EP1644156B9 - Procede permettant d'alimenter une torche a plasma avec un gaz, un gaz mixte ou un melange gazeux par regulation combinee du debit volumetrique et de la pression, et dispositif servant a la mise en oeuvre de ce procede - Google Patents

Procede permettant d'alimenter une torche a plasma avec un gaz, un gaz mixte ou un melange gazeux par regulation combinee du debit volumetrique et de la pression, et dispositif servant a la mise en oeuvre de ce procede Download PDF

Info

Publication number
EP1644156B9
EP1644156B9 EP04762346A EP04762346A EP1644156B9 EP 1644156 B9 EP1644156 B9 EP 1644156B9 EP 04762346 A EP04762346 A EP 04762346A EP 04762346 A EP04762346 A EP 04762346A EP 1644156 B9 EP1644156 B9 EP 1644156B9
Authority
EP
European Patent Office
Prior art keywords
gas
volumetric flow
pressure
plasma torch
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04762346A
Other languages
German (de)
English (en)
Other versions
EP1644156A1 (fr
EP1644156B1 (fr
Inventor
Volker Krink
Gerhard Irrgang
Frank Laurisch
Thomas Steudtner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kjellberg Finsterwalde Plasma und Maschinen GmbH
Original Assignee
Kjellberg Finsterwalde Plasma und Maschinen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kjellberg Finsterwalde Plasma und Maschinen GmbH filed Critical Kjellberg Finsterwalde Plasma und Maschinen GmbH
Priority to SI200431415T priority Critical patent/SI1644156T1/sl
Priority to PL04762346T priority patent/PL1644156T3/pl
Publication of EP1644156A1 publication Critical patent/EP1644156A1/fr
Publication of EP1644156B1 publication Critical patent/EP1644156B1/fr
Application granted granted Critical
Publication of EP1644156B9 publication Critical patent/EP1644156B9/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K10/00Welding or cutting by means of a plasma
    • B23K10/006Control circuits therefor
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/3494Means for controlling discharge parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/34Details, e.g. electrodes, nozzles
    • H05H1/36Circuit arrangements

Definitions

  • the present invention relates to a method for supplying a plasma torch with a gas, mixed gas or gas mixture, in which a volume flow control of the gas or mixed gas or gas mixture is carried out.
  • the present invention relates to an arrangement for supplying a plasma torch with a gas or mixed gas or gas mixture, with a device for supplying a volume of a gas or mixed gas or gas mixture with a desired gas composition to the plasma torch and a flow control device for controlling the volume flow of the gas or mixed gas or gas mixture.
  • the plasma gas used is a variety of gases, for example the monatomic argon and / or the diatomic gases hydrogen, nitrogen, oxygen or air. These gases ionize and dissociate through the energy of the plasma arc.
  • a plasma gas mixture is a plasma gas already premixed by the supplier, while a plasma gas mixture is a plasma gas mixed on site.
  • the plasma is constricted by a water-cooled nozzle in a plasma torch.
  • energy densities up to 2 x 10 6 W / cm 2 can be achieved.
  • Temperatures of up to 30,000 ° C occur in the plasma arc of a plasma cutting torch, which, in conjunction with the high flow rate of the plasma gas, result in very high cutting speeds on all electrically conductive materials.
  • a pilot arc between nozzle and cathode of the plasma cutting torch is first ignited by means of high voltage. This low-energy pilot arc prepares the distance between plasma cutting torches through partial ionization and workpiece in front. If the pilot arc touches the workpiece, the cutting arc is formed.
  • Plasma cutting is an established process for cutting electrically conductive materials.
  • gases and gas mixtures are, for example, air, oxygen, nitrogen and their gas mixtures and argon / hydrogen / nitrogen mixtures.
  • Unalloyed steels are usually cut with air or oxygen. Alloyed steels and non-ferrous metals are preferably cut with special argon-hydrogen, nitrogen-hydrogen or argon-hydrogen nitrogen mixtures.
  • an additional secondary gas which additionally flows around the plasma jet, is nowadays also used. The additional secondary gas has the tasks to protect the nozzle of the plasma cutting torch when plunging into the workpiece before Harborspritzendem workpiece material and thus from damage, the melt during cutting to influence so that a beard-free cut is formed and as a protective gas already cut and still hot cutting surface to protect against oxidation.
  • These plasma and secondary gases and mixed gases and gas mixtures are fed via lines and solenoid valves to the plasma cutting burners. Dosing of these gases is usually via the position or regulation of the pressure.
  • the pressure control can be done both mechanically via pressure reducer, as well as electronically via pressure control valves.
  • electronic pressure regulators is particularly in automated systems in which a variety of parameters of the plasma cutting, such as the cutting current, the cutting voltage, the gas pressure, the cutting speed, the material thickness and the plasma cutting torch distance are stored in databases in order to achieve the highest possible reproducibility of the cutting result, common.
  • the gas metering takes place with the aid of variable needle valves.
  • the cross section of the needle valves in combination with the set pressure determines the amount of gas.
  • the volume flow can be displayed with the help of float measuring tubes.
  • the cut quality of the cut materials which can be achieved thereby, in particular at the beginning of the cut is insufficient.
  • the insufficient cut quality can be, for example, in an unsafe puncture (for example, no or delayed translation of a pilot arc) in the material to be cut, unsafe cutting (for example, stagnation of material), beard (slag on the workpiece bottom) and high angular deviation (for example Exceeding of perpendicularity or inclination tolerance).
  • US-B-6 359 251 B1 EP-A-0 416 841 discloses a method and an arrangement for supplying a plasma torch with a gas, mixed gas or gas mixture.
  • the process uses PFC valves.
  • an exact volume of the gas (s) can be guided to the processing location.
  • DE 201 21 641 U1 describes an arrangement for supplying a plasma torch with a plasma gas or plasma mixture gas or plasma gas mixture comprising gas, with a device for supplying a plasma gas or plasma gas mixture or plasma gas mixture to a plasma torch, wherein a volume flow control device is provided for controlling the volume flow of the plasma gas or plasma gas mixture or plasma gas mixture, characterized in that it comprises at least one volume flow control device based on the measurement of the volume flow from the differential pressure via a metering orifice.
  • the invention is therefore based on the object to provide a method and an arrangement with which better cutting qualities can be achieved.
  • this object is achieved by a method for supplying a plasma torch with a gas, mixed gas or gas mixture according to claim 1.
  • this object is achieved by an arrangement for supplying a plasma torch with a gas or mixed gas or gas mixture according to claim 13.
  • the pressure in the interior of the plasma torch between the electrode and the plasma torch nozzle of the plasma torch is measured directly or indirectly.
  • the pressure in the gas supply direction is measured in front of the plasma torch.
  • volume flow control is carried out by means of a volume flow control device or by means of volume flow control devices and the pressure between the volume flow control device (s) and the plasma burner is measured.
  • the individual gases or individual mixed gases can be combined and the resulting pressure can be measured.
  • the merging of the individual gases or mixed gases can be done, for example, that the gas hoses, in which the individual gases or mixed gases are supplied, are interconnected. This creates a common space in which all three individual gases or mixed gases are located.
  • the volume flow of a gas mixture is controlled by controlling the volume flows of the individual gases or individual mixed gases of the gas mixture.
  • the volume flow control of the secondary gas or secondary mixed gas or secondary gas mixture in combination with a pressure control of the secondary gas or secondary mixed gas or secondary gas mixture carried out such that by means of the pressure control, the amount of the total volume flow of the secondary gas or secondary mixed gas or secondary gas mixture the secondary gas nozzle of the plasma torch is controlled and by means of the volume flow control, the volumetric flow rates resulting in the total volume flow are controlled taking into account the desired secondary gas composition.
  • the plasma torch is supplied separately before supplying the gas or mixed gas or gas mixture with a Vorströmgas with pressure control and / or after the supply of the gas or mixed gas or gas mixture with a Nachströmgas with pressure control.
  • the gas, mixed gas or gas mixture is a plasma gas, plasma gas mixture or plasma gas mixture.
  • the invention is based on the surprising finding that the volume flow actually passing through the plasma burner nozzle can be regulated by combining volume flow regulation and pressure regulation in the manner claimed.
  • the quality of the cut which actually passes through the plasma torch nozzle of the plasma torch, and not the volume of gas flowing through the volume flow regulator, is decisive.
  • Gas hoses that connect the plasma torch with the volumetric flow controllers lead to the fact that the volume flow through the volumetric flow controller does not actually with the Plasma burner nozzle volumetric flow is identical.
  • the cause of the difference between the volume flow in the volume flow controllers and the plasma burner nozzle is the volume of gas hoses between them and the compressibility of gases.
  • variable arc currents which produce a different diameter of the plasma jet and thus narrow the nozzle channel.
  • the currents at pilot arc are 10 - 25 A and at the main arc 20 -1000 A.
  • the present invention it is possible to respond to rapidly changing pressure conditions in the interior of the plasma torch, especially during transient operations such as ignition of the pilot arc, translating the pilot arc to the workpiece, and forming the main arc (cutting) without changing the mixing ratio of the gas mixture.
  • This is achieved in that the result of the pressure measurement is superimposed on the desired value of the flow control device such that independent of the operating condition of the plasma burner pressure in the space between the flow control devices and the plasma torch or in the interior of the plasma torch is realized and the mixing ratio of the gas mixture remains unchanged.
  • an optimal plasma gas mixture is available from the beginning of the cutting process.
  • Both individual gases as well as the individual gases for gas mixtures can be regulated in large areas and thus optimally adapted to the cutting task. This achieves a high reproducibility of the cutting results.
  • the position of the volume flow can be done for example by means of proportional valves or engine valves.
  • the measurement of the pressure can be done by means of known pressure transmitter.
  • the volume flow and pressure control can be analogue or digital and can be controlled accordingly.
  • the measured volume flow can be visualized and monitored.
  • the method according to the invention can be integrated into a quality assurance and documentation system. In evaluation with other mitpararnetern conclusions can be drawn on the cutting quality.
  • the FIG. 1 shows an arrangement 10 for supplying a Plasma torch designed as a plasma torch, of which only one electrode 12, a plasma torch nozzle 14 and a secondary gas nozzle 16 are shown with an argon / hydrogen / nitrogen mixture for plasma cutting alloyed steels and non-ferrous metals. It comprises a device 18 for supplying a plasma gas mixture which has a single gas source (not shown) for each individual gas, namely argon (Ar), hydrogen (H 2 ) and nitrogen (N 2 ), the plasma gas mixture (argon / hydrogen / nitrogen mixture), which is connected via a respective hose line 6a, 6b, 6c with a plasma gas mixture device 22.
  • the plasma gas mixture device is connected to the plasma burner nozzle 14 via a plasma gas mixture tube 9a.
  • a device 20 for supplying a secondary gas mixture includes sources (not shown) of the individual gases, in this case N 2 and H 2 , of the secondary gas communicating via respective hose lines 6 d and 6 e with a secondary gas mixing device 26 connected via a hose line 7 d and a secondary gas mixture hose 9 d the secondary gas nozzle 16 is in communication.
  • each hose line 6a, 6b and 6c and 6d and 6e are each a pressure switch 2a, 2b, 2c, 2d and 2e and a flow control device 1a, 1b, 1c, 1d and 1e and a solenoid valve 3a, 3b, 3c, 3d and 3e arranged in series one behind the other.
  • a pressure measuring device 4a, 4b and 4c is further downstream of the respective solenoid valve 3a, 3b and 3c.
  • the pressure measuring devices 4a, 4b and 4c are connected via signal lines to a control device 5, which in turn communicates with the volume flow control devices 1a, 1b and 1c via a respective control line.
  • respective solenoid valves 8a, 8b and 8c are arranged in the hose lines 7a, 7b and 7c. Behind the solenoid valves 8a, 8b and 8c, the hose lines 7a, 7b and 7c are brought together to the plasma gas mixture hose 9a.
  • the hose lines 6d and 6e are brought together behind the solenoid valves 3d and 3e via the secondary gas mixing device 26 to the hose line 7d. Behind this, a solenoid valve 8d is disposed on the plasma burner side.
  • the individual gases for the plasma gas are supplied to the volume flow control devices 1a, 1b and 1c via the hose lines 6a, 6b and 6c.
  • the pressure switches 2a, 2b and 2c monitor the presence of a minimum required gas pressure.
  • Individual volumetric flow desired values w1, w2, w3 are transmitted by the control device 5 to the respective volumetric flow control devices 1a, 1b and 1c in accordance with the selected parameters.
  • the solenoid valves 3a, 3b and 3c, and first also the solenoid valves 8a, 8b and 8c are opened to rinse the hose lines 6a, 6b and 6c.
  • the hose lines 6a, 6b and 6c are filled by the volume flow control devices 1a, 1b and 1c to the predetermined pressure of the control device 5, which is determined by the pressure measuring means 4a, 4b and 4c.
  • the filling of the hose lines 6a, 6b and 6c takes place at the same pressure, for example 4 bar, so that no compensation processes take place between the individual gases at the beginning of the plasma cutting process.
  • the solenoid valves 3a, 3b, 3c and 8a, 8b and 8c are opened and the corresponding volume flows of the individual gases and thus the total volume flow of the plasma gas mixture are set.
  • the pressure of a pressure measuring device, for example 4a evaluated by the controller 5, since opened with open solenoid valves 8a, 8b and 8c, a space in which all the hose lines 6a, 6b and 6c are interconnected. It is also possible to evaluate all the pressure measuring devices 4a, 4b and 4c and then to form, for example, an average pressure based on the measured pressures.
  • the pre-flow time that is, immediately before ignition of the pilot arc, then flows a defined plasma gas mixture with a preselected pressure, for example, 4 bar, through the plasma torch.
  • the resulting pressure is supplied to the control device 5 and processed so that the selected volumetric flow setpoints w1, w2 and w3 are converted to new volumetric flow setpoints w1 *, w2 * and w3 *, the desired pressure in the interior of the plasma burner with constant gas mixture between the flow control devices 1a , 1b and 1c and set plasma torch.
  • the pressure is increased to the pressure required for the plasma cutting process, for example 6 bar. This is done by raising the pressure setpoint P set (see FIG. 4 ) in the control device 5, wherein the increased pressure setpoint p soll increases the volume flows of the individual gases accordingly.
  • the volume flow setpoints w1, w2 and w3 are used to select the volume flows of the individual gases and thus the mixing ratio.
  • the pressure in front of the plasma torch determines the pressure in the interior of the plasma torch between the electrode 12 and the plasma torch nozzle 14 and thus also the volume flow which ultimately flows through the plasma torch nozzle 14.
  • the pressure achieved by the set volume flows is measured by means of the pressure device 4 a as actual pressure value p ist and fed to the control device 5.
  • a plasma cutting and plasma marking method With this arrangement, it is possible to carry out a plasma cutting and plasma marking method with this arrangement.
  • switching between the aforementioned methods must be switched between different plasma gases.
  • oxygen is used in plasma cutting structural steel and an argon-nitrogen mixture is used in plasma marking.
  • the plasma gas change should be done quickly because of high productivity.
  • the hose lines 6a, 6b and 6c must be vented and rinsed with the new plasma gas mixture and filled.
  • the plasma torch nozzle 14 often has a very small bore (for example, a diameter of 0.7 mm)
  • this process may take a relatively long time, depending on the length of the hose assemblies, for example, 10 seconds and longer.
  • a solenoid valve 8e is provided which quickly vents the gas hoses 7a, 7b and 7c when the solenoid valves 8a, 8b or 8c are open. This can reduce the time to less than 3 seconds.
  • FIG. 2 shows an assembly 10, which differs from the arrangement of FIG. 1 by a combined Vorströmgas- and Nachströmgaszu technologically, comprising a solenoid valve 3f, a hose 7f and a solenoid valve 8f, for separately supplying a Vorström- and a Nachströmgases to the plasma torch and by a pressure control device 17 for controlling the pressure of Vorström- and Nachströmgases different.
  • the arrangement 10 differs from FIG. 2 from the arrangement of FIG. 1 in that the plasma gases argon and nitrogen are already mixed in the device 18 for supplying a plasma gas mixture in a plasma gas mixture device 24.
  • the advantage of the arrangement 10 of FIG. 2 is that the Vorströmgas can flow through the plasma torch with a different pressure, for example, 4 bar, while the plasma gas required for the gases required for plasma cutting pressure, for example, 6 bar, before the plasma cutting start to the solenoid valves 8a and 8c issue.
  • the solenoid valves 3a, 3b, 3c and 3f and the solenoid valve 8f are opened.
  • the hose lines 7a and 7c are filled by the flow control devices 1a and 1c except for the pressure predetermined by the control device 5 detected by the pressure measuring devices 4a and 4c.
  • the solenoid valves 8a and 8c of the plasma torch are closed so that the pressure of, for example, 6 bar can build up.
  • the solenoid valves 8a and 8c are opened and the solenoid valves 3f and 8f are closed.
  • the volume flows of the individual gases are influenced by the processing of the pressure measurement values of the pressure measuring device 4 a in the control device 5, so that the desired pressure and the desired plasma gas mixture ratio are always applied to the plasma torch.
  • the solenoid valves 8a and 8c are closed again and the solenoid valves 3f and 8f are opened.
  • Nachströmgas can be supplied below.
  • the secondary gas is regulated only by the volume flow control devices 1d and 1e, which keep constant the secondary gas volume flow with open solenoid valves 3d, 3e and 8d during the entire plasma cutting process.
  • the volume flow control devices 1d and 1e which keep constant the secondary gas volume flow with open solenoid valves 3d, 3e and 8d during the entire plasma cutting process.
  • the same method as for the supply of plasma gas is to be used for the supply of secondary gas. This is in FIG. 3 shown. So it is a combined flow and pressure control of the secondary gas analogous to the volume flow and pressure control of the supply of plasma gas according to the FIGS. 1 and 2 carried out.
  • the method of supplying gas is in principle also suitable for plasma technologies, such as plasma welding, plasma films, plasma marking.
  • the pressure in the interior of the plasma torch has been measured indirectly via the pressure measuring devices 4a, 4b and 4c.
  • a pressure measuring device for direct measurement of the pressure in the interior of the plasma torch could be provided.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mechanical Engineering (AREA)
  • Plasma Technology (AREA)
  • Accessories For Mixers (AREA)

Claims (22)

  1. Procédé pour alimenter une torche à plasma avec un gaz, un gaz mixte ou un mélange gazeux, selon lequel on effectue une régulation du débit volumique du gaz ou gaz mixte ou mélange gazeux, le procédé comprenant :
    la détermination d'une composition gazeuse souhaitée qui doit être apportée à une torche à plasma, et
    l'apport à la torche à plasma, à partir d'au moins une source de gaz, d'un volume ayant la composition gazeuse souhaitée,
    caractérisé en ce que, pour réguler le débit volumique passant par la buse (14) de la torche à plasma, la régulation du débit volumique du gaz ou gaz mixte ou mélange gazeux apporté à la torche à plasma est effectuée en utilisant une régulation de pression pour régler la valeur du débit volumique total passant par la buse (14) de la torche à plasma, et en utilisant une régulation de débit volumique pour régler les débits volumiques partiels qui forment le débit volumique total, en tenant compte de la composition gazeuse souhaitée, et au moins un débit volumique est régulé sur la base de la mesure calorimétrique du débit volumique, sur la base de la mesure du débit volumique à partir de la pression différentielle ou sur la base d'une mesure d'impulsions.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on mesure la pression à l'intérieur de la torche à plasma directement ou indirectement entre l'électrode (12) et la buse (14) de la torche à plasma.
  3. Procédé selon la revendication 2, caractérisé en ce qu'on mesure la pression en amont de la torche à plasma dans la direction d'alimentation du gaz.
  4. Procédé selon la revendication 2 ou 3, caractérisé en ce qu'on effectue la régulation de débit volumique au moyen d'un équipement de régulation de débit volumique (1a ou 1b ou 1 c ou 1d ou 1e) ou au moyen d'équipements de régulation de débit volumique (1a, 1b, 1c, 1d, 1e), et on mesure la pression entre le ou les équipement(s) de régulation de débit volumique (1a, 1b, 1c, 1d, 1e) et la torche à plasma.
  5. Procédé selon la revendication 4, caractérisé en ce qu'on mesure les pressions des gaz individuels ou des gaz mixtes individuels, et on forme une pression moyenne à partir des pressions mesurées.
  6. Procédé selon la revendication 4, caractérisé en ce qu'on réunit les gaz individuels ou gaz mixtes individuels, et on mesure la pression résultante.
  7. Procédé selon la revendication 4, caractérisé en ce qu'on réunit au moins deux gaz individuels ou gaz mixtes, et on mesure la pression résultante.
  8. Procédé selon l'une des revendications précédentes, caractérisé en ce que le débit volumique d'un mélange gazeux est régulé en régulant les débits volumiques des gaz individuels ou gaz mixtes individuels du mélange gazeux.
  9. Procédé selon l'une des revendications précédentes, caractérisé en ce que la torche à plasma est en outre alimentée en gaz secondaire ou gaz mixte secondaire ou mélange gazeux secondaire, et on régule le débit volumique du gaz secondaire ou gaz mixte secondaire ou mélange gazeux secondaire.
  10. Procédé selon la revendication 9, caractérisé en ce que la régulation de débit volumique du gaz secondaire ou gaz mixte secondaire ou mélange gazeux secondaire est effectuée en combinaison avec une régulation de pression du gaz secondaire ou gaz mixte secondaire ou mélange gazeux secondaire, de telle sorte qu'on régule au moyen de la régulation de pression la valeur du débit volumique total du gaz secondaire ou gaz mixte secondaire ou mélange gazeux secondaire passant par la buse (16) de gaz secondaire de la torche à plasma, et qu'on régule au moyen de la régulation de débit volumique les débits volumiques partiels qui forment le débit volumique total, en tenant compte de la composition de gaz secondaire souhaitée.
  11. Procédé selon l'une des revendications précédentes, caractérisé en ce que la torche à plasma est alimentée séparément avec un gaz de pré-flux avec régulation de pression avant l'alimentation avec le gaz ou gaz mixte ou mélange gazeux,, et/ou est alimentée séparément avec un gaz de post-flux avec régulation de pression après l'alimentation avec le gaz ou gaz mixte ou mélange gazeux.
  12. Procédé selon l'une des revendications précédentes, caractérisé en ce que le gaz ou gaz mixte ou mélange gazeux est un gaz plasmagène, un gaz mixte plasmagène ou un mélange gazeux plasmagène.
  13. Dispositif (10) pour alimenter une torche à plasma avec un gaz, un gaz mixte ou un mélange gazeux, comprenant un équipement (18) pour apporter à la torche à plasma un volume d'un gaz ou gaz mixte ou mélange gazeux ayant une composition gazeuse souhaitée, et un équipement de régulation de débit volumique pour réguler le débit volumique du gaz ou gaz mixte ou mélange gazeux,
    caractérisé en ce que, pour réguler le débit volumique passant par la buse (14) de la torche à plasma, l'équipement de régulation de débit volumique est combiné à un équipement de régulation de pression pour réguler la pression du gaz ou gaz mixte ou mélange gazeux, de telle sorte que la valeur du débit volumique total passant par la buse (14) de la torche à plasma est régulée au moyen de l'équipement de régulation de pression et que les débits volumiques partiels qui forment le débit volumique total sont régulés par régulation de débit volumique, en tenant compte de la composition gazeuse souhaitée, sachant que la régulation de débit volumique régule au moins un débit volumique sur la base de la mesure calorimétrique du débit volumique, sur la base de la mesure du débit volumique à partir de la pression différentielle ou sur la base d'une mesure d'impulsions.
  14. Dispositif (10) selon la revendication 13, caractérisé en ce qu'il comprend un équipement de mesure de pression pour la mesure directe ou indirecte de la pression à l'intérieur de la torche à plasma, entre l'électrode (12) et la buse (14) de la torche à plasma.
  15. Dispositif (10) selon la revendication 14, caractérisé en ce que l'équipement de mesure de pression comprend un équipement de mesure de pression (4a, 4b, 4c) pour chaque gaz individuel ou gaz mixte.
  16. Dispositif (10) selon la revendication 14, caractérisé en ce que l'équipement de mesure de pression comprend un unique équipement de mesure de pression (4a) pour mesurer la pression des gaz individuels ou gaz mixtes réunis.
  17. Dispositif (10) selon la revendication 14, caractérisé en ce que l'équipement de mesure de pression comprend au moins un équipement de mesure de pression (4a) pour mesurer la pression d'au moins deux gaz individuels ou gaz mixtes réunis.
  18. Dispositif (10) selon l'une des revendications 13 à 17, caractérisé en ce que l'équipement de régulation de débit volumique pour réguler le débit volumique d'un mélange gazeux comprend un équipement de régulation de débit volumique (1a, 1b, 1c) pour chaque gaz individuel ou gaz mixte du mélange gazeux.
  19. Dispositif (10) selon l'une des revendications 13 à 18, caractérisé en ce qu'il comprend en outre un équipement (20) pour apporter un gaz secondaire ou gaz mixte secondaire ou mélange gazeux secondaire à la torche à plasma, et un équipement de régulation de débit volumique de gaz secondaire pour réguler le débit volumique du gaz secondaire ou gaz mixte secondaire ou mélange gazeux secondaire.
  20. Dispositif (10) selon la revendication 19, caractérisé en ce que l'équipement de régulation de débit volumique de gaz secondaire est combiné à un équipement de régulation de pression de gaz secondaire pour réguler la pression du gaz secondaire ou gaz mixte secondaire ou mélange gazeux secondaire, de telle sorte que la valeur du débit volumique total passant par la buse (16) de gaz secondaire de la torche à plasma est régulée au moyen de l'équipement de régulation de pression et que les débits volumiques partiels qui forment le débit volumique total sont régulés au moyen de l'équipement de régulation de débit volumique, en tenant compte de la composition de gaz secondaire souhaitée.
  21. Dispositif (10) selon l'une des revendications 13 à 20, caractérisé en ce qu'il comprend en outre un équipement d'alimentation en gaz de pré-flux pour l'apport séparé d'un gaz de pré-flux à la torche à plasma et un équipement de régulation de pression (17) pour réguler la pression du gaz de pré-flux, et/ou un équipement de pos-flux pour l'apport séparé d'un gaz de post-flux à la torche à plasma et un équipement de régulation de pression (17) pour réguler la pression du gaz de post-flux.
  22. Dispositif (10) selon l'une des revendications 13 à 21, caractérisé en ce que le gaz est un gaz plasmagène, le gaz mixte un gaz mixte plasmagène, et le mélange gazeux un mélange gazeux plasmagène.
EP04762346A 2003-07-11 2004-07-06 Procede permettant d'alimenter une torche a plasma avec un gaz, un gaz mixte ou un melange gazeux par regulation combinee du debit volumetrique et de la pression, et dispositif servant a la mise en oeuvre de ce procede Expired - Lifetime EP1644156B9 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
SI200431415T SI1644156T1 (sl) 2003-07-11 2004-07-06 Postopek napajanja plazemskega gorilnika s plinom, mešanim plinom ali zmesjo plinov, ki ga sestavlja uravnavanje volumskega pretoka v kombinaciji z uravnavanjem tlaka, in naprava za izvedbo tega postopka
PL04762346T PL1644156T3 (pl) 2003-07-11 2004-07-06 Sposób zasilania palnika plazmowego gazem, mieszanym gazem, lub mieszaniną gazową, przy którym przeprowadza się regulację objętościowego natężenia przepływu w połączeniu z regulacją ciśnienia; układ do przeprowadzania tego sposobu

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10332569A DE10332569B3 (de) 2003-07-11 2003-07-11 Verfahren und Anordnung zur Versorgung eines Plasmabrenners mit einem Plasmagasgemisch aus mindestens zwei verschiedenen Gasen oder Mischgasen oder mindestens einem Gas und mindestens einem Mischgas
PCT/DE2004/001442 WO2005007332A1 (fr) 2003-07-11 2004-07-06 Procede permettant d'alimenter une torche a plasma avec un gaz, un gaz mixte ou un melange gazeux par regulation combinee du debit volumetrique et de la pression, et dispositif servant a la mise en oeuvre de ce procede

Publications (3)

Publication Number Publication Date
EP1644156A1 EP1644156A1 (fr) 2006-04-12
EP1644156B1 EP1644156B1 (fr) 2010-05-19
EP1644156B9 true EP1644156B9 (fr) 2010-08-25

Family

ID=33560194

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04762346A Expired - Lifetime EP1644156B9 (fr) 2003-07-11 2004-07-06 Procede permettant d'alimenter une torche a plasma avec un gaz, un gaz mixte ou un melange gazeux par regulation combinee du debit volumetrique et de la pression, et dispositif servant a la mise en oeuvre de ce procede

Country Status (8)

Country Link
US (1) US7326875B2 (fr)
EP (1) EP1644156B9 (fr)
AT (1) ATE468195T1 (fr)
DE (2) DE10332569B3 (fr)
ES (1) ES2346534T3 (fr)
PL (1) PL1644156T3 (fr)
SI (1) SI1644156T1 (fr)
WO (1) WO2005007332A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7115833B2 (en) 2004-11-03 2006-10-03 The Esab Group, Inc. Metering system and method for supplying gas to a torch
US20060163220A1 (en) * 2005-01-27 2006-07-27 Brandt Aaron D Automatic gas control for a plasma arc torch
DE102006018858B4 (de) * 2006-04-24 2009-11-05 Kjellberg Finsterwalde Plasma Und Maschinen Gmbh Verfahren zum Plasmaschneiden
JP4423438B2 (ja) * 2007-06-21 2010-03-03 小池酸素工業株式会社 プラズマ切断方法
US8541711B2 (en) * 2009-02-20 2013-09-24 Hypertherm, Inc. Internal part feature cutting method and apparatus
US8338739B2 (en) * 2008-12-22 2012-12-25 Hypertherm, Inc. Method and apparatus for cutting high quality internal features and contours
US8354609B2 (en) * 2008-12-22 2013-01-15 Hypertherm, Inc. High quality hole cutting using variable shield gas compositions
TWI385042B (zh) * 2009-06-26 2013-02-11 Iner Aec Executive Yuan 多氣式混合器與電漿火炬的混合氣供氣裝置
US9649715B2 (en) * 2009-12-30 2017-05-16 Lincoln Global, Inc. Pulse width modulation control of gas flow for plasma cutting and marking
JP5287962B2 (ja) * 2011-01-26 2013-09-11 株式会社デンソー 溶接装置
WO2012142403A1 (fr) * 2011-04-14 2012-10-18 Thermal Dynamics Corporation Procédé amélioré de démarrage d'une torche à arc de plasma multi-gaz
US9000322B2 (en) * 2011-07-21 2015-04-07 Victor Equipment Company Method for starting and stopping a plasma arc torch
JP6499973B2 (ja) * 2013-12-25 2019-04-10 小池酸素工業株式会社 プラズマ切断装置
DK3043628T3 (da) * 2015-01-08 2021-06-14 Tantec As Automatisk gasreguleringssystem til plasmabehandling
WO2018185836A1 (fr) * 2017-04-04 2018-10-11 株式会社Fuji Dispositif à plasma à pression atmosphérique
FR3067559B1 (fr) * 2017-06-07 2019-07-05 Akryvia Procede de coupage plasma et torche pour la mise en oeuvre de ce procede
US10616988B2 (en) 2017-06-20 2020-04-07 The Esab Group Inc. Electromechanical linearly actuated electrode
EP3731603B1 (fr) * 2017-12-20 2023-09-13 FUJI Corporation Dispositif d'émission de plasma avec détermination du colmatage
JP6941231B2 (ja) * 2018-05-23 2021-09-29 株式会社Fuji プラズマ処理機
US20210178507A1 (en) * 2019-12-13 2021-06-17 Norsk Titanium As Volumetric plasma gas flow measurement and control system for metal-based wire-plasma arc additive manufacturing applications
US20230012660A1 (en) * 2021-07-16 2023-01-19 Lincoln Global, Inc. Plasma cutting system with dual electrode plasma arc torch
DE102022122028A1 (de) 2022-08-31 2024-02-29 Hoerbiger Flow Control Gmbh Gasmischvorrichtung zum kontrollierten Mischen von zwei unterschiedlichen Gasen

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE55437C (de) G. LlGOWSKY in Cincinnati, Ohio, V. St. A Werkzeughalter für Revolverbänke
DD54437A (fr) *
DE132247C (fr)
DD132247B1 (de) * 1977-07-29 1980-02-27 Hans Froehlich Verfahren zur gasmischung fuer das schutzgasschweissen und plasmaschneiden
US5070227A (en) * 1990-04-24 1991-12-03 Hypertherm, Inc. Proceses and apparatus for reducing electrode wear in a plasma arc torch
US5396043A (en) * 1988-06-07 1995-03-07 Hypertherm, Inc. Plasma arc cutting process and apparatus using an oxygen-rich gas shield
GB9117328D0 (en) * 1991-08-10 1991-09-25 British Nuclear Fuels Plc A gas control system
DE19536150C2 (de) * 1995-09-28 1997-09-04 Esab Hancock Gmbh Einrichtung und Verfahren zur Gassteuerung eines Plasmabrenners einer Plasmaschneidanlage
JPH10263827A (ja) * 1997-03-24 1998-10-06 Amada Co Ltd トーチの高さ位置制御装置
US6121570A (en) 1998-10-28 2000-09-19 The Esab Group, Inc. Apparatus and method for supplying fluids to a plasma arc torch
JP3666789B2 (ja) * 1999-04-30 2005-06-29 株式会社小松製作所 プラズマ切断方法、装置及びプラズマ切断トーチへのガス供給系統
US6206878B1 (en) * 1999-05-07 2001-03-27 Aspen Laboratories, Inc. Condition responsive gas flow adjustment in gas-assisted electrosurgery
US6359251B1 (en) 2000-04-10 2002-03-19 Hypertherm, Inc. Centralized control architecture for a plasma arc system
JP2003053548A (ja) * 2001-08-17 2003-02-26 Koike Sanso Kogyo Co Ltd 流量調整装置及び加工装置
DE20121641U1 (de) * 2001-09-06 2003-02-13 Kjellberg Finsterwalde Elektroden und Maschinen GmbH, 03238 Finsterwalde Anordnung zur Versorgung eines Plasmabrenners mit ein Plasmagas oder Plasmamischgas oder Plasmagasgemisch umfassendem Gas und Magnetventil

Also Published As

Publication number Publication date
US20060186094A1 (en) 2006-08-24
SI1644156T1 (sl) 2010-08-31
WO2005007332A1 (fr) 2005-01-27
DE502004011179D1 (de) 2010-07-01
EP1644156A1 (fr) 2006-04-12
EP1644156B1 (fr) 2010-05-19
ATE468195T1 (de) 2010-06-15
US7326875B2 (en) 2008-02-05
ES2346534T3 (es) 2010-10-18
PL1644156T3 (pl) 2010-10-29
DE10332569B3 (de) 2005-02-03

Similar Documents

Publication Publication Date Title
EP1644156B9 (fr) Procede permettant d'alimenter une torche a plasma avec un gaz, un gaz mixte ou un melange gazeux par regulation combinee du debit volumetrique et de la pression, et dispositif servant a la mise en oeuvre de ce procede
DE69414370T2 (de) Verfahren und vorrichtung zum plasmaschneiden
EP2191925B1 (fr) Procédé de, dispositif et programme d'ordinateur pour le soudage plasma par trou d'aiguille avec changement actif du courant de pénétration durant le soudage
DE19882096B4 (de) Verfahren und Vorrichtung zum Plasma-Lichtbogenschweißen
EP3051928B1 (fr) Torche à plasma
DE3510382C2 (fr)
DE69124505T2 (de) Wirbelring und flusssteuerungsverfahren eines plasmalichtbogenbrenners
EP2106305A1 (fr) Dispositif de dressage à la flamme
WO2008125275A1 (fr) Procédé de soudage en bouchon au plasma
DE60112485T2 (de) Steuerung der Strömung des Schneidplasmagases durch den Zündgasdruck
DE102007017224A1 (de) Verfahren zum Plasma-Stichlochschweißen
DE102006051044B4 (de) Verfahren und Einrichtung zum Betreiben einer Brennschneidmaschine zum Brennschneiden von Gießsträngen und Werkstücken
EP2277655B1 (fr) Procédé et dispositif destiné au soudage 'keyhole' par plasma avec modification de l'écoulment volumique et/ou de la composition du gaz en fonction de conditions limites du procédé de soudage
EP2732902A1 (fr) Procédé de coupage au plasma de pièces avec un faisceau plasma incliné
DE102007035403A1 (de) Verfahren zum thermischen Trennen
EP1849550B1 (fr) Procédé de coupe au plasma
DE102009027785A1 (de) Verfahren und Vorrichtung zum Plasma-Stichlochschweißen
EP0687859B1 (fr) Torche de coupage
DE20121641U1 (de) Anordnung zur Versorgung eines Plasmabrenners mit ein Plasmagas oder Plasmamischgas oder Plasmagasgemisch umfassendem Gas und Magnetventil
EP0550051B1 (fr) Chalumeau à découper d'une machine d'oxycoupage pourvu d'un dispositif d'allumage interne
EP1916053A1 (fr) Procédé de coupage thermique
DE102021005500A1 (de) Verfahren zum Plasmaschneiden von Wertstücken
EP4299234A1 (fr) Dispositif et procédé d'usinage laser d'une pièce
DE2521253A1 (de) Brennschneidduese
DE102009027784A1 (de) Verfahren und Vorrichtung zum Plasma-Stichlochschweißen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20060808

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: KJELLBERG FINSTERWALDE PLASMA UND MASCHINEN GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KAMINSKI HARMANN PATENTANWAELTE EST.

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004011179

Country of ref document: DE

Date of ref document: 20100701

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2346534

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: PL

Ref legal event code: T3

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 7788

Country of ref document: SK

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100820

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100920

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100731

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20110222

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004011179

Country of ref document: DE

Effective date: 20110221

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100706

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100519

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101120

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20120713

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100819

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130706

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20180622

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20190724

Year of fee payment: 16

Ref country code: SI

Payment date: 20190627

Year of fee payment: 16

Ref country code: SE

Payment date: 20190725

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20190725

Year of fee payment: 16

Ref country code: AT

Payment date: 20190719

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20190725

Year of fee payment: 16

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 468195

Country of ref document: AT

Kind code of ref document: T

Effective date: 20200706

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20200706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200706

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200707

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200707

REG Reference to a national code

Ref country code: SI

Ref legal event code: KO00

Effective date: 20210810

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200706

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CZ

Payment date: 20220627

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: PL

Payment date: 20220624

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20220720

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20220701

Year of fee payment: 19

Ref country code: ES

Payment date: 20220819

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20220720

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20230728

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230706

REG Reference to a national code

Ref country code: SK

Ref legal event code: MM4A

Ref document number: E 7788

Country of ref document: SK

Effective date: 20230706

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20230801

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20230731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230801

Ref country code: SK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230706

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230731