EP1636530A1 - Kältegerät mit gesteuerter entfeuchtung - Google Patents

Kältegerät mit gesteuerter entfeuchtung

Info

Publication number
EP1636530A1
EP1636530A1 EP04739760A EP04739760A EP1636530A1 EP 1636530 A1 EP1636530 A1 EP 1636530A1 EP 04739760 A EP04739760 A EP 04739760A EP 04739760 A EP04739760 A EP 04739760A EP 1636530 A1 EP1636530 A1 EP 1636530A1
Authority
EP
European Patent Office
Prior art keywords
fan
evaporator
switched
refrigerator according
storage compartment
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP04739760A
Other languages
English (en)
French (fr)
Other versions
EP1636530B1 (de
Inventor
Helmut Konopa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Hausgeraete GmbH
Original Assignee
BSH Bosch und Siemens Hausgeraete GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BSH Bosch und Siemens Hausgeraete GmbH filed Critical BSH Bosch und Siemens Hausgeraete GmbH
Publication of EP1636530A1 publication Critical patent/EP1636530A1/de
Application granted granted Critical
Publication of EP1636530B1 publication Critical patent/EP1636530B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/042Air treating means within refrigerated spaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D29/00Arrangement or mounting of control or safety devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/025Compressor control by controlling speed
    • F25B2600/0251Compressor control by controlling speed with on-off operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/11Fan speed control
    • F25B2600/112Fan speed control of evaporator fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/02Humidity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D17/00Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces
    • F25D17/04Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection
    • F25D17/06Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation
    • F25D17/062Arrangements for circulating cooling fluids; Arrangements for circulating gas, e.g. air, within refrigerated spaces for circulating air, e.g. by convection by forced circulation in household refrigerators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2317/00Details or arrangements for circulating cooling fluids; Details or arrangements for circulating gas, e.g. air, within refrigerated spaces, not provided for in other groups of this subclass
    • F25D2317/04Treating air flowing to refrigeration compartments
    • F25D2317/041Treating air flowing to refrigeration compartments by purification
    • F25D2317/0411Treating air flowing to refrigeration compartments by purification by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2400/00General features of, or devices for refrigerators, cold rooms, ice-boxes, or for cooling or freezing apparatus not covered by any other subclass
    • F25D2400/04Refrigerators with a horizontal mullion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/12Sensors measuring the inside temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25DREFRIGERATORS; COLD ROOMS; ICE-BOXES; COOLING OR FREEZING APPARATUS NOT OTHERWISE PROVIDED FOR
    • F25D2700/00Means for sensing or measuring; Sensors therefor
    • F25D2700/14Sensors measuring the temperature outside the refrigerator or freezer

Definitions

  • the present invention relates to a no-frost refrigerator and an operating method for such a device.
  • an evaporator is arranged in a chamber separated from a storage compartment for refrigerated goods, and heat is exchanged between the chamber and the storage compartment, through which the storage compartment is cooled, by cooling and drying air into the storage compartment using a fan on the evaporator blown and relatively warm, humid air is drawn into the chamber from the storage compartment.
  • the storage compartment is not only cooled, but also dehumidified.
  • the moisture condenses on the evaporator.
  • This dehumidification prevents condensation on the storage shelves and refrigerated goods from being deposited under critical climatic conditions, especially when using the refrigerator in a warm environment with high air humidity.
  • this advantage can turn into a disadvantage in less critical environmental conditions if stored food is dried out by the intensive dehumidification.
  • the circulation capacity of the fan of such a refrigeration device By varying the circulation capacity of the fan of such a refrigeration device, the heat flow between the two at a given temperature difference between the storage compartment of the refrigeration device and the evaporator is also changed. This means that a reduction in the circulation capacity leads to a reduced heat exchange and thus to a greater cooling of the evaporator. This increased cooling results in more intensive drying of the air flowing past the evaporator.
  • the reduced circulation capacity means that when the evaporator and fan are switched on, the cooling of the storage compartment is slower takes place than with a higher circulation capacity, so that the duty cycle of the evaporator is extended. This extension compensates for the reduced circulation capacity and leads to the fact that more moisture is trapped in the course of a switch-on phase of the evaporator with a low circulation capacity than with a high one.
  • a variable circulation capacity of the evaporator can be realized in a simple manner by making the fan temporarily switchable in the switched-on phase of the evaporator.
  • a control circuit for controlling the operation of the evaporator and the fan is provided, which is set up to operate the fan intermittently when the evaporator is switched on and thereby throttle its average circulation capacity compared to a continuous operation.
  • a selector switch can be provided on the refrigeration device, which enables a user to set a desired duty cycle for the intermittent operation of the fan and thus to manually adjust the drying effect of the refrigeration device to the need.
  • the control circuit is connected to at least one climate sensor for detecting a climate parameter such as that
  • the fan can be set to different non-disappearing speeds in the switched-on phase of the evaporator in order to adapt the mean circulation capacity to the demand.
  • a selector switch can be provided, which allows a user to specify a desired speed of rotation of a fan control circuit, or the control circuit can be coupled to at least one climate sensor in order to determine the circulation capacity of the fan on the basis of a climate parameter detected by this sensor and a predefined one Automatically control target humidity.
  • the invention also relates to a method for operating a refrigeration device of the type described above, comprising the steps:
  • the estimate is preferably a humidity measurement carried out directly in the storage compartment concerned. Then it is possible in particular to take into account the influences of the operation of the evaporator and the fan on the air humidity in the storage compartment when selecting the circulation capacity. In principle, however, it is also possible to estimate the air humidity in the storage compartment on the basis of variables correlated with it, such as the temperature and air humidity of the environment, and to select the circulating capacity depending on the result of the estimation.
  • FIG. 1 shows a schematic illustration of a no-frost refrigerator according to the invention
  • Figure 2 is a timing diagram of the operation of the evaporator and fan according to a first embodiment of the invention.
  • Figure 3 is a timing diagram analogous to that of Figure 2 for a second embodiment of the invention.
  • FIG. 1 is a schematic representation of a combination refrigerator, on which the present invention is implemented.
  • a refrigerator compartment 1 and a freezer compartment 2 form two temperature zones of the refrigerator.
  • a refrigerant circuit comprises a compressor 3, which pumps a compressed refrigerant one after the other through two evaporators 4, 5 of the freezer compartment 2 or the refrigerator compartment 1, and a heat exchanger 6 through which the refrigerant expanded in the evaporators 4, 5 passes before it returns to the Compressor 3 occurs.
  • the evaporator 5 assigned to the cooling compartment 1 is accommodated in a chamber 8 separated from the cooling compartment 1 by a thermally insulating wall 7.
  • the chamber 8 communicates with the cooling compartment 1 via air inlet and outlet openings, a fan 9 for forcibly circulating air being arranged between the chamber 8 and the cooling compartment 1 in one of these.
  • a control circuit 10 is connected to a temperature sensor 12 arranged in the refrigerator compartment and via control lines to the compressor 3 and the fan 9 and is able to control the compressor 3 and the fan 9 - and indirectly via the compressor 3 the evaporators 4, 5 - in Depending on a temperature detected by the temperature sensor 12 on or off.
  • the control circuit 10 is also connected to an air humidity sensor 13 which is arranged in the cooling compartment 1.
  • a control switch 10, which can be operated by a user and which allows a target value for the air humidity in the cooling compartment 1 to be set, can be provided on the control circuit 10.
  • the air humidity sensor 13 in the cooling compartment 1 can also be replaced as a variant by an air humidity sensor outside the cooling compartment and / or a sensor for the ambient temperature of the refrigerator, since their measured values allow conclusions to be drawn about the air humidity in the cooling compartment 1.
  • FIG. 2 illustrates the mode of operation of the control circuit 10 on the basis of the time profiles of a plurality of operating parameters of the refrigeration device.
  • the curve 3 ' indicates the operating state of the compressor 3. At time t 0 it is switched off; as soon as the temperature sensor 12 registers that an upper limit temperature has been exceeded, at time ti, it is switched on until time t 2 falls below a lower limit temperature in the cooling compartment 1. From this time, the cooling compartment 1 heats up again until a new start-up phase of the compressor 3 begins at t.
  • the humidity detected by the sensor 13 in the cooling compartment 1 is at a constant, low level.
  • the fan 9 also starts at the time ti, as shown by a curve 9 '.
  • the temperature of the evaporator 5, represented by a curve 5 ' decreases from a rest value T 0 to a value 1 ⁇ .
  • Moisture from the air circulated by the fan 9 condenses on the evaporator 5, so that the air humidity 13 'slowly decreases until the time t 2 when the fan 9 is switched off. From the time t 3 , the moisture 13 'rises sharply, for example because the door of the refrigeration device is opened and warm, moist air penetrates from the outside.
  • the control circuit 10 recognizes that more intensive drying is required and operates the fan 9 when the compressor 3 is switched on again at the time t 4 , intermittently with a pulse duty factor which is selected as a function of the atmospheric humidity recorded at the time t 4 .
  • the switch-on period t 4 to t 5 is therefore longer than the period ⁇ to t 2 , and the temperature T 2 of the evaporator 5 reached during this period is lower than Ti. This lower temperature T 2 leads to the air flowing past the evaporator 5 is dried more effectively, and due to the increased duty cycle of the compressor 3, a low air humidity value is finally reached again.
  • the duty cycle with which the control circuit 10 operates the fan during the switch-on phases of the evaporator is, in the simplest case, a step function which has the value 1 for low atmospheric humidities and a non-vanishing value less than 1 for high atmospheric humidities; it is also possible to use a step function with a large number of duty cycle values that decrease with increasing humidity or a continuous function for control purposes.
  • the control circuit 10 is designed to set different speeds of the fan 9 as a function of a measured air humidity.
  • the operation of this embodiment is shown in Figure 3. If the air humidity is low, the fan 9 runs at maximum speed in a switch-on phase of the evaporator 4, and the chronological courses of the switch-on and switch-off phases, evaporator temperature and air humidity are the same as in the case of FIG. 2. As a result, the diagram of the figure differs 3 up to time t not from that of FIG. 2. At time t, the control circuit 10 uses the high humidity value measured at this time to select a speed of the fan 9 which is less than its maximum speed.
  • the air humidity decreases continuously, and accordingly the speed of the fan 9, which the control circuit 10 selects on the basis of the measured air humidity, and with increasing circulation capacity of the fan 9, the temperature of the evaporator 5 also rises to a high level Part of the time interval t 4 to t 5 continuously.
  • FIGS. 2 and 3 show the case of rapid drying out, in which a single switch-on phase t to t 5 is sufficient to reduce the air humidity in the cooling compartment Target value.
  • the drying process can also be spread over several successive switch-on phases.
  • the maximum circulation capacity of the fan 9 corresponds in each case to a desired low air humidity value in the cooling compartment, so that increased drying can be achieved by throttling the circulation capacity.
  • Temperature of the evaporator 5 whose drying effect is weakened. This also makes it possible to specifically increase the humidity in the cooling compartment 1 if it drops below a desired value.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Mechanical Engineering (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Cold Air Circulating Systems And Constructional Details In Refrigerators (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)
  • Air Conditioning Control Device (AREA)
  • Drying Of Solid Materials (AREA)

Abstract

Bei einem No-Frost-Kältegerät mit wenigstens einem Lagerfach (1), einem in einer vom Lagerfach (1) getrennten Kammer (8) angeordneten, abwechselnd ein- und ausgeschalteten Verdampfer (5) und einem Ventilator (9) zum Umwälzen von Luft zwischen dem Lagerfach (1) und der Kammer (8) des Verdampfers (5), ist die mittlere Umwälzleistung des Ventilators (9) in einer eingeschalteten Phase des Verdampfers (5) variabel gemacht, um durch Heraufsetzen der Umwälzleistung die Temperatur des Verdampfers zu erhöhen und die Dauer der Einschaltphasen des Verdampfers zu verkürzen und so die Entfeuchtung im Lagerfach zu reduzieren bzw. um durch Herabsetzen der Umwälzleistung die Temperatur des Verdampfers zu senken und die Dauer der Einschaltphasen des Verdampfers zu verlängern und so die Entfeuchtung im Lagerfach zu steigern.

Description

Kältegerät mit gesteuerter Entfeuchtung
Die vorliegende Erfindung betrifft ein No-Frost-Kältegerät und ein Betriebsverfahren für ein solches Gerät.
Bei derartigen Kältegeräten ist ein Verdampfer in einer von einem Lagerfach für Kühlgut getrennten Kammer angeordnet, und ein Wärmeaustausch zwischen der Kammer und dem Lagerfach, durch den das Lagerfach gekühlt wird, erfolgt, indem mit Hilfe eines Ventilators am Verdampfer gekühlte und getrocknete Luft in das Lagerfach geblasen und relativ warme, feuchte Luft aus dem Lagerfach in die Kammer gesaugt wird. Dabei wird das Lagerfach nicht nur abgekühlt, sondern auch entfeuchtet. Die Feuchtigkeit schlägt sich am Verdampfer nieder. Durch diese Entfeuchtung wird verhindert, dass sich unter kritischen klimatischen Verhältnissen, insbesondere bei Einsatz des Kältegeräts in warmer Umgebung bei hoher Luftfeuchtigkeit, Kondenswasser auf Abstellflächen und Kühlgut im Lagerfach niederschlägt. Dieser Vorteil kann sich aber bei weniger kritischen Umgebungsbedingungen in einen Nachteil verwandeln, wenn eingelagerte Lebensmittel durch die intensive Entfeuchtung ausgetrocknet werden.
Es besteht daher Bedarf nach einem No-Frost-Kältegerät und einem Betriebsverfahren für ein solches Kältegerät, die eine flexible Anpassung an die klimatischen Bedingungen in der Umgebung des Kältegerätes ermöglichen.
Die Aufgabe wird gelöst durch ein Kältegerät mit den Merkmalen des Anspruches 1 bzw. ein Verfahren mit den Merkmalen des Anspruches 10.
Indem die Umwälzleistung des Ventilators eines solchen Kältegerätes variiert wird, wird gleichzeitig auch der bei einer gegebenen Temperaturdifferenz zwischen dem Lagerfach des Kältegerätes und dem Verdampfer auftretende Wärmefluß zwischen den beiden verändert. Das heißt, eine Verringerung der Umwälzleistung führt zu einem verringerten Wärmeaustausch und damit zu einer stärkeren Abkühlung des Verdampfers. Diese verstärkte Abkühlung bewirkt eine intensivere Trocknung der am Verdampfer vorbeistreichenden Luft. Gleichzeitig bewirkt die verringerte Umwälzleistung, dass, wenn Verdampfer und Ventilator eingeschaltet sind, die Abkühlung des Lagerfaches langsamer vonstatten geht als bei einer höheren Umwälzleistung, so dass sich die Einschaltdauer des Verdampfers verlängert. Diese Verlängerung kompensiert die verringerte Umwälzleistung und führt dazu, dass im Laufe einer Einschaltphase des Verdampfers bei niedriger Umwälzleistung mehr Feuchtigkeit abgefangen wird als bei hoher.
Eine variable Umwälzleistung des Verdampfers kann auf einfache Weise dadurch realisiert werden, dass der Ventilator in der eingeschalteten Phase des Verdampfers zeitweilig ausschaltbar gemacht ist. Vorzugsweise ist eine Steuerschaltung zum Steuern des Betriebes des Verdampfers und des Ventilators vorgesehen, die eingerichtet ist, um bei eingeschaltetem Verdampfer den Ventilator intermittierend zu betreiben und dadurch dessen mittlere Umwälzleistung im Vergleich zu einem kontinuierlichen Betrieb zu drosseln.
Es kann ein Wählschalter an dem Kältegerät vorgesehen sein, der es einem Benutzer ermöglicht, ein gewünschtes Tastverhältnis für den intermittierenden Betrieb des Ventilators einzustellen und so manuell die Trocknungswirkung des Kältegerätes an den Bedarf anzupassen. Bei einer komfortableren Ausgestaltung ist die Steuerschaltung an wenigstens einen Klimasensor zum Erfassen eines Klimaparameters wie etwa der
Umgebungstemperatur des Kältegerätes, der Feuchtigkeit der Umgebungsluft oder der Feuchtigkeit der Luft im Innenraum gekoppelt und eingerichtet, um das Tastverhältnis in Abhängigkeit von dem wenigstens einen von einem solchen Sensor erfassten Klimaparameter zu steuern.
Einer anderen Ausgestaltung zufolge ist der Ventilator in der eingeschalteten Phase des Verdampfers auf unterschiedliche nichtverschwindende Drehzahlen einstellbar, um die mittlere Umwälzleistung dem Bedarf anzupassen. Auch hier kann ein Wählschalter vorgesehen sein, der es einem Benutzer erlaubt, einer Steuerschaltung des Ventilators eine gewünschte Drehzahl desselben vorzugeben, oder die Steuerschaltung kann an wenigstens einen Klimasensor gekoppelt sein, um die Umwälzleistung des Ventilators anhand eines von diesem Sensor erfassten Klimaparameters und einem vorgegebenen Zielwert der Luftfeuchtigkeit automatisch zu steuern.
Gegenstand der Erfindung ist auch ein Verfahren zum Betreiben eines Kältegerätes der oben beschriebenen Art, mit den Schritten:
a) Abschätzen eines Feuchtigkeitswertes in dem Lagerfach des Kältegerätes, b) Wählen einer Umwälzleistung für den Ventilators in Abhängigkeit von dem abgeschätzten Feuchtigkeitswert;
c) Betreiben des Ventilators mit der gewählten Umwälzleistung.
Vorzugsweise handelt es sich bei der Schätzung um eine direkt im betroffenen Lagerfach vorgenommene Luftfeuchtigkeitsmessung. Dann ist es insbesondere möglich, Einflüsse des Betriebs des Verdampfers und des Ventilators auf die Luftfeuchtigkeit im Lagerfach bei der Auswahl der Umwälzleistung zu berücksichtigen. Prinzipiell ist es aber auch möglich, die Luftfeuchtigkeit im Lagerfach anhand von mit ihr korrelierten Größen wie etwa Temperatur und Luftfeuchtigkeit der Umgebung abzuschätzen und die Umwälzleistung in Abhängigkeit vom Ergebnis der Abschätzung zu wählen.
Weitere Merkmale und Vorteile der Erfindung ergeben sich aus der nachfolgenden
Beschreibung von Ausführungsbeispielen unter Bezugnahme auf die beigefügten Figuren. Es zeigen:
Figur 1 eine schematische Darstellung eines erfindungsgemäßen No-Frost-Kältegerätes,
Figur 2 ein Zeitdiagramm des Betriebes von Verdampfer und Ventilator gemäß einer ersten Ausgestaltung der Erfindung; und
Figur 3 ein Zeitdiagramm analog dem der Figur 2 für eine zweite Ausgestaltung der Erfindung.
Figur 1 ist eine schematische Darstellung eines Kombinations-Kältegerätes, an dem die vorliegende Erfindung verwirklicht ist. Ein Kühlfach 1 und ein Gefrierfach 2 bilden zwei Temperaturzonen des Kältegerätes. Ein Kältemittelkreislauf umfasst einen Verdichter 3, der ein verdichtetes Kältemittel nacheinander durch zwei Verdampfer 4, 5 des Gefrierfaches 2 bzw. des Kühlfaches 1 pumpt, sowie einen Wärmetauscher 6, den das in den Verdampfern 4, 5 entspannte Kältemittel durchläuft, bevor es wieder in den Verdichter 3 eintritt. Der dem Kühlfach 1 zugeordnete Verdampfer 5 ist in einer von dem Kühlfach 1 durch eine thermisch isolierende Wand 7 abgetrennten Kammer 8 untergebracht. Die Kammer 8 kommuniziert mit dem Kühlfach 1 über Lufteintritts- und - austrittsöffnungen, wobei in einer von diesen ein Ventilator 9 zum Zwangsumwälzen von Luft zwischen der Kammer 8 und dem Kühlfach 1 angeordnet ist. Eine Steuerschaltung 10 ist mit einem im Kühlfach angeordneten Temperatursensor 12 und über Steuerleitungen mit dem Verdichter 3 und dem Ventilator 9 verbunden und ist in der Lage, den Verdichter 3 und den Ventilator 9 - und mittelbar über den Verdichter 3 die Verdampfer 4, 5 - in Abhängigkeit von einer vom Temperatursensor 12 erfassten Temperatur ein- bzw. auszuschalten. Die Steuerschaltung 10 ist ferner an einen Luft- feuchtigkeitssensor 13 angeschlossen, der im Kühlfach 1 angeordnet ist. An der Steuerschaltung 10 kann ein von einem Benutzer betätigbarer Wählschalter 11 vorgesehen sein, der es erlaubt, einen Zielwert für die Luftfeuchtigkeit im Kühlfach 1 einzustellen.
Der Luftfeuchtigkeitssensor 13 im Kühlfach 1 kann als Variante auch durch einen Luftfeuchtigkeitssensor außerhalb des Kühlfaches und/oder einen Sensor für die Umgebungstemperatur des Kältegerätes ersetzt sein, da deren Messwerte einen Rückschluss auf die Luftfeuchtigkeit im Kühlfach 1 zulassen.
Figur 2 veranschaulicht die Arbeitsweise der Steuerschaltung 10 anhand der zeitlichen Verläufe einer Mehrzahl von Betriebsparametern des Kältegerätes. Die Kurve 3' gibt den Betriebszustand des Verdichters 3 an. Zum Zeitpunkt t0 ist er ausgeschaltet; sobald der Temperatursensor 12 die Überschreitung einer oberen Grenztemperatur registriert, zur Zeit t-i, wird er eingeschaltet, so lange, bis zur Zeit t2 eine untere Grenztemperatur im Kühlfach 1 unterschritten wird. Ab dieser Zeit erwärmt sich das Kühlfach 1 erneut, bis bei t eine neue Einschaltphase des Verdichters 3 beginnt.
Von t0 bis ti ist die vom Sensor 13 erfasste Luftfeuchtigkeit im Kühlfach 1 auf einem konstanten, niedrigen Niveau. Mit dem Einschalten des Verdichters 3 geht zum Zeitpunkt ti auch der Ventilator 9 in Betrieb, wie durch eine Kurve 9' dargestellt. Die Temperatur des Verdampfers 5, dargestellt durch eine Kurve 5', geht von einem Ruhewert T0 auf einen Wert 1^ zurück. Feuchtigkeit aus der vom Ventilator 9 umgewälzten Luft schlägt sich am Verdampfer 5 nieder, so dass die Luftfeuchtigkeit 13' bis zum Zeitpunkt t2 der Abschaltung des Ventilators 9 langsam abnimmt. Ab dem Zeitpunkt t3 steigt die Feuchtigkeit 13' stark an, zum Beispiel weil die Tür des Kältegerätes geöffnet wird und warme, feuchte Luft von außen eindringt. Die Steuerschaltung 10 erkennt, dass eine intensivere Trocknung erforderlich ist und betreibt den Ventilator 9, wenn zum Zeitpunkt t4 der Verdichter 3 wieder eingeschaltet wird, intermittierend mit einem Tastverhältnis, das in Abhängigkeit von der zur Zeit t4 erfassten Luftfeuchtigkeit gewählt ist. Dies führt zu einer im Mittel geringeren Umwälzleistung des Ventilators 9 als während des Zeitintervalls ti bis t2, so dass der Wärmeaustausch zwischen dem Verdampfer 5 und dem Kühlfach 1 verlangsamt ist. Die Einschaltzeitspanne t4 bis t5 ist daher länger als die Zeitspanne ^ bis t2, und die während dieser Zeitspanne erreichte Temperatur T2 des Verdampfers 5 ist niedriger als Ti. Diese niedrigere Temperatur T2 führt dazu, dass die am Verdampfer 5 vorbeiströmende Luft effektiver getrocknet wird, und aufgrund der verlängerten Einschaltdauer des Verdichters 3 wird schließlich wieder ein niedriger Luftfeuchtigkeitswert erreicht.
Das Tastverhältnis, mit dem die Steuerschaltung 10 den Ventilator während der Einschaltphasen des Verdampfers betreibt, ist im einfachsten Fall eine Stufenfunktion, die für niedrige Luftfeuchtigkeiten den Wert 1 und für hohe Luftfeuchtigkeiten einen nicht verschwindenden Wert kleiner als 1 hat; es kann auch eine Stufenfunktion mit einer Vielzahl von mit zunehmender Luftfeuchtigkeit abnehmenden Werten des Tastverhältnisses oder eine kontinuierliche Funktion zur Steuerung herangezogen werden.
Bei einer zweiten Ausgestaltung der Erfindung ist die Steuerschaltung 10 ausgelegt, um in Abhängigkeit von einer gemessenen Luftfeuchtigkeit unterschiedliche Drehzahlen des Ventilators 9 einzustellen. Die Arbeitsweise dieser Ausgestaltung ist in Figur 3 dargestellt. Wenn die Luftfeuchtigkeit niedrig ist, läuft in einer Einschaltphase des Verdampfers 4 der Ventilator 9 mit maximaler Drehzahl, und die zeitlichen Verläufe von Ein- und Ausschaltphasen, Verdampfertemperatur und Luftfeuchtigkeit sind die gleichen wie im Falle der Figur 2. Infolgedessen unterscheidet sich das Diagramm der Figur 3 bis zum Zeitpunkt t nicht von dem der Figur 2. Zum Zeitpunkt t wählt die Steuerschaltung 10 anhand des zu diesem Zeitpunkt gemessenen hohen Luftfeuchtigkeitswertes eine Drehzahl des Ventilators 9, die kleiner als dessen maximale Drehzahl ist. Während des Betriebes des Verdichters und des Ventilators nimmt die Luftfeuchtigkeit kontinuierlich ab, und dementsprechend steigt die Drehzahl des Ventilators 9, die die Steuerschaltung 10 anhand der gemessenen Luftfeuchtigkeit wählt, und mit zunehmender Umwälzleistung des Ventilators 9 steigt auch die Temperatur des Verdampfers 5 auf einem großen Teil des Zeitintervalls t4 bis t5 kontinuierlich an.
In den Figuren 2 und 3 ist der Fall einer schnellen Austrocknung dargestellt, bei der eine einzige Einschaltphase t bis t5 genügt, um die Luftfeuchtigkeit im Kühlfach auf einen Zielwert zurückzuführen. Selbstverständlich kann sich der Trocknungsvorgang auch auf mehrere aufeinanderfolgende Einschaltphasen verteilen.
Bei den Figuren 2 und 3 wurde davon ausgegangen, dass jeweils die maximale Umwälzleistung des Ventilators 9 einem gewünschten niedrigen Luftfeuchtigkeitswert im Kühlfach entspricht, so dass durch Drosseln der Umwälzleistung eine verstärkte Trocknung zu erreichen ist. Es ist jedoch durchaus zweckmäßig, den Ventilator 9 so zu dimensionieren, dass eine gewünschte Luftfeuchtigkeit bereits mit einer mittleren Umwälzleistung des Ventilators zu erreichen ist. Dies erlaubt es, durch Erhöhen der Umwälzleistung über diese mittlere Leistung hinaus den Wärmeaustausch zwischen Kühlfach 1 und Verdampfer 5 zu intensivieren, so dass sich die Dauer einer Einschaltphase des Verdichters 3 verkürzt und in dieser Einschaltphase aufgrund einer relativ hohen
Temperatur des Verdampfers 5 dessen Trocknungswirkung abgeschwächt ist. Dadurch ist es auch möglich, die Luftfeuchtigkeit im Kühlfach 1 gezielt zu erhöhen, wenn diese unter einen gewünschten Wert abfällt.

Claims

Patentansprüche
1. No-Frost-Kältegerät mit wenigstens einem Lagerfach (1), einem in einer vom
Lagerfach (1) getrennten Kammer (8) angeordneten, abwechselnd ein- und ausgeschalteten Verdampfer (5) und einem Ventilator (9) zum Umwälzen von
Luft zwischen dem Lagerfach (1) und der Kammer (8) des Verdampfers (5), dadurch gekennzeichnet, dass eine mittlere Umwälzleistung des Ventilators (9) in einer eingeschalteten Phase des Verdampfers (5) variabel gemacht ist.
2. No-Frost-Kältegerät nach Anspruch 1 , dadurch gekennzeichnet, dass der
Ventilator (9) in der eingeschalteten Phase des Verdampfers (5) zeitweilig ausschaltbar ist.
3. No-Frost-Kältegerät nach Anspruch 2, dadurch gekennzeichnet, dass eine Steuerschaltung (10) zum Steuern des Betriebs des Verdampfers (5) und des
Ventilators (9) eingerichtet ist, um bei eingeschaltetem Verdampfer (5) den Ventilator (9) intermittierend zu betreiben.
4. No-Frost-Kältegerät nach Anspruch 3, gekennzeichnet durch einen Wählschalter, an dem ein Tastverhältnis für den intermittierenden Betrieb des Ventilators (9) einstellbar ist.
5. No-Frost-Kältegerät nach Anspruch 3, dadurch gekennzeichnet, dass die Steuerschaltung (10) an wenigstens einen Klimasensor (13) gekoppelt ist und das Tastverhältnis in Abhängigkeit von wenigstens einem von dem Sensor (13) erfassten Klimaparameter regelt.
6. No-Frost-Kältegerät nach Anspruch 1 , dadurch gekennzeichnet, dass der Ventilator (9) in der eingeschalteten Phase des Verdampfers (5) auf unterschiedliche nichtverschwindende Drehzahlen einstellbar ist.
7. No-Frost-Kältegerät nach Anspruch 6, dadurch gekennzeichnet, dass eine
Steuerschaltung (10) zum Steuern des Betriebs des Verdampfers (5) und des Ventilators (9) eingerichtet ist, um bei eingeschaltetem Verdampfer (5) den Ventilator (9) mit einer von mehreren wählbaren nichtverschwindenden Drehzahlen zu betreiben.
8. No-Frost-Kältegerät nach Anspruch 7, gekennzeichnet durch einen Wählschalter, an dem eine Drehzahl für den Betrieb des Ventilators einstellbar ist.
9. No-Frost-Kältegerät nach Anspruch 7, dadurch gekennzeichnet, dass die Steuerschaltung (10) an wenigstens einen Klimasensor (13) gekoppelt ist und die
Drehzahl anhand eines von dem Sensor (13) erfassten Klimaparameters regelt.
10. Verfahren zum Betreiben eines Kältegeräts nach einem der vorhergehenden Ansprüche, mit den Schritten: a) Abschätzen eines Feuchtigkeitswerts in dem Lagerfach (1); b) Wählen einer Umwälzleistung für den Ventilators in Abhängigkeit von dem abgeschätzten Feuchtigkeitswert; c) Betreiben des Ventilators mit der gewählten Umwälzleistung.
11. Verfahren nach Anspruch 10, dadurch gekennzeichnet, dass die Umwälzleistung um so niedriger gewählt wird, je höher der abgeschätzte Feuchtigkeitswert ist.
EP04739760.9A 2003-06-11 2004-06-09 Kältegerät mit gesteuerter entfeuchtung Expired - Lifetime EP1636530B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10326329A DE10326329A1 (de) 2003-06-11 2003-06-11 Kältegerät mit gesteuerter Entfeuchtung
PCT/EP2004/006256 WO2004109205A1 (de) 2003-06-11 2004-06-09 Kältegerät mit gesteuerter entfeuchtung

Publications (2)

Publication Number Publication Date
EP1636530A1 true EP1636530A1 (de) 2006-03-22
EP1636530B1 EP1636530B1 (de) 2016-12-07

Family

ID=33482794

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04739760.9A Expired - Lifetime EP1636530B1 (de) 2003-06-11 2004-06-09 Kältegerät mit gesteuerter entfeuchtung

Country Status (5)

Country Link
US (1) US20070137227A1 (de)
EP (1) EP1636530B1 (de)
CN (2) CN1806155A (de)
DE (2) DE20321771U1 (de)
WO (1) WO2004109205A1 (de)

Families Citing this family (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006040370A1 (de) * 2006-08-29 2008-03-06 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit zwangsbelüftetem Verdampfer
KR101402628B1 (ko) * 2007-06-11 2014-06-09 삼성전자 주식회사 냉장고 및 그 운전방법
DE202008000761U1 (de) * 2007-12-27 2009-04-30 Liebherr-Hausgeräte Ochsenhausen GmbH Gefriergerät oder Kühl-/Gefrierkombination
DE202008000757U1 (de) 2007-12-28 2009-04-30 Liebherr-Hausgeräte Ochsenhausen GmbH Kühl- und/oder Gefriergerät
DE102008051748B4 (de) * 2008-10-15 2019-09-19 Liebherr-Hausgeräte Lienz Gmbh Verfahren zur Entfeuchtung der Luft im Innenraum eines Gerätes
DE202009006301U1 (de) * 2009-02-23 2010-07-15 Liebherr-Hausgeräte Ochsenhausen GmbH Schrank
DK177003B1 (en) 2009-08-20 2010-11-15 Maersk Container Ind As Dehumidifier
EP2516935A4 (de) * 2009-12-23 2014-07-16 Thermo King Corp Vorrichtung zur steuerung der relativen feuchtigkeit in einem behälter
CN101915486B (zh) * 2010-06-28 2014-02-26 合肥美的电冰箱有限公司 一种保湿冰箱和一种冰箱的保湿控制方法
US20120079840A1 (en) * 2010-09-30 2012-04-05 Lukasse Leijn Johannes Sjerp Method and system for temperature control in refrigerated storage spaces
EP2546084A1 (de) * 2011-07-12 2013-01-16 A.P. Møller - Mærsk A/S Feuchtigkeitssteuerung in einem Kühlfrachtcontainer mit einem intermittierend betriebenem Kompressor
WO2013007627A1 (en) * 2011-07-12 2013-01-17 A.P. Møller - Mærsk A/S Humidity control in a refrigerated transport container with an intermittently operated compressor
US20130014522A1 (en) * 2011-07-12 2013-01-17 A.P. Moller - Maersk A/S Humidity control in a refrigerated transport container with an intermittently operated compressor
DE102012209938A1 (de) * 2012-06-13 2013-12-19 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät
CN104752971B (zh) * 2012-10-15 2017-11-21 国网江苏省电力公司常州供电公司 一种电柜除湿器
KR20150075895A (ko) * 2013-12-26 2015-07-06 동부대우전자 주식회사 냉장고 이슬 맺힘 방지용 냉장고 및 그 제어 방법
FR3017200A1 (fr) * 2014-02-06 2015-08-07 Dpkl Procede de regulation de l'atmosphere d'une enceinte frigorifique.
CN104567241A (zh) * 2014-11-26 2015-04-29 青岛海尔股份有限公司 干燥储物装置及其换风方法
CN104567189A (zh) * 2014-11-26 2015-04-29 青岛海尔股份有限公司 干燥储物装置及其换风方法
DE102015211960A1 (de) * 2015-06-26 2016-12-29 BSH Hausgeräte GmbH Kältegerät mit Luftfeuchteüberwachung
US11280536B2 (en) * 2015-09-30 2022-03-22 Electrolux Home Products, Inc. Temperature control of refrigeration cavities in low ambient temperature conditions
CN105783385B (zh) * 2016-04-20 2018-05-11 合肥华凌股份有限公司 一种冰箱冷藏室化霜方法、化霜系统及冰箱
DE102020207894A1 (de) 2020-06-25 2021-12-30 BSH Hausgeräte GmbH Verfahren zum Betreiben eines Haushalts-Kühlgeräts sowie Haushalts-Kühlgerät
CN113865200B (zh) * 2021-10-08 2022-08-23 珠海格力电器股份有限公司 冷冻冷藏设备及其控制方法和计算机可读存储介质
CN116045599B (zh) * 2022-12-22 2024-07-16 珠海格力电器股份有限公司 一种除湿控制方法、装置及低温存储设备

Family Cites Families (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2285946A (en) * 1939-12-30 1942-06-09 Westinghouse Electric & Mfg Co Refrigeration apparatus
US2346837A (en) * 1941-02-24 1944-04-18 Gen Motors Corp Refrigerating apparatus
US2416354A (en) * 1944-03-29 1947-02-25 Philco Corp Controlled humidity refrigerator
US2442188A (en) * 1944-11-28 1948-05-25 Philco Corp Controlled humidity refrigerator
US2549547A (en) * 1945-07-06 1951-04-17 Trask Allen Humidity control system
US3403534A (en) * 1967-01-03 1968-10-01 Gen Motors Corp Condensation control system for humidified refrigerator
US4459519A (en) * 1974-06-24 1984-07-10 General Electric Company Electronically commutated motor systems and control therefor
US3998068A (en) * 1975-07-17 1976-12-21 William Chirnside Fan delay humidistat
US4315413A (en) * 1979-12-31 1982-02-16 Whirlpool Corporation Selective temperature control system
ITTO20020457A1 (it) * 2002-05-29 2003-12-01 C R F Societa Con Sortile Per Dispositivo e metodo per prevenire in maniera automatica l'appannamento del parabrezza di un veicolo.
JPH01222177A (ja) * 1988-02-29 1989-09-05 Fujitsu General Ltd 電気冷蔵庫の運転制御方法
JPH0217375A (ja) * 1988-07-04 1990-01-22 Fujitsu General Ltd 電気冷蔵庫の運転制御方法
DE3904216A1 (de) * 1989-02-13 1990-08-16 Miele & Cie Kuehlschrank mit einer mikroprozessorgesteuerten temperaturregelung
US4984433A (en) * 1989-09-26 1991-01-15 Worthington Donald J Air conditioning apparatus having variable sensible heat ratio
US5355686A (en) * 1993-08-11 1994-10-18 Micro Weiss Electronics, Inc. Dual temperature control of refrigerator-freezer
US5711159A (en) * 1994-09-07 1998-01-27 General Electric Company Energy-efficient refrigerator control system
US5490394A (en) * 1994-09-23 1996-02-13 Multibras S/A Eletrodomesticos Fan control system for the evaporator of refrigerating appliances
EP1596143B1 (de) * 1994-11-11 2007-03-21 Samsung Electronics Co, Ltd Verfahren zur Steuerung eines Kühlschranks
NZ314264A (en) * 1997-02-18 1999-06-29 Fisher & Paykel Ltd Substitute Refrigeration apparatus comprising at least two compartments wherein the temperature of each compartment is independently controlled and temperatures are achieved simultaneously
KR19980083487A (ko) * 1997-05-15 1998-12-05 윤종용 냉장고의 구동제어장치 및 방법
DE19815642A1 (de) * 1998-04-07 1999-10-14 Bsh Bosch Siemens Hausgeraete Verfahren zur Steuerung eines Kältegerätes
US5931011A (en) * 1998-06-23 1999-08-03 Hoshizaki Denki Kabushiki Kaisha Low temperature storage cabinet
US6290140B1 (en) * 1999-03-04 2001-09-18 Energyiq Systems, Inc. Energy management system and method
US6427454B1 (en) * 2000-02-05 2002-08-06 Michael K. West Air conditioner and controller for active dehumidification while using ambient air to prevent overcooling
US6508408B2 (en) * 2001-05-08 2003-01-21 Delphi Technologies, Inc. Automatic windglass fog prevention method for a vehicle climate control system
DE10139834A1 (de) * 2001-08-14 2003-02-27 Bsh Bosch Siemens Hausgeraete Kältegerät und Betriebsverfahren für ein Kältegerät
DE10161306A1 (de) * 2001-12-13 2003-06-26 Bsh Bosch Siemens Hausgeraete Kältegerät mit regelbarer Entfeuchtung
ITPN20020003A1 (it) * 2002-01-18 2003-07-18 Friulinox S R L Sistema di regolazione dell'umidita' all'interno di celle frigorifere
DE10235783B4 (de) * 2002-08-05 2008-02-14 BSH Bosch und Siemens Hausgeräte GmbH Kältegerät mit Ventilator und Steuerverfahren dafür
JP3922195B2 (ja) * 2003-03-11 2007-05-30 株式会社デンソー 車両用空調装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004109205A1 *

Also Published As

Publication number Publication date
EP1636530B1 (de) 2016-12-07
CN101893363A (zh) 2010-11-24
US20070137227A1 (en) 2007-06-21
DE10326329A1 (de) 2004-12-30
WO2004109205A1 (de) 2004-12-16
CN1806155A (zh) 2006-07-19
DE20321771U1 (de) 2009-10-29

Similar Documents

Publication Publication Date Title
EP1636530B1 (de) Kältegerät mit gesteuerter entfeuchtung
DE69921262T2 (de) Kühlschrankregler
DE10235783B4 (de) Kältegerät mit Ventilator und Steuerverfahren dafür
WO2003054462A1 (de) Kältegerät mit regelbarer entfeuchtung
EP3759405A1 (de) Kältegerät mit abtauheizung
DE4132719C2 (de) Mehrtemperaturen-Kühlschrank
DE10053422A1 (de) Kältegerät mit Abtau-Automatik
EP3526530B1 (de) Kältegerät mit dörrfunktion und betriebsverfahren dafür
WO2018091323A1 (de) Kältegerät mit luftfeuchtigkeitsoptimiertem lagerfach
WO2014023689A1 (de) Kältegerät und betriebsverfahren dafür
EP3699519A1 (de) Kältegerät mit zwei temperaturzonen und betriebsverfahren dafür
EP2370760A1 (de) Kältegerät mit mehreren lagerfächern
WO2013060611A2 (de) Kältegerät mit verdunstungsschale und hilfseinrichtung zur verdunstungsförderung
EP3745054B1 (de) Kühl- und/oder gefriergerät
WO2023011910A1 (de) Kältegerät mit verflüssiger-ventilator und verfahren zum betrieb eines kältegeräts mit einem verflüssiger-ventilator
DE102016220160A1 (de) Kältegerät mit Trockenfunktion
DE10139834A1 (de) Kältegerät und Betriebsverfahren für ein Kältegerät
WO2013000765A1 (de) Kältegerät mit verdunstungsschale und hilfseinrichtung zur verdunstungsförderung
DE102012007826A1 (de) Kühl- und/oder Gefriergerät
WO2021259631A1 (de) Verfahren zum betreiben eines haushalts-kühlgeräts sowie haushalts-kühlgerät
WO2013000773A2 (de) Kältegerät mit verdunstungsschale und hilfseinrichtung zur verdunstungsförderung
WO2013113552A1 (de) Kältegerät mit zwei lagerkammern
DE102011075946A1 (de) Haushaltskältegerät mit Ventilator
DE10228334A1 (de) Kältegerät mit schaltbarer Wärmequelle
DE102011122198A1 (de) Verfahren zum Betreiben eines Kühlmöbels und Kühlmöbel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20060111

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20090723

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH HAUSGERAETE GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20160718

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: AT

Ref legal event code: REF

Ref document number: 852108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20161215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502004015410

Country of ref document: DE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170308

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170407

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20170307

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502004015410

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20170908

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170609

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170609

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170609

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: BE

Ref legal event code: MM

Effective date: 20170630

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 852108

Country of ref document: AT

Kind code of ref document: T

Effective date: 20170609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170630

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 502004015410

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20040609

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20161207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20161207

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220630

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220630

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004015410

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20240103

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20230609