung eines substrats

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP03102194A EP1498176A1 (de) 2003-07-16 2003-07-16 Photokatalytisch aktive Beschichtung eines Substrats
PCT/EP2004/051514 WO2005007286A1 (de) 2003-07-16 2004-07-15 Photokatalytisch aktive beschichtung eines substrats
EP04766238A EP1646448A1 (de) 2003-07-16 2004-07-15 Photokatalytisch aktive beschichtung eines substrats

Publications (1)

Publication Number Publication Date
EP1646448A1 true EP1646448A1 (de) 2006-04-19

Family

ID=33462221

Family Applications (2)

Application Number Title Priority Date Filing Date
EP03102194A Withdrawn EP1498176A1 (de) 2003-07-16 2003-07-16 Photokatalytisch aktive Beschichtung eines Substrats
EP04766238A Withdrawn EP1646448A1 (de) 2003-07-16 2004-07-15 Photokatalytisch aktive beschichtung eines substrats

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP03102194A Withdrawn EP1498176A1 (de) 2003-07-16 2003-07-16 Photokatalytisch aktive Beschichtung eines Substrats

Country Status (5)

Country Link
US (1) US20080026161A1 (de)
EP (2) EP1498176A1 (de)
CA (1) CA2573980A1 (de)
RU (1) RU2006104431A (de)
WO (1) WO2005007286A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006017349A1 (en) 2004-07-12 2006-02-16 Cardinal Cg Company Low-maintenance coatings
KR101431230B1 (ko) 2006-04-11 2014-08-18 카디날 씨지 컴퍼니 개선된 낮은 유지 특성이 있는 광촉매성 코팅
US20080011599A1 (en) 2006-07-12 2008-01-17 Brabender Dennis M Sputtering apparatus including novel target mounting and/or control
DE102006038593A1 (de) 2006-08-17 2008-02-21 Siemens Ag Selbstreinigende Oberflächenbeschichtung (Photokatalyse)
US20080115444A1 (en) 2006-09-01 2008-05-22 Kalkanoglu Husnu M Roofing shingles with enhanced granule adhesion and method for producing same
FR2908137A1 (fr) * 2006-11-02 2008-05-09 Lapeyre Sa Procede de depot de couche mince et produit obtenu
US8349435B2 (en) 2007-04-04 2013-01-08 Certainteed Corporation Mineral surfaced asphalt-based roofing products with encapsulated healing agents and methods of producing the same
DE102008041740A1 (de) 2007-08-31 2009-03-05 Profine Gmbh Kunststoffprofil mit photokatalytisch wirksamer Oberfläche
US7820309B2 (en) 2007-09-14 2010-10-26 Cardinal Cg Company Low-maintenance coatings, and methods for producing low-maintenance coatings
US20100221513A1 (en) * 2008-09-05 2010-09-02 Wisconsin Alumni Research Foundation Self sintering transparent nanoporous thin-films for use in self-cleaning, anti-fogging, anti-corrosion, anti-erosion electronic and optical applications
CN104759297B (zh) * 2010-07-29 2018-02-23 Toto株式会社 光催化剂涂装体和光催化剂涂覆液
PL229796B1 (pl) * 2012-07-23 2018-08-31 Splast Spólka Z Ograniczona Odpowiedzialnoscia Spólka Komandytowa Sposób otrzymywania fotokatalitycznych powłok z TiO2 na powierzchniach polimerowych aktywowanych światłem słonecznym
CN108025285A (zh) * 2015-08-28 2018-05-11 沙特基础工业全球技术公司 使用混杂光电子材料制备氢气
WO2017160242A1 (en) 2016-03-14 2017-09-21 Chulalongkorn University Titanium dioxide catalyst supported on polymer film or membrane substrate and preparation method thereof
EP3541762B1 (de) 2016-11-17 2022-03-02 Cardinal CG Company Statisch-dissipative beschichtungstechnologie
US10730799B2 (en) 2016-12-31 2020-08-04 Certainteed Corporation Solar reflective composite granules and method of making solar reflective composite granules

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20010031599A (ko) * 1998-09-30 2001-04-16 마쯔무라 미노루 광촉매 물품과 방담방오 물품 및 방담방오 물품의 제조방법
EP1016458B1 (de) * 1998-12-28 2004-09-29 Orient Chemical Industries, Ltd. Photokatalysator enthaltend organisch-inorganisch hybrid Zusammensetzungen, und dessen Herstellungsverfahren
JP2002055226A (ja) * 2000-08-07 2002-02-20 Nippon Sheet Glass Co Ltd 偏光素子及びその製造方法
US6677063B2 (en) * 2000-08-31 2004-01-13 Ppg Industries Ohio, Inc. Methods of obtaining photoactive coatings and/or anatase crystalline phase of titanium oxides and articles made thereby
EP1240943A1 (de) * 2000-10-21 2002-09-18 Degussa AG Katalysatorträger
DE10158433B4 (de) * 2001-11-29 2006-05-18 Nano-X Gmbh Beschichtung
TWI276613B (en) * 2002-04-05 2007-03-21 Murakami Corp Composite material

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2005007286A1 *

Also Published As

Publication number Publication date
US20080026161A1 (en) 2008-01-31
CA2573980A1 (en) 2005-01-27
RU2006104431A (ru) 2007-08-27
WO2005007286A1 (de) 2005-01-27
EP1498176A1 (de) 2005-01-19

Similar Documents

Publication Publication Date Title
EP1646448A1 (de) Photokatalytisch aktive beschichtung eines substrats
EP1358018B1 (de) Selbstreinigende lackbeschichtung und verfahren und mittel zur herstellung derselben
DE10324518B4 (de) Keramischer Formkörper mit photokatalytischer Beschichtung und Verfahren zur Herstellung desselben
EP1727871B1 (de) Beschichtung für metalloberflächen, verfahren zu deren herstellung sowie deren verwendung als selbstreinigende schutzschicht, insbesondere für autofelgen
DE19681289B4 (de) Verwendung eines Verbundwerkstoffes als Material, von dessen Oberfläche anhaftende Ablagerungen durch Kontakt mit Regen abgewaschen werden
DE69611618T3 (de) Substrat mit einer photokatalytischen beschichtung auf basis titandioxyd
EP1817383B1 (de) Dunkles, flächiges element mit geringer wärmeleitfähigkeit, verringerter dichte und niedriger solarer absorption
DE69827027T2 (de) Verwendung titandioxids als photokatalysator
DE69930399T2 (de) Photokatalysatorartikel mit verhinderung von verstopfungen und ablagerungen, verfahren zur herstellung des artikels
DE69603164T2 (de) Wässriger lack für glasscheiben
EP2174780B1 (de) Aufwickelbarer Fliesenaufbau, Verfahren zur Herstellung sowie die Verwendung
EP1674535A1 (de) Selbstreinigende Oberflächen mit durch hydrophobe strukturgebende Partikel und Wachspartikel gebildeten Erhebungen
WO2005105304A2 (de) Verwendung photokatalytischer tio2-schichten zur funktionalisierung von substraten
DE4217432A1 (de) Verfahren zur Herstellung von Glas mit verbesserter Langzeitstandfähigkeit bei erhöhten Temperaturen
EP2051808B1 (de) Selbstreinigende oberflächenbeschichtung (photokatalyse)
WO2005066285A2 (de) Hydrophile beschichtung auf polysilazanbasis
DE60017680T2 (de) Gegenstand mit beschlagfreiem Film und Verfahren zu dessen Herstellung
WO2004108846A2 (de) Beschichtungssystem für glasoberflächen, verfahren zu dessen herstellung und dessen anwendung
DE69935203T2 (de) Verwendung einer farbstoffbeinhaltenden beschichtungsflüssigkeit zur herstellung von einem fotokatalysatorenthaltenden beschichtungsfilm
EP2180996A1 (de) Folie mit photokatalytisch aktiver oberfläche
DE10158433B4 (de) Beschichtung
JP4518567B2 (ja) 塗布液
DE102005019895A1 (de) Verfahren zur Herstellung selbstreinigender Oberflächen
EP1900444B1 (de) Verfahren zur Beschichtung von Oberflächen und Verwendung des Verfahrens
DE10249453A1 (de) Strukturierte Oberflächen mit Erhebungen und Vertiefungen, Verfahren zur Herstellung solcher Oberflächen sowie deren Verwendung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060216

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20110201