EP1640465B1 - Alliage de Ni-Cr-Co-Mo pour un moteur à turbine à gaz - Google Patents

Alliage de Ni-Cr-Co-Mo pour un moteur à turbine à gaz Download PDF

Info

Publication number
EP1640465B1
EP1640465B1 EP05018830A EP05018830A EP1640465B1 EP 1640465 B1 EP1640465 B1 EP 1640465B1 EP 05018830 A EP05018830 A EP 05018830A EP 05018830 A EP05018830 A EP 05018830A EP 1640465 B1 EP1640465 B1 EP 1640465B1
Authority
EP
European Patent Office
Prior art keywords
alloy
alloys
chromium
nickel
gas turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05018830A
Other languages
German (de)
English (en)
Other versions
EP1640465A2 (fr
EP1640465A3 (fr
Inventor
Lee M. Pike Jr.
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Haynes International Inc
Original Assignee
Haynes International Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Haynes International Inc filed Critical Haynes International Inc
Priority to PL05018830T priority Critical patent/PL1640465T3/pl
Publication of EP1640465A2 publication Critical patent/EP1640465A2/fr
Publication of EP1640465A3 publication Critical patent/EP1640465A3/fr
Application granted granted Critical
Publication of EP1640465B1 publication Critical patent/EP1640465B1/fr
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/055Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 20% but less than 30%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C19/00Alloys based on nickel or cobalt
    • C22C19/03Alloys based on nickel or cobalt based on nickel
    • C22C19/05Alloys based on nickel or cobalt based on nickel with chromium
    • C22C19/051Alloys based on nickel or cobalt based on nickel with chromium and Mo or W
    • C22C19/056Alloys based on nickel or cobalt based on nickel with chromium and Mo or W with the maximum Cr content being at least 10% but less than 20%

Definitions

  • This invention relates to wroughtable high strength alloys for use at elevated temperatures.
  • it is related to alloys which possess sufficient creep strength, thermal stability, and resistance to strain age cracking to allow for fabrication and service in gas turbine transition ducts and other gas turbine components.
  • Transition ducts are often welded components made of sheet or thin plate material and thus need to be weldable as well as wroughtable.
  • gamma-prime strengthened alloys are used in transition ducts due to their high-strength at elevated temperatures.
  • current commercially available wrought gamma-prime strengthened alloys either do not have the strength or stability to be used at the very high temperatures demanded by advanced gas turbine design concepts, or can present difficulties during fabrication.
  • one such fabrication difficulty is the susceptibility of many wrought gamma-prime strengthened alloys to strain age cracking. The problem of strain age cracking will be described in more detail later in this document.
  • Wrought gamma-prime strengthened alloys are often based on the nickel-chromium-cobalt system, although other base systems are also used. These alloys will typically have aluminum and titanium additions which are responsible for the formation of the gamma-prime phase, Ni 3 (Al,Ti). Other gamma-prime forming elements, such as niobium and/or tantalum, can also be employed.
  • An age-hardening heat treatment is used to develop the gamma-prime phase into the alloy microstructure. This heat treatment is normally given to the alloy when it is in the annealed condition. The presence of gamma-prime phase leads to a considerable strengthening of the alloy over a broad temperature range.
  • Other elemental additions may include molybdenum or tungsten for solid solution strengthening, carbon for carbide formation, and boron for improved high temperature ductility.
  • Strain age cracking is a problem which limits the weldability of many gamma-prime strengthened alloys. This phenomenon typically occurs when a welded part is subjected to a high temperature for the first time after the welding operation. Often this is during the post-weld annealing treatment given to most welded gamma-prime alloy fabrications. The cracking occurs as a result of the formation of the gamma-prime phase during the heat up to the annealing temperature. The formation of the strengthening gamma-prime phase in conjunction with the low ductility many of these alloys possess at intermediate temperatures, as well as the mechanical restraint typically imposed by the welding operation will often lead to cracking. The problem of strain age cracking can limit alloys to be used up to only a certain thickness since greater material thickness leads to greater mechanical restraint.
  • CHRT controlled heating rate tensile
  • the test sample is pulled to fracture at a constant engineering strain rate.
  • the test sample starts in the annealed (not age-hardened) condition, so that the gamma-prime phase is precipitating during the heat-up stage as would be the case in a welded component being subjected to a post-weld heat treatment.
  • the percent elongation to fracture in the test sample is taken as a measure of susceptibility to strain age cracking (lower elongation values suggesting greater susceptibility to strain age cracking).
  • the elongation in the CHRT is a function of test temperature and normally will exhibit a minimum at a particular temperature. The temperature at which this occurs is around 816°C (1500°F) for many wrought gamma-prime strengthened alloys.
  • High temperature strength has long been evaluated with the use of creep-rupture tests, where samples are isothermally subjected to a constant load until the sample fractures. The time to fracture, or rupture life, is then used as a measure of the alloy strength at that temperature.
  • Thermal stability is a measure of whether the alloy microstructure remains relatively unaffected during a thermal exposure. Many high-temperature alloys can form brittle intermetallic or carbide phases during thermal exposure. The presence of these phases can dramatically reduce the room-temperature ductility of the material. This loss of ductility can be effectively measured using a standard tensile test.
  • Rene-41 or R-41 alloy U.S. Patent No. 2,945,758
  • M-252 alloy U.S. Patent No. 2,747,993
  • the M-252 alloy has good creep strength and resistance to strain age cracking, but like R-41 alloy is limited by poor thermal stability.
  • the Pratt & Whitney developed alloy known commercially as WASPALOY alloy (apparently having no U.S. patent coverage) is another gamma-prime strengthened alloy intended for use in turbine engines and available in sheet form. However, this alloy has marginal creep strength above 1500°F, marginal thermal stability, and has fairly poor resistance to strain age cracking.
  • the alloy commercially known as 263 alloy ( U.S. Patent 3,222,165 ) was developed in the late 1950's and introduced in 1960 by Rolls-Royce Limited. This alloy has excellent thermal stability and resistance to strain age cracking, but has very poor creep strength at temperatures greater than 816°C (1500°F).
  • the PK-33 alloy ( U.S. Patent No. 3,248,213 ) was developed by the International Nickel Company and introduced in 1961.
  • US 3207599 also discloses a creep resistant nickel based alloy having good strain age ductility and weldability but contains silicon and manganese. As suggested by these examples, no currently commercially available alloys are available which possess the unique combination of three key properties: good creep strength and good thermal stability in the 871°C-927°C (1600 to 1700°F) temperature range as well as good resistance to strain age cracking.
  • the principal objective of this invention is to provide new wrought age-hardenable nickel-chromium-cobalt based alloys which are suitable for use in high temperature gas turbine transition ducts and other gas turbine components possessing a combination of three specific key properties, namely resistance to strain age cracking, good thermal stability, and good creep-rupture strength.
  • the wrought age-hardenable nickel-chromium-cobalt based alloys described here have sufficient creep strength, thermal stability, and resistance to strain age cracking to allow for service in sheet or plate form in gas turbine transition ducts as well as in other product forms and other demanding gas turbine applications.
  • This combination of critical properties is achieved through control of several critical elements each with certain functions.
  • the presence of gamma-prime forming elements such as aluminum, titanium, and niobium contribute significantly to the high creep-rupture strength through the formation of the gamma-prime phase during the age-hardening process.
  • the combined amount of aluminum, titanium, and niobium must be carefully controlled to allow for good resistance to strain age cracking.
  • Molybdenum and possibly tungsten are added to provide additional creep-rupture strength through solid solution strengthening. Again, however, the total combined molybdenum and tungsten concentration must be carefully controlled, in this case to ensure sufficient thermal stability of the alloy.
  • gamma-prime strengthened alloys Based on the projected requirements for the next generation of gas turbine transition ducts, gamma-prime strengthened alloys have significant potential. Three of the more critical properties are creep strength, weldability (i.e. strain age cracking resistance), and thermal stability. However, producing a gamma-prime strengthened alloy which excels in all three of these properties is not straightforward and no commercially available alloy was found which possessed all three properties to a sufficient degree.
  • the experimental alloys have been labeled A through Z.
  • the commercial alloys were HAYNES R-41 alloy, HAYNES WASPALOY alloy, HAYNES 263 alloy, M-252 alloy, and NIMONIC PK-33 alloy.
  • the alloys (including both the experimental and the commercial alloys) had a Cr content which ranged from 17.5 to 21.3 wt.%, as well as a cobalt content ranging from 8.3 to 19.6 wt.%.
  • the aluminum content ranged from 0.49 to 1.89 wt.%, the titanium content from 1.53 to 3.12 wt.%, and the niobium content ranged from nil to 0.79 wt.%.
  • the molybdenum content ranged from 3.2 to 10.5 wt.% and the tungsten ranged from nil up to 8.3 wt.%.
  • Intentional minor element additions carbon and boron ranged from 0.034 to 0.163 wt.% and from nil to 0.008 wt.%, respectively.
  • Iron ranged from nil to 3.6 wt.%.
  • the cold rolled sheets were annealed at temperatures between 1121-1190°C (2050 and 2175°F) as necessary to produce a fully recrystallized, equiaxed grain structure with an ASTM grain size between 4 and 5. Finally, the sheet material was given an age-hardening heat treatment of 802°C (1475°F) for 8 hours to produce the gamma-prime phase.
  • the commercial alloys HAYNES R-41 alloy, HAYNES WASPALOY alloy, HAYNES 263 alloy, and NIMONIC PK-33 alloy were obtained in sheet form in the mill annealed condition. Since no commercially available M-252 alloy sheet could be found, a 22 kg (50 lb). heat was produced for evaluation using the same method as described above for the experimental alloys. All five of the commercial alloys were given post-anneal age-hardening heat treatments according accepted standards. These heat treatments are reported in Table 2.
  • the critical property in this test is the tensile ductility, as measured by a measurement of the elongation to failure. Alloys with a greater ductility in this test are expected to have greater resistance to strain age cracking. The objective of the present study was to have a ductility of 4.5% or greater. Of the experimental alloys, only alloy W failed to meet this requirement.
  • the tensile ductility (measured as the percent elongation to failure) is plotted as a function of the compositional variable A1 + 0.56Ti + 0.29Nb (where the elemental compositions are in wt.%).
  • a line is drawn on the figure corresponding to a tensile ductility of 4.5%. All alloys plotted above this line (symbol: filled circles) were considered to have passed the controlled heating rate tensile test, while alloys plotted below the line (symbol: x-marks) were considered to have failed.
  • a dashed vertical line is drawn at a value of 2.9 wt.% for the compositional variable, Al + 0.56Ti + 0.29Nb.
  • a line is drawn on the figure corresponding to a tensile ductility of 20%. All alloys plotted above this line (symbol: filled circles) were considered to have passed the thermal stability test, while alloys plotted below the line (symbol: x-marks) were considered to have failed.
  • a dashed vertical line is drawn at a value of 9.5 wt.% for the compositional variable, Mo + 0.52W. All alloys with a value greater than 9.5 were found to fail the thermal stability test.
  • the third key property for the target application is creep strength.
  • the creep-rupture strength of the alloys was measured at 927°C (1700°F) with a load of 7 ksi. A rupture life of greater than 300 hours was the established goal.
  • the results for the experimental and commercial alloys are shown in Table 5. All of the experimental alloys were found to pass the goal, with the exception of alloys V, Y, and Z. The commercial alloys all passed with the exception of 263 alloy and WASPALOY alloy. Of the total of five alloys which failed the creep-rupture goal, three of them (alloys V and Z, as well as WASPALOY alloy) did not satisfy one or both of Eqs. (1) and (2) and were thermally unstable. Thermal instability can be a negative influence on creep strength.
  • alloy Y and 263 alloy both had a relatively low total content of the solid solution strengthening elements molybdenum and tungsten. Additionally, the 263 alloy had a low total content of the gamma-prime forming elements aluminum, titanium, and niobium.
  • the Eqs. (1) and (2) were modified respectfully as (where the elemental compositions are in wt.%): 2.2 ⁇ Al + 0.56 ⁇ Ti + 0.29 ⁇ Nb ⁇ 2.9 and 6.5 ⁇ Mo + 0.52 ⁇ W ⁇ 9.5
  • the acceptable alloys contained in weight percent 17.5 to 21.3 chromium, 8.3 to 14.2 cobalt, 4.3 to 9.3 molybdenum, up to 7.0 tungsten, 1.29 to 1.63 aluminum, 1.59 to 2.28 titanium, up to 0.79 niobium, 0.034 to 0.097 carbon, 0.002 to 0.007 boron and up to 2.6 iron.
  • alloys containing these elements within the following ranges and meeting Eqs.
  • the alloy may also contain tantalum, up to 1.5 wt. %, and one or more of magnesium, calcium, hafnium, zirconium, yttrium, cerium and lanthanum. Each of these seven elements may be present up to 0.05 wt. %.
  • the acceptable alloys had a range of values for Al + 0.56 Ti + 0.29 Nb of from 2.35 to 2.84 and a range for Mo + 0.52 W of from 7.1 to 9.3.
  • TABLE 5 Alloy Rupture Life (hours) A 304 B 560 C 481 D 375 E 346 F 522 G 584 H 764 I 410 J 767 K 560 L 522 M 581 N 401 O 403 P 664 Q 419 R 328 S 641 T 506 U 384 V 284 W 463 X 339 Y 271 Z 283 R-41 alloy 618 WASPALOY 243 263 alloy 139 M-252 alloy 392 PK-33 alloy 412
  • chromium Cr
  • the chromium level should be between 17 to 22 wt.%.
  • Co Co
  • Cobalt is a common element in many wrought gamma-prime strengthened alloys. Cobalt decreases the solubility of aluminum and titanium in nickel at lower temperatures allowing for a greater gamma-prime content for a given level of aluminum and titanium. It was found that Co levels of 8 to 15 wt.% are acceptable for the alloys of this invention.
  • Al aluminum
  • Ti titanium
  • Nb niobium
  • Mo molybdenum
  • W tungsten
  • Carbon (C) is a necessary component and contributes to creep-strength of the alloys of this invention through formation of carbides. Carbides are also necessary for proper grain size control. Carbon should be present in the amount of 0.01 to 0.2 wt.%.
  • Iron is not required, but typically will be present.
  • the presence of Fe allows economic use of revert materials, most of which contain residual amounts of Fe.
  • An acceptable, Fe-free alloy might be possible using new furnace linings and high purity charge materials.
  • the presented data indicate that levels up to at least 3.0 wt.% are acceptable.
  • Boron (B) is normally added to wrought gamma-prime strengthened alloys in small amounts to improve elevated temperature ductility. Too much boron may lead to weldability problems. The range is up to 0.015 wt.%.
  • Tantalum (Ta) is a gamma-prime forming element in this class of alloys. It is expected that tantalum could be partially substituted for aluminum, titanium, or niobium at levels up to 1.5 wt.%.
  • Silicon (Si) can be present as an impurity.
  • Copper (Cu) can be present as an impurity originating either from the use of revert materials or during the melting and processing of the alloy itself. It is expected that Cu could be present in amounts up to at least 0.5 wt.%.
  • magnesium (Mg) and calcium (Ca) is often employed during primary melting of nickel base alloys. It is expected that levels of these elements up to 0.05 wt.% could be present in alloys of this invention.
  • nickel based alloys to provide increased environmental resistance.
  • These elements include, but are not necessarily limited to lanthanum (La), cerium (Ce), yttrium (Y), zirconium (Zr), and hafnium (Hf). It is expected that amounts of each of these elements up to 0.5 wt.%, especially up to 0.05 wt.% could be present in alloys of this invention.
  • the alloys should exhibit comparable properties in other wrought forms (such as plates, bars, tubes, pipes, forgings, and wires) and in cast, spray-formed, or powder metallurgy forms, namely, powder, compacted powder and sintered compacted powder. Consequently, the present invention encompasses all forms of the alloy composition.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)
  • Powder Metallurgy (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Hydrogen, Water And Hydrids (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Coating By Spraying Or Casting (AREA)
  • Catalysts (AREA)

Claims (9)

  1. Alliage au nickel-chrome-cobalt présentant une composition constituée, en pourcentage massique, de : 17 à 22 chrome 8 à 15 cobalt 4,0 à 9,5 molybdène jusqu'à 7,0 tungstène 1,28 à 1,65 aluminium 1,50 à 2,30 titane jusqu'à 0,80 niobium 0,01 à 0,2 carbone jusqu'à 0,015 bore
    et contenant également du fer en quantité jusqu'à 3,0 fer
    et contenant également au moins l'un parmi jusqu'à 1,5 tantale jusqu'à 0,5 cuivre
    et contenant également au moins un élément parmi jusqu'à 0,5 magnésium jusqu'à 0,5 calcium jusqu'à 0,5 hafnium jusqu'à 0,5 zirconium jusqu'à 0,5 yttrium jusqu'à 0,5 cérium jusqu'à 0,5 lanthane
    le solde étant constitué de nickel et d'impuretés, l'alliage satisfaisant en outre les relations de composition qui suivent, définies avec les quantités des éléments exprimées en pourcentage massique: 2 , 2 < Al + 0 , 56 Ti + 0 , 29 Nb < 2 , 9
    Figure imgb0013
    6 , 5 < Mo + 0 , 52 W < 9 , 5
    Figure imgb0014
  2. Alliage au nickel-chrome-cobalt selon la revendication 1, dans lequel l'alliage est sous une forme corroyée choisie dans le groupe comprenant tôles, plaques, barres, fils, tubes, conduites et produits forgés.
  3. Alliage au nickel-chrome-cobalt selon la revendication 1, dans lequel l'alliage est sous une forme coulée.
  4. Alliage au nickel-chrome-cobalt selon la revendication 1, dans lequel l'alliage a été formé par pulvérisation.
  5. Alliage au nickel-chrome-cobalt selon la revendication 1, dans lequel l'alliage est sous la forme d'une poudre métallurgique.
  6. Alliage au nickel-chrome-cobalt selon l'une quelconque des revendications précédentes, présentant une composition constituée, en pourcentage massique, de : 17,5 à 21,3 chrome 8,3 à 14,2 cobalt 4,3 à 9,3 molybdène jusqu'a 7,0 tungstène 1,29 à 1,63 aluminium 1,59 à 2,28 titane jusqu'à 0,79 niobium 0,034 à 0,097 carbone 0,002 à 0,007 bore jusqu'à 2,6 fer
    le solde étant constitué de nickel et d'impuretés, l'alliage satisfaisant en outre les relations de composition qui suivent, définies avec les quantités des éléments exprimées en pourcentage massique: 2 , 35 < Al + 0.56 Ti + 0 , 29 Nb < 2 , 84
    Figure imgb0015
    7 , 2 < Mo + 0 , 52 W < 9 , 3
    Figure imgb0016
  7. Alliage au nickel-chrome-cobalt selon la revendication 1 ou 6, dans lequel l'alliage est façonné en un composant d'un moteur à turbine à gaz.
  8. Moteur à turbine à gaz du type possédant plusieurs composants métalliques, dans lequel l'un au moins des composants métalliques est en un alliage selon la revendication 1 ou 6.
  9. Moteur à turbine à gaz perfectionné selon la revendication 9, dans lequel le composant métallique au moins présent est un conduit de transition.
EP05018830A 2004-09-03 2005-08-30 Alliage de Ni-Cr-Co-Mo pour un moteur à turbine à gaz Active EP1640465B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PL05018830T PL1640465T3 (pl) 2004-09-03 2005-08-30 Stop Ni-Cr-Co-Mo do zaawansowanych silników turbin gazowych

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US10/934,920 US20060051234A1 (en) 2004-09-03 2004-09-03 Ni-Cr-Co alloy for advanced gas turbine engines

Publications (3)

Publication Number Publication Date
EP1640465A2 EP1640465A2 (fr) 2006-03-29
EP1640465A3 EP1640465A3 (fr) 2006-04-05
EP1640465B1 true EP1640465B1 (fr) 2009-10-28

Family

ID=35198601

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05018830A Active EP1640465B1 (fr) 2004-09-03 2005-08-30 Alliage de Ni-Cr-Co-Mo pour un moteur à turbine à gaz

Country Status (16)

Country Link
US (1) US20060051234A1 (fr)
EP (1) EP1640465B1 (fr)
JP (1) JP4861651B2 (fr)
KR (1) KR100788527B1 (fr)
CN (2) CN1743483A (fr)
AT (1) ATE447048T1 (fr)
AU (1) AU2005205736B2 (fr)
CA (1) CA2517056A1 (fr)
DE (1) DE602005017338D1 (fr)
DK (1) DK1640465T3 (fr)
ES (1) ES2335503T3 (fr)
GB (1) GB2417729B (fr)
MX (1) MXPA05009401A (fr)
PL (1) PL1640465T3 (fr)
RU (1) RU2377336C2 (fr)
TW (1) TWI359870B (fr)

Families Citing this family (64)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SE528807C2 (sv) * 2004-12-23 2007-02-20 Siemens Ag Komponent av en superlegering innehållande palladium för användning i en högtemperaturomgivning samt användning av palladium för motstånd mot väteförsprödning
EP1777312B1 (fr) * 2005-10-24 2008-09-10 Siemens Aktiengesellschaft Matériau d'apport pour soudage, utilisation du matériau d'apport pour soudage et procédé de soudage
EP1835040A1 (fr) * 2006-03-17 2007-09-19 Siemens Aktiengesellschaft Matériau d'apport, utilisation du matériau d'apport et procédé de soudage d'une composante structurelle
JP5201708B2 (ja) * 2006-04-14 2013-06-05 三菱マテリアル株式会社 Ni基耐熱合金溶接用ワイヤー
JP5147037B2 (ja) * 2006-04-14 2013-02-20 三菱マテリアル株式会社 ガスタービン燃焼器用Ni基耐熱合金
JP4805803B2 (ja) * 2006-12-19 2011-11-02 株式会社東芝 Ni基合金およびタービンロータ
US8506883B2 (en) * 2007-12-12 2013-08-13 Haynes International, Inc. Weldable oxidation resistant nickel-iron-chromium-aluminum alloy
JP5232492B2 (ja) * 2008-02-13 2013-07-10 株式会社日本製鋼所 偏析性に優れたNi基超合金
EP2103700A1 (fr) * 2008-03-14 2009-09-23 Siemens Aktiengesellschaft Alliages à base de nickel et leur utilisateur, pale ou aube de turbine et turbine à gaz
JP5254693B2 (ja) * 2008-07-30 2013-08-07 三菱重工業株式会社 Ni基合金用溶接材料
CN102171373B (zh) * 2008-10-02 2013-06-19 新日铁住金株式会社 Ni基耐热合金
JP2010150585A (ja) * 2008-12-24 2010-07-08 Toshiba Corp 高温強度特性、鋳造性および溶接性に優れた、蒸気タービンの鋳造部品用のNi基合金、蒸気タービンのタービンケーシング、蒸気タービンのバルブケーシング、および蒸気タービンのノズルボックス、および蒸気タービンの配管
JP5127749B2 (ja) * 2009-03-18 2013-01-23 株式会社東芝 蒸気タービンのタービンロータ用Ni基合金およびそれを用いた蒸気タービンのタービンロータ
JP2010249050A (ja) * 2009-04-16 2010-11-04 Toshiba Corp 蒸気タービンおよび蒸気タービン設備
FR2949234B1 (fr) * 2009-08-20 2011-09-09 Aubert & Duval Sa Superalliage base nickel et pieces realisees en ce suparalliage
JP5550298B2 (ja) * 2009-10-05 2014-07-16 株式会社東芝 蒸気タービンの鍛造部品用のNi基合金、蒸気タービンのタービンロータ、蒸気タービンの動翼、蒸気タービンの静翼、蒸気タービン用螺合部材、および蒸気タービン用配管
DK2511389T3 (en) * 2009-12-10 2015-02-23 Nippon Steel & Sumitomo Metal Corp Austenitic heat resistant alloy
JP5572842B2 (ja) * 2010-11-30 2014-08-20 独立行政法人日本原子力研究開発機構 析出強化型Ni基耐熱合金およびその製造方法
JP5792500B2 (ja) * 2011-04-11 2015-10-14 株式会社日本製鋼所 Ni基超合金材およびタービンロータ
ITMI20110830A1 (it) * 2011-05-12 2012-11-13 Alstom Technology Ltd Valvola per una turbina a vapore 700 c
EP2546021A1 (fr) * 2011-07-12 2013-01-16 Siemens Aktiengesellschaft Alliage à base de nickel, utilisation et procédé de fabrication
CN103160709A (zh) * 2011-12-12 2013-06-19 北京有色金属研究总院 一种刷密封用高性能合金刷丝及其制备方法
JP5919980B2 (ja) * 2012-04-06 2016-05-18 新日鐵住金株式会社 Ni基耐熱合金
JP2014005528A (ja) * 2012-05-29 2014-01-16 Toshiba Corp Ni基耐熱合金およびタービン用部品
JP5981251B2 (ja) * 2012-07-20 2016-08-31 株式会社東芝 鍛造用Ni基合金および鍛造部品
JP5743161B2 (ja) * 2012-09-24 2015-07-01 株式会社日本製鋼所 耐Mg溶損特性に優れた被覆構造材
JP6012454B2 (ja) * 2012-12-21 2016-10-25 三菱日立パワーシステムズ株式会社 鍛造部材並びにこれを用いた蒸気タービンロータ、蒸気タービン動翼、ボイラ配管、ボイラチューブ及び蒸気タービンボルト
KR101476145B1 (ko) * 2012-12-21 2014-12-24 한국기계연구원 도재 금속간 접합 특성과 기계적 특성이 우수한 니켈-크롬-코발트계 도재소부용 합금
WO2014126086A1 (fr) * 2013-02-13 2014-08-21 日立金属株式会社 Poudre métallique, outil pour corroyage et procédé pour la fabrication d'outil pour corroyage
US9346101B2 (en) 2013-03-15 2016-05-24 Kennametal Inc. Cladded articles and methods of making the same
MX2015012388A (es) * 2013-03-15 2016-01-12 Haynes Int Inc Aleaciones de ni-cr-co-mo-ai fabricables, de alta resistencia, resistentes a la oxidacion.
US9862029B2 (en) 2013-03-15 2018-01-09 Kennametal Inc Methods of making metal matrix composite and alloy articles
JP6393993B2 (ja) 2013-07-12 2018-09-26 大同特殊鋼株式会社 高温強度に優れた熱間鍛造可能なNi基超合金
JP6223743B2 (ja) * 2013-08-07 2017-11-01 株式会社東芝 Ni基合金の製造方法
DE102014200121A1 (de) * 2014-01-08 2015-07-09 Siemens Aktiengesellschaft Manganhaltige Hochtemperaturlotlegierung auf Kobaltbasis, Pulver, Bauteil und Lotverfahren
RU2542195C1 (ru) * 2014-02-19 2015-02-20 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для литья сопловых лопаток с равноосной структурой газотурбинных установок
RU2538054C1 (ru) * 2014-02-19 2015-01-10 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для изготовления лопаток газотурбинных установок
RU2542194C1 (ru) * 2014-02-19 2015-02-20 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для литья рабочих лопаток газотурбинных установок
CN103924126B (zh) * 2014-04-24 2016-07-13 四川六合锻造股份有限公司 一种高温合金材料及其制备方法
RU2570130C1 (ru) * 2014-06-11 2015-12-10 Открытое акционерное общество Научно-производственное объединение "Центральный научно-исследовательский институт технологии машиностроения" ОАО НПО "ЦНИИТМАШ" Жаропрочный сплав на основе никеля для литья лопаток газотурбинных установок
CN104087769B (zh) * 2014-06-25 2017-02-15 盐城市鑫洋电热材料有限公司 一种改善镍基电热合金性能的方法
RU2564653C1 (ru) * 2014-08-08 2015-10-10 Общество с ограниченной ответственностью "Научно-производственное объединение "Защитные покрытия" Жаропрочный сплав на основе никеля для изготовления и ремонта лопаток газотурбинных установок
JP5995158B2 (ja) * 2014-09-29 2016-09-21 日立金属株式会社 Ni基超耐熱合金
CN104862533B (zh) * 2015-04-26 2016-08-17 北京金恒博远冶金技术发展有限公司 发动机涡轮用高温合金材料及其制备方法
JP6499546B2 (ja) * 2015-08-12 2019-04-10 山陽特殊製鋼株式会社 積層造形用Ni基超合金粉末
CN106676331B (zh) * 2016-12-22 2018-10-09 钢铁研究总院 一种耐高温高弹镍铬合金带材及其制备方法
US11117208B2 (en) 2017-03-21 2021-09-14 Kennametal Inc. Imparting wear resistance to superalloy articles
US20180305792A1 (en) * 2017-04-21 2018-10-25 Crs Holdings, Inc. Precipitation Hardenable Cobalt-Nickel Base Superalloy And Article Made Therefrom
JP7431730B2 (ja) * 2017-11-10 2024-02-15 ヘインズ インターナショナル,インコーポレーテッド Ni-Cr-Co-Mo-Ti-Al合金の延性を向上させるための熱処理
WO2019099719A1 (fr) * 2017-11-16 2019-05-23 Arconic Inc. Alliages de cobalt-chrome-aluminium et leurs procédés de production
KR102114253B1 (ko) * 2018-02-26 2020-05-22 한국기계연구원 크리프 강도가 우수한 Ni계 초내열합금 및 그 제조방법
CN108330335A (zh) * 2018-03-15 2018-07-27 江苏理工学院 一种高温耐热合金及其制造工艺
CN108441705B (zh) * 2018-03-16 2020-06-09 中国航发北京航空材料研究院 一种高强度镍基变形高温合金及其制备方法
RU2674274C1 (ru) * 2018-03-22 2018-12-06 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт авиационных материалов" (ФГУП "ВИАМ") Жаропрочный литейный сплав на основе никеля и изделие, выполненное из него
KR102139177B1 (ko) * 2018-03-28 2020-07-30 한국기계연구원 크립 특성이 우수한 단련용 니켈기 초내열합금 및 이의 제조방법
DE102018208736A1 (de) * 2018-06-04 2019-12-05 Siemens Aktiengesellschaft Y, Y' gehärtete Kobalt-Nickel-Basislegierung, Pulver, Komponente und Verfahren
CN110551920B (zh) * 2019-08-30 2020-11-17 北京北冶功能材料有限公司 一种高性能易加工镍基变形高温合金及其制备方法
CN111636013A (zh) * 2020-06-12 2020-09-08 江苏银环精密钢管有限公司 一种新型电站用镍铬钴钼高温合金无缝管及制造方法
CN114196854B (zh) * 2020-09-02 2022-07-15 宝武特种冶金有限公司 一种高强度难变形镍基高温合金及其制备方法
CN112575228B (zh) * 2020-11-12 2021-09-03 中国联合重型燃气轮机技术有限公司 抗蠕变、长寿命镍基变形高温合金及其制备方法和应用
CN113046600A (zh) * 2021-03-15 2021-06-29 瑞安市石化机械厂 一种Incone625合金材料及其在高强度细长轴上的运用
CN114032421B (zh) * 2022-01-07 2022-04-08 北京钢研高纳科技股份有限公司 一种增材制造用镍基高温合金、镍基高温合金粉末材料和制品
CN115505788B (zh) * 2022-09-20 2023-06-27 北京北冶功能材料有限公司 一种抗应变时效开裂的镍基高温合金及其制备方法和应用
CN116676510B (zh) * 2023-05-22 2024-04-19 烟台大学 一种镍钴基铸造多晶高温合金材料及其制备方法

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2048167A (en) * 1936-04-11 1936-07-21 Int Nickel Co Nickel-chromium-iron-titanium alloys
US2515185A (en) * 1943-02-25 1950-07-18 Int Nickel Co Age hardenable nickel alloy
US2570193A (en) * 1946-04-09 1951-10-09 Int Nickel Co High-temperature alloys and articles
US2712498A (en) * 1948-06-01 1955-07-05 Rolls Royce Nickel chromium alloys having high creep strength at high temperatures
US2688536A (en) * 1951-01-27 1954-09-07 Gen Motors Corp High-temperature creep resistant alloy
US2747993A (en) * 1951-12-26 1956-05-29 Gen Electric High temperature nickel-base alloy
US2793950A (en) * 1953-07-03 1957-05-28 Union Carbide & Carbon Corp Heat-resistant nickel-base sheet alloy
US2805154A (en) * 1953-11-02 1957-09-03 Nat Res Corp Nickel-base alloy
US2809110A (en) * 1954-08-05 1957-10-08 Utica Drop Forge & Tool Corp Alloy for high temperature applications
US3047381A (en) * 1958-02-03 1962-07-31 Gen Motors Corp High temperature heat and creep resistant alloy
US2945758A (en) * 1958-02-17 1960-07-19 Gen Electric Nickel base alloys
GB880805A (en) * 1958-11-26 1961-10-25 Rolls Royce Nickel-chromium-cobalt alloys
US3065072A (en) * 1959-04-02 1962-11-20 Int Nickel Co Alloys with a nickel-chromium base
US3094414A (en) * 1960-03-15 1963-06-18 Int Nickel Co Nickel-chromium alloy
GB919709A (en) * 1960-03-15 1963-02-27 Mond Nickel Co Ltd Improvements in nickel-chromium-cobalt alloys
US3107167A (en) * 1961-04-07 1963-10-15 Special Metals Inc Hot workable nickel base alloy
GB956405A (en) * 1961-11-21 1964-04-29 Mond Nickel Co Ltd Improvements relating to nickel-chromium-cobalt alloys
DE1213618B (de) * 1961-11-21 1966-03-31 Int Nickel Ltd Verwendung einer Nickel-Chrom-Kobalt-Legierung als Werkstoff fuer gut verform- und schweissbare Bleche
US3390023A (en) * 1965-02-04 1968-06-25 North American Rockwell Method of heat treating age-hardenable alloys
GB1029609A (en) * 1965-04-07 1966-05-18 Rolls Royce Nickel-chromium-molybdenum-cobalt alloy
GB1070099A (en) * 1965-06-25 1967-05-24 Int Nickel Ltd Welding high-temperature alloys
GB1190047A (en) * 1967-08-18 1970-04-29 Int Nickel Ltd Nickel-Chromium-Iron Alloys
JPH01129942A (ja) * 1987-11-13 1989-05-23 Daido Steel Co Ltd 熱間加工性に優れたNi基合金
JP2778705B2 (ja) * 1988-09-30 1998-07-23 日立金属株式会社 Ni基超耐熱合金およびその製造方法
JPH06172900A (ja) * 1992-12-09 1994-06-21 Hitachi Metals Ltd 樹脂成形用スクリュ材
KR100336803B1 (ko) * 1994-06-20 2002-11-14 유나이티드 테크놀로지스 코포레이션 우수한 내산화성을 가지는 다결정질 니켈초합금
ATE218167T1 (de) * 1995-12-21 2002-06-15 Teledyne Ind Nickel-chrom-cobalt-legierung mit verbesserten hochtemperatureigenschaften
JPH09268337A (ja) * 1996-04-03 1997-10-14 Hitachi Metals Ltd 鍛造製高耐食超耐熱合金
EP1154027B1 (fr) * 1999-01-28 2004-11-10 Sumitomo Electric Industries, Ltd. Fil en alliage resistant a la chaleur
JP2004190060A (ja) * 2002-12-09 2004-07-08 Hitachi Metals Ltd エンジンバルブ用耐熱合金

Also Published As

Publication number Publication date
US20060051234A1 (en) 2006-03-09
RU2005117714A (ru) 2006-12-20
AU2005205736B2 (en) 2012-02-23
EP1640465A2 (fr) 2006-03-29
AU2005205736A1 (en) 2006-03-23
ES2335503T3 (es) 2010-03-29
PL1640465T3 (pl) 2010-06-30
RU2377336C2 (ru) 2009-12-27
KR20060050963A (ko) 2006-05-19
JP2006070360A (ja) 2006-03-16
KR100788527B1 (ko) 2007-12-24
EP1640465A3 (fr) 2006-04-05
CN102586652A (zh) 2012-07-18
GB2417729B (en) 2008-01-16
ATE447048T1 (de) 2009-11-15
DE602005017338D1 (de) 2009-12-10
GB0517657D0 (en) 2005-10-05
MXPA05009401A (es) 2006-03-07
CA2517056A1 (fr) 2006-03-03
TWI359870B (en) 2012-03-11
TW200609359A (en) 2006-03-16
JP4861651B2 (ja) 2012-01-25
GB2417729A (en) 2006-03-08
DK1640465T3 (da) 2010-03-01
CN102586652B (zh) 2016-05-11
CN1743483A (zh) 2006-03-08

Similar Documents

Publication Publication Date Title
EP1640465B1 (fr) Alliage de Ni-Cr-Co-Mo pour un moteur à turbine à gaz
US8066938B2 (en) Ni-Cr-Co alloy for advanced gas turbine engines
US10358699B2 (en) Fabricable, high strength, oxidation resistant Ni—Cr—Co—Mo—Al Alloys
US3046108A (en) Age-hardenable nickel alloy
EP1867740B1 (fr) Superalliage à base de Ni à faible expansion thermique
EP2479302B1 (fr) Alliage thermorésistant à base de Ni, composant de turbine à gaz et turbine à gaz
EP2675931B1 (fr) Alliage refractaire de ni-mo-cr à faible coefficient de dilatation thermique
US7922969B2 (en) Corrosion-resistant nickel-base alloy
EP2302085B1 (fr) Alliage moulé à base de nickel
CA2560147C (fr) Alliage de nickel-chrome-cobalt (ni-cr-co) pour turbines a gaz perfectionnees
US11814704B2 (en) High strength thermally stable nickel-base alloys

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20061005

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

17Q First examination report despatched

Effective date: 20061107

17Q First examination report despatched

Effective date: 20061107

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005017338

Country of ref document: DE

Date of ref document: 20091210

Kind code of ref document: P

REG Reference to a national code

Ref country code: RO

Ref legal event code: EPE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ISLER & PEDRAZZINI AG

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: GR

Ref legal event code: EP

Ref document number: 20100400199

Country of ref document: GR

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

LTIE Lt: invalidation of european patent or patent extension

Effective date: 20091028

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2335503

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100301

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100228

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

REG Reference to a national code

Ref country code: SK

Ref legal event code: T3

Ref document number: E 6725

Country of ref document: SK

REG Reference to a national code

Ref country code: HU

Ref legal event code: AG4A

Ref document number: E007235

Country of ref document: HU

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20091028

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100128

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20100729

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IE

Payment date: 20110825

Year of fee payment: 7

Ref country code: MC

Payment date: 20110802

Year of fee payment: 7

Ref country code: LU

Payment date: 20110901

Year of fee payment: 7

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120831

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120830

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230517

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: TR

Payment date: 20230810

Year of fee payment: 19

Ref country code: RO

Payment date: 20230803

Year of fee payment: 19

Ref country code: IT

Payment date: 20230822

Year of fee payment: 19

Ref country code: ES

Payment date: 20230901

Year of fee payment: 19

Ref country code: CZ

Payment date: 20230810

Year of fee payment: 19

Ref country code: CH

Payment date: 20230903

Year of fee payment: 19

Ref country code: AT

Payment date: 20230802

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SK

Payment date: 20230801

Year of fee payment: 19

Ref country code: SE

Payment date: 20230827

Year of fee payment: 19

Ref country code: PL

Payment date: 20230802

Year of fee payment: 19

Ref country code: HU

Payment date: 20230809

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20240826

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240828

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GR

Payment date: 20240827

Year of fee payment: 20

Ref country code: DK

Payment date: 20240826

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240827

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20240827

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240826

Year of fee payment: 20