EP1632735B1 - Verbrennungsmotorgetriebene Klimaanlage und dazugehöriges Steuerungsverfahren - Google Patents

Verbrennungsmotorgetriebene Klimaanlage und dazugehöriges Steuerungsverfahren Download PDF

Info

Publication number
EP1632735B1
EP1632735B1 EP05015661.1A EP05015661A EP1632735B1 EP 1632735 B1 EP1632735 B1 EP 1632735B1 EP 05015661 A EP05015661 A EP 05015661A EP 1632735 B1 EP1632735 B1 EP 1632735B1
Authority
EP
European Patent Office
Prior art keywords
engine
opening degree
heat exchanger
rotational number
refrigerant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP05015661.1A
Other languages
English (en)
French (fr)
Other versions
EP1632735A2 (de
EP1632735A3 (de
Inventor
Ryota Hirata
Katsunori Nakajima
Hiroshi Kanai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Publication of EP1632735A2 publication Critical patent/EP1632735A2/de
Publication of EP1632735A3 publication Critical patent/EP1632735A3/de
Application granted granted Critical
Publication of EP1632735B1 publication Critical patent/EP1632735B1/de
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B27/00Machines, plants or systems, using particular sources of energy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • F25B2600/0261Compressor control by controlling unloaders external to the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/17Speeds
    • F25B2700/171Speeds of the compressor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • F25B49/025Motor control arrangements

Definitions

  • the present invention relates to an engine driving type air conditioner for variably controlling the rotational number of an engine and circulating refrigerant discharged from a compressor driven by the engine to thereby carry out an air conditioning operation and a method of controlling the engine driving type air conditioner, and also relates to an overload control operation of the engine.
  • the engine rotational number is variably controlled in accordance with an air conditioning load
  • the discharge pressure of the refrigerant at the exit of the compressor, the suction pressure of the refrigerant at the entrance of the compressor and the temperature at the refrigerant inlet/outlet port of a heat exchanger are measured
  • the shaft output of the compressor is calculated from the measurement result and then it is judged on the basis of the shaft output whether the engine is under overload state or not (for example, JP-A-6-137701 ).
  • EP 1 334 852 A2 discloses an engine driving type air conditioner according to the preamble of claim 1.
  • US 5,454,229 A describes a refrigeration unit in which a control unit receives inputs from sensors including an engine RPM-sensor.
  • the present invention has been implemented in view of the foregoing situation, and has an object to provide an engine driving type air conditioner and a control method therefore in which it is accurately judged whether an engine is under overload state or not, and the overload state of the engine can be properly avoided on the basis of the judgment result.
  • an engine driving type air conditioner that is equipped with a compressor driven by an engine, an outdoor unit having an outdoor heat exchanger, an outdoor expansion valve and an outdoor fan and an indoor unit having an indoor heat exchanger, an indoor expansion valve and an indoor fan, and variably controls the rotational number of an engine in accordance with an air conditioning load and circulating refrigerant discharged from the compressor between the outdoor heat exchanger and the indoor heat exchanger to thereby carry out an air conditioning operation, comprises: a judging unit for achieving information on at least one of the rotational number of the engine, the opening degree of a fuel adjusting valve and the opening degree of a throttle, and judging on the basis of the information thus achieved whether the engine to be controlled in accordance with an air conditioning load is under overload state or not; and a control unit for carrying out engine load reducing control of reducing the load of the engine if it is judged by the judging unit that the engine is under overload state.
  • the above engine driving type air conditioner further comprises a storage unit for mapping at least one of the rotational number of the engine, the opening degree of the fuel adjusting valve and the opening degree of the throttle and at least one of the torque value of the engine, an ignition demand voltage and an excess air factor in association with each other and storing a mapping result
  • the judging unit refers to the information stored in the storage unit to specify at least one of the torque value of the engine, the ignition demand voltage and the excessive air factor on the basis of the information thus achieved, compares the specified value with a predetermined setting value and judges on the basis of the comparison result whether the engine is under overload state.
  • the above engine driving type air conditioner further comprises a storage unit for storing a calculation equation of calculating at least one of the torque value of the engine, an ignition demand voltage and an excess air factor from at least one of the rotational number of the engine, the opening degree of the fuel adjusting valve and the opening degree of the throttle, wherein the judging unit specifies at least one of the torque value of the engine, the ignition demand voltage and the excessive air factor on the basis of the information thus achieved by using the calculation equation stored in the storage unit, compares the specified value with a predetermined setting value and judges on the basis of the comparison result whether the engine is under overload state.
  • the above engine driving type air conditioner further comprises a bypass pipe connected between a refrigerant high pressure side and a refrigerant lowpressure side with respect to the compressor to return apart of the refrigerant at the refrigerant high pressure side of the compressor to the refrigerant low pressure side of the compressor, and a bypass valve disposed in the bypass pipe to adjust the refrigerant amount to be returned, wherein when it is judged that the engine is under overload state, the control unit carries out at least one of adjustment of the expansion valve corresponding to one heat exchanger functioning as an evaporator out of the outdoor heat exchanger and the indoor heat exchanger, adjustment of the rotational velocity of the fan corresponding to the other heat exchanger functioning as a condenser out of the outdoor heat exchanger and the indoor heat exchanger, adjustment of the rotational number of the engine and adjustment of the opening degree of the bypass valve in the bypass pipe provided between the refrigerant high pressure side and the refrigerant low pressure side.
  • the control unit changes at least one of the lower limit value of the opening degree of the expansion valve corresponding to the heat exchanger functioning as the evaporator when the opening degree concerned is adjusted, the upper limit value of the rotational velocity of the fan corresponding to the heat exchanger functioning as the condenser when the rotational velocity concerned is adjusted, the lower limit value of the rotational number of the engine when the rotational number of the engine is adjusted, and the upper limit value of the opening degree of the bypass valve when the opening degree concerned is adjusted.
  • a method of controlling an engine driving type air conditioner that is equipped with a compressor driven by an engine, an outdoor unit having an outdoor heat exchanger, an outdoor expansion valve and an outdoor fan and an indoor unit having an indoor heat exchanger, an indoor expansion valve and an indoor fan, and variably controls the rotational number of an engine in accordance with an air conditioning load and circulating refrigerant discharged from the compressor between the outdoor heat exchanger and the indoor heat exchanger to thereby carry out an air conditioning operation, comprising the steps of: achieving information on at least one of the rotational number of the engine, the opening degree of a fuel adjusting valve and the opening degree of a throttle; judging on the basis of the information thus achieved whether the engine to be controlled in accordance with an air conditioning load is under overload state or not; and carrying out engine load reducing control of reducing the load of the engine if it is judged that the engine is under overload state.
  • the above method further comprises the steps of: mapping at least one of the rotational number of the engine, the opening degree of the fuel adjusting valve and the opening degree of the throttle and at least one of the torque value of the engine, an ignition demand voltage and an excess air factor in association with each other; creating a data base from the mapping result; referring to the data base to specify at least one of the torque value of the engine, the ignition demand voltage and the excessive air factor from the information on at least one of the rotational number of the engine, the opening degree of the fuel adjusting valve and the opening degree of the throttle; comparing the specified value with a predetermined setting value; and judging on the basis of the comparison result whether the engine is under overload state.
  • the above method further comprises the steps of: creating a calculation equation of calculating at least one of the torque value of the engine, an ignition demand voltage and an excess air factor from at least one of the rotational number of the engine, the opening degree of the fuel adjusting valve and the opening degree of the throttle; specifying at least one of the torque value of the engine, the ignition demand voltage and the excessive air factor on the basis of the information on at least one of the rotational number of the engine, the opening degree of the fuel adjusting valve and the opening degree of the throttle by using the calculation equation; comparing the specified value with a predetermined setting value; and judging on the basis of the comparison result whether the engine is under overload state.
  • the air conditioner further comprises a bypass pipe connected between a refrigerant high pressure side and a refrigerant low pressure side with respect to the compressor to return apart of the refrigerant at the refrigerant high pressure side of the compressor to the refrigerant low pressure side of the compressor, and a bypass valve disposed in the bypass pipe to adjust the refrigerant amount to be returned, and when it is judged that the engine is under overload state, at least one of adjustment of the expansion valve corresponding to one heat exchanger functioning as an evaporator out of the outdoor heat exchanger and the indoor heat exchanger, adjustment of the rotational velocity of the fan corresponding to the other heat exchanger functioning as a condenser out of the outdoor heat exchanger and the indoor heat exchanger, adjustment of the rotational number of the engine and adjustment of the opening degree of the bypass valve in the bypass pipe provided between the refrigerant high pressure side and the refrigerant low pressure side.
  • the above method further comprises a step of, in accordance with the air conditioning load, changing at least one of the lower limit value of the opening degree of the expansion valve corresponding to the heat exchanger functioning as the evaporator when the opening degree concerned is adjusted, the upper limit value of the rotational velocity of the fan corresponding to the heat exchanger functioning as the condenser when the rotational velocity concerned is adjusted, the lower limit value of the rotational number of the engine when the rotational number of the engine is adjusted, and the upper limit value of the opening degree of the bypass valve when the opening degree concerned is adjusted.
  • Fig. 1 is a diagram showing the construction of an engine driving type air conditioner 100 according to an embodiment.
  • the engine driving type air conditioner 100 comprises one outdoor unit 1 and a plurality of (for example, two) indoor units 2a, 2b which are connected to each other through a refrigerant pipe (inter-unit pipe) 3 comprising a gas pipe 3a and a liquid pipe 3b.
  • the engine driving type air conditioner 100 is further equipped with a control device 4 for controlling the driving of the air conditioner 100 and an operating unit 5 for carrying out operations such as driving instruction, etc. of the control device 4.
  • the operating unit 5 is a so-called remote controller for operating/stopping the indoor units 2a, 2b, etc., a remote operating device for carrying out various kinds of settings and the driving state of the indoor units 2a, 2b and the outdoor unit 1 or the like.
  • the engine driving type air conditioner 100 is designed so as to circulate alternative refrigerant R410 which is high in refrigerant performance per unit volume and small in pressure loss.
  • the outdoor unit 1 is disposed outdoors.
  • the outdoor unit 1 is equipped with an engine 10 for generating driving force by combusting fuel gas or the like, a compressor 11 which is connected to the engine 10 through a driving force transmitting unit (not shown) and compressing and discharging the alternative refrigerant R410a, a four-way valve 12 for inverting the circulation direction of the refrigerant, an outdoor heat exchanger 13 for carrying out the heat exchange between the refrigerant and the outside air, an outdoor expansion valve 14 for reducing the pressure of the refrigerant, and an accumulator 15 for carrying out gas-liquid separation on the refrigerant sucked in the compressor 11, these elements being connected to one another through the refrigerant pipe.
  • An outdoor fan 16 for blowing air to the outdoor heat exchanger 13 id disposed in proximity to the outdoor heat exchanger 13.
  • the outdoor unit 1 is equipped with a bypass pipe 17 which is connected between a refrigerant high-pressure side (the discharge side of the compressor 11) and a refrigerant low-pressure side (the entrance side of the accumulator 15 in Fig. 1 ), and a bypass valve (electrically-operated valve) 18 provided in the bypass pipe.
  • a bypass valve electrically-operated valve
  • the outdoor unit 1 is further equipped with a liquid-refrigerant pipe 40 for suitably supplying liquid-refrigerant flowing through the pipe 19 (corresponding to the liquid pipe 3b at the outdoor unit 1 side) to the entrance of the accumulator 15 provided at the suction side of the compressor 11, and also a liquid valve (electrically-operated valve) 41 provided in the liquid pipe 40.
  • the liquid valve 41 is normally closed.
  • the liquid valve 41 is opened, and the liquid refrigerant whose temperature is low is supplied from the pipe 19 at the outdoor unit 1 side through the liquid-refrigerant pipe 40 to the entrance side of the accumulator 15. Accordingly, the temperature of the gas refrigerant sucked into the compressor 11 is reduced, and thus overheat of the refrigerant discharged from the compressor 11 can be prevented.
  • the indoor unit 2a, 2b is equipped with an indoor heat exchanger 20a, 20b for carrying out the heat exchange between the refrigerant and indoor air in a room in which the indoor unit 2a, 2b is secured, and an indoor expansion valve 21a, 21b for controlling the refrigerant amount of the refrigerant flowing into the indoor unit 2a, 2b, the indoor heat exchangers 20a, 20b and the indoor expansion valves 21a, 21b being connected to one another through the refrigerant pipe. Furthermore, an indoor fan 22a, 22b for blowing air to the indoor heat exchanger 20a, 20 is disposed in proximity to the indoor heat exchanger 20a, 20b.
  • air-fuel mixture is supplied from an engine fuel supply device 31 into the combustion chamber of the engine 10 for driving the compressor 11.
  • the engine fuel supply device 31 includes fuel cutoff valves 33, a zero governor 34, a fuel adjusting valve 35 and a throttle valve 36 which are successively disposed in a fuel supply pipe 32 in this order, and the throttle valve 36 is connected to the combustion chamber of the engine 10.
  • the fuel cutoff valves 33 constitute a close type fuel cutoff valve mechanism, and one of the cutoff of the fuel gas with no leakage and the intercommunication of the fuel gas is selectively performed by fully closing or opening the fuel cutoff valves 33.
  • Fig. 2 is a block diagram showing the construction of a control device 4.
  • the control device 4 is equipped with a setting unit 47 for setting a driving instruction, etc. to the engine 10 and the compressor 11, EEPROM (storage unit) 42 for storing various kinds of setting data of the engine driving type air conditioner 100, control programs, control data and a data base 50 (see Fig. 3 ), etc., CPU 43 for controlling the whole of the engine driving type air conditioner 100 on the basis of the control programs, etc. stored in EEPROM 42, RAM 44 for temporarily storing various kinds of data, a transceiver 45 for making communications with the operating unit 5, and an interface (I/F) 46 for transmitting/receiving signals to/from the respective units of the engine driving type air conditioner 100.
  • EEPROM storage unit
  • I/F interface
  • the control device 4 is further connected through the I/F 46 to a rotational number detector (not shown) for detecting the rotational number of the engine 10, and temperature sensors (an indoor temperature sensor for measuring the indoor temperature (not shown), temperature sensors for measuring the refrigerant temperature at the inlet/outlet ports of each of the heat exchangers 13, 20a, 20b (not shown), and temperature sensors 23a, 23b for measuring the air blow-out temperature of the indoor fans 22a, 22b of the indoor units 2a, 2b (not shown)), and it is designed so as to achieve the information on the rotational number of the engine and the temperature at each place.
  • a rotational number detector not shown
  • temperature sensors an indoor temperature sensor for measuring the indoor temperature (not shown)
  • temperature sensors for measuring the refrigerant temperature at the inlet/outlet ports of each of the heat exchangers 13, 20a, 20b (not shown)
  • temperature sensors 23a, 23b for measuring the air blow-out temperature of the indoor fans 22a, 22b of the indoor units 2a, 2b (not
  • control device 4 controls each of the engine 10, the four-way valve 12, the outdoor expansion valve 14 and the outdoor fan 16 of the outdoor unit 1 and the indoor expansion valves 21a, 21b and the indoor fans 22a, 22b of the indoor units 2a, 2b.
  • the control device 4 switches the four-way valve 12 to set the air conditioner 1 to cooling operation or heating operation. That is, when the four-way valve 12 is switched to the cooling side, the refrigerant flows as indicated by a broken-line arrow, the outdoor heat exchanger 13 functions as a condenser and the indoor heat exchangers 20a, 20b function as evaporators, so that the operation state of the air conditioner is set to a cooling operation state and each of the indoor heat exchangers 20a, 20b cools a room.
  • the refrigerant flows as indicated by a solid-line arrow
  • the indoor heat exchangers 20a, 20b function as condensers
  • the outdoor heat exchanger 13 functions as an evaporator, so that the operation state of the air conditioner is set to a heating operation state and each of the indoor heat exchangers heats a room.
  • control device 4 controls the opening degrees of the fuel adjusting valve 35 and throttle valve 36 (the fuel adjusting valve opening degree, the throttle opening degree) on the basis of the difference between the set temperature set by the operating unit 5 and the indoor temperature achieved from the indoor temperature sensor, etc. to variably control the rotational number of the engine 10, and also it controls the opening degrees of the outdoor expansion valve 14 and indoor expansion valves 21a, 21b on the basis of the refrigerant temperature difference between the refrigerant inlet/outlet ports of the heat exchangers 13, 20a, 20b.
  • the control device 4 judges whether the engine 10 controlled in accordance with the air conditioning load is under overload state or not. If it is judged that the engine 10 is under overload state, the control device 4 carried out the processing of reducing the engine load (the engine load reducing processing) . In this embodiment, the control device 4 achieves information indicating the present control state of the engine 10 (control information) such as the rotational number of the engine 10, the fuel adjusting valve opening degree and the throttle opening degree, refers to a data base 50 on the basis of these information and judges whether the engine 10 is under overload state or not.
  • Fig. 3 shows an example of a data base 50.
  • the data base 50 describes the engine number of the engine, the fuel adjusting valve opening degree, the throttle opening degree, the torque value of the engine, the engine heat efficiency, the IG (ignition) demand voltage, the fuel gas flow amount and ⁇ (excess air factor) in association with one another.
  • the engine rotational number, the fuel adjusting valve opening degree and the throttle opening degree are measurable information under control of the engine 10, and the torque value, the IG demand voltage and ⁇ are information needed to judge whether the engine 10 is under overload state or not. That is, if the torque value is excessively large, the durability of the engine is lowered. If the IG demand voltage is high, the coil lifetime is lowered. Furthermore, if ⁇ is reduced, knocking occurs and the engine may be damaged.
  • these information is information for specifying a situation that the engine load is high (load specifying information).
  • the engine heat efficiency is information for judging whether the engine is driven at a rotational speed which provides an excellent engine heat efficiency under power saving operation.
  • the fuel gas flow amount is information suitably used under gas demand control or under power saving operation.
  • the data base 50 is achieved as follows. That is, torques of 1, 3, 5, 7, 9, 11 and 13 (Kg ⁇ m) are respectively applied as a load to the engine 10, and the fuel adjusting valve opening degree and the throttle opening degree are adjusted so that the engine 10 is rotated at 1000 (rpm) under each torque. Furthermore, various parameters such as the fuel adjusting valve opening degree, the throttle opening degree, the fuel gas flow amount, the torque value, the engine heat efficiency, the IG demand voltage, the fuel gas flow amount and ⁇ under the above state are achieved by measurements or the like.
  • the fuel adjusting valve opening degree, the throttle opening degree, the fuel gas flow amount, the engine heat efficiency, the IG demand voltage, the fuel gas flow amount and ⁇ under each torque are likewise achieved by measurements or the like.
  • the measurement data thus achieved are mapped to create the data base 50.
  • the data base 50 thus achieved is stored in EEPROM 42 of the control device 42.
  • the creation of the data base 50 is not limited to the actual measurement, and it may be created by simulation or the like. For example, various parameters as described above are determined by simulation while the driving condition of the engine 10 is variously varied, and the data base 50 is created on the basis of these parameters.
  • Fig. 4 is a flowchart showing the engine load reducing processing.
  • the control device 4 achieves the information on the present engine rotational number, fuel adjusting valve opening degree and throttle opening degree, refers to the data base 50 stored in EEPROM 42 and achieves the information on the present torque value, IG demand voltage and ⁇ on the basis of the engine rotational number, the fuel adjusting valve opening degree and the throttle opening degree from the data base 50 (step S1).
  • the torque value, the IG demand voltage and ⁇ cannot be directly specified from the data base 50, they may be achieved by carrying out an interpolative calculation from a driving condition having parameters near to the present engine rotational number, fuel adjusting valve opening and throttle opening degree.
  • the control device 4 judges on the basis of the torque value, IG demand voltage and ⁇ thus achieved whether the engine 10 is under overload state or not (step S2). Specifically, the control device 4 judges whether the torque value is higher than a predetermined torque upper limit value, whether the IG demand voltage is higher than a predetermined voltage upper limit value and whether ⁇ is smaller than a predetermined ⁇ lower limit value. If at least one of these conditions is satisfied, it is judged that the engine 10 is under overload state. If there is no condition satisfied, it is judged that the engine 10 is not under overload state.
  • step S2 If it is judged that the engine 10 is under overload state (step S2: YES), the control device 4 carries out the engine load reducing processing of reducing the load of the engine 10.
  • the control device 4 judges whether the opening degree of the expansion value at the evaporator side (the indoor expansion valves 21a, 21b under cooling operation, the outdoor expansion valve 14 under heating operation) is coincident with a predetermined lower limit value L1 (step S3). If the opening degree is not coincident with the lower limit value L1 (if the opening degree is larger than the lower limit value L1), the control device 4 reduces the opening degree of the expansion valve by a predetermined amount (step S4).
  • the lower limit value L1 of the expansion valve is set to such a value that the air conditioning performance is not remarkably degraded, and by reducing the expansion valve opening degree so that the air conditioning performance is not remarkably degraded, the circulation amount of the refrigerant can be reduced, and thus the engine load can be reduced.
  • the control device 4 shifts to the processing of step S1 after the expansion valve opening degree is reduced or if it is judged that the engine 10 is not under overload state, so that it is continuously judged whether the engine 10 is under overload state or not. Therefore, the control device 4 gradually reduces the expansion valve opening degree at the evaporator side and thus gradually reduces the engine load every time it is judged that the engine 10 is under overload state. Nevertheless, if it is still judged that the engine 10 is under overload state and the opening degree of the expansion valve at the evaporator side is reduced till the lower limit value L1 (step S3: lower limit value L1), the control device 4 shifts to the processing of step S5.
  • step S5 the control device 4 judges whether the rotational velocity of the fan at the condenser side (the outdoor fan 16 under cooling operation, the indoor fans 22a, 22b under heating operation) is coincident with a predetermined upper limit value U2. If the rotational velocity of the fan is not coincident with the predetermined upper limit value U2 (if the rotational velocity is smaller than the upper limit value U2), the control device 4 increases the rotational velocity of the fan by a predetermined amount (step S6).
  • the upper limit value U2 is set to the permissible upper limit rotational velocity of the fan or the upper limit rotational velocity within the permissible range of noise caused by the fan.
  • step S1 After the rotational velocity of the fan is increased, the control device 4 shifts to the processing of the step S1 to gradually increase the rotational velocity of the fan every time it is judged again that the engine 10 is under overload state. Nevertheless, if it is judged that the engine 10 is still under overload state and the rotational velocity of the fan reaches the upper limit value U2 (step S5: upper limit value U2), the control device 4 shifts to the processing of step S7.
  • step S7 the control device 4 judges whether the rotational number of the engine is coincident with the lower limit value L3, and if it is not coincident with the lower limit value L3 (if it is larger than a lower limit value L3), the control device reduces the rotational number of the engine by a predetermined amount (stepS8).
  • the lower limit value L3 is set to such an engine rotational number that the air conditioning performance is not remarkably degraded.
  • step S1 After the rotational number of the engine 10 is lowered, the control device 4 shifts to the processing of step S1 to gradually reduce the rotational number of the engine every time it is judged again that the engine 10 is under overload state. Nevertheless, if it is judged that the engine 10 is under overload state and the rotational number of the engine reaches the lower limit value L3 (step S7: lower limit value L3), the control device 4 shifts to the processing of step S9.
  • the control device 4 judges whether the opening degree of the bypass valve 18 is coincident with a predetermined upper limit value L4. If it is not coincident with the upper limit value L4 (if it is smaller than the upper limit value L4), the opening degree of the bypass valve 18 is increased by a predetermined amount (step S10).
  • the upper limit value L4 is set to such an opening degree of the bypass valve that the air conditioning performance is not remarkably degraded.
  • step S1 the control device 4 shifts to the processing of step S1 to gradually increase the opening degree of the bypass valve 18 every time it is judged again that the engine 10 is under overload state. Nevertheless, if it is judged that the engine 10 is still under overload state, the opening degree of the bypass valve 18 is finally increased up to the upper limit value L4.
  • the control device 4 preferably carries out the processing of outputting a predetermined alarm or the like.
  • the upper limit value L1, the upper limit value L2, the lower limit value L3 and the upper limit value L4 are set to the opening degree of the expansion valve at the evaporator side, the rotational velocity of the fan at the condenser side, the engine rotational number and the bypass opening degree at which the air conditioning performance is not remarkably degraded. If these values are set to fixed values, for example, if the lower limit value L1 is set in conformity with a case where the air conditioning load is large, there may occur such a case that the engine load can be reduced without remarkably degrading the air conditioning performance even when the expansion valve opening degree is set to a value lower than the lower limit value L1 in the case of a small air conditioning load. Therefore, the adjustment amount of the engine load is limited.
  • the control device 4 controls to change at least one of the lower limit value L1, the upper limit value L2, the lower limit value L3 and the upper limit value L4 in accordance with the present air conditioning load. Specifically, the control device 4 achieves the information on the blow-out air temperature of the indoor units 2a, 2b from the temperature sensors 23a, 23b, and changes the values L1 to L4 in accordance with the blow-out air temperature.
  • the control device 4 identifies which one of the following temperature ranges the blow-out air temperature belongs to under cooling operation: a first temperature range of 8°C or less, a second temperature range from 8°C to 12°C, a third temperature range from 12°C to 16°C and a fourth range of 16°C or more, and changes the respective values L1 to L4 in accordance with the identified temperature range. Accordingly, each of the opening degree of the expansion value at the evaporator, the rotational velocity of the fan at the condenser, the engine rotational number and the bypass valve opening degree can be varied over a broad range. That is, the adjustment amount of the engine load can be sufficiently secured, and the engine 10 can be more surely avoided from the overload state.
  • the engine driving type air conditioner 100 of this embodiment on the basis of the engine rotational number, the fuel adjusting valve opening degree and the throttle opening degree, it is judged whether the engine 10 is under overload state, whereby the engine load can be judged on the basis of the present control state of the engine 10. Accordingly, as compared with the case where it is indirectly judged from the shaft output of the compressor whether the engine is under overload state or not, it can be judged with high precision whether the engine 10 is under overload state or not.
  • the engine load is reduced in the following order: reducing the opening degree of the expansion valve at the evaporator side till the lower limit value L1, increasing the speed of the fan at the condenser side up to the upper limit value L2, reducing the engine rotational number till the lower limit value L3 and increasing the opening degree of the bypass valve 18 up to the upper limit value L4, whereby the engine load can be reduced while preferentially controlling the opening degree of the expansion valve at the evaporator side which is generally carried out when the engine load is reduced, and also the engine 10 can be surely avoided from the overload state.
  • the respective values L1 to L4 are varied I n accordance with the air conditioning load on a real-time basis, and the adjustment amount of the engine load can be broadly secured, so that the engine 10 can be more surely avoided from the overload state.
  • all the information on the engine rotational number, the fuel adjusting valve opening degree and the throttle opening degree are achieved, and then it is judged on the basis of these information whether the engine 10 is under overload state.
  • it may be modified so that any one or two of these information is achieved, and then it is judged on the basis of the information whether the engine 10 is under overload state.
  • it is also judged from the actual state (control state) of the engine 10 whether the engine 10 is under overload state, and thus the overload state of the engine 10 can be judged with higher precision as compared with the case where the overload state of the engine is indirectly judged on the basis of the shaft output of the compressor.
  • the engine rotational number, the fuel adjusting valve opening degree, the throttle opening degree, the torque value of the engine 10, the engine heat efficiency, the IG demand voltage, the fuel gas flow amount and ⁇ are mapped to create the data base, and the data base thus created is stored in the storage unit.
  • the engine heat efficiency and the fuel gas flow amount maybe omitted.
  • experiment data achieved by measuring the engine rotational number, the fuel adjusting valve opening degree, the throttle opening degree, the torque value, the IG demand voltage and ⁇ in advance are learned by using a neural network serving as an information processing mechanism constructed by imitating the structure of human's brain to create a calculation equation of calculating at least one of the torque value, the IG demand voltage and ⁇ from at least one of the engine rotational number, the fuel adjusting valve opening degree and the throttle opening degree, and the calculation equation thus created is stored in a storage unit.
  • the use amount of EEPROM 42 can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Control Of Vehicle Engines Or Engines For Specific Uses (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Air Conditioning Control Device (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Claims (13)

  1. Motorbetriebene Klimaanlage (100), die mit einem Kompressor (11), der von einem Motor (10) betrieben wird, einer Außeneinheit (1) mit einem Außen-Wärmetauscher (13), einem Außen-Expansionsventil (14) und einem Außengebläse (16) und einer Inneneinheit (2a, 2b) mit einem Innen-Wärmetauscher (20a, 20b), einem Innen-Expansionsventil (21a, 21b) und einem Innengebläse (22a, 22b) versehen ist und variabel eine Drehzahl des Motors in Übereinstimmung mit einer Klimatisierungslast steuert und Kühlmittel, das von dem Kompressor abgegeben wird, zwischen dem Außen-Wärmetauscher und dem Innen-Wärmetauscher zirkuliert, um dadurch einen Klimatisierungsvorgang durchzuführen, gekennzeichnet durch:
    eine Speichereinheit (42), die ausgebildet ist, um einen Drehmomentwert des Motors, die Drehzahl des Motors, einen Öffnungsgrad eines Brennstoff-Einstellventils, einen Öffnungsgrad einer Drossel, eine Zündungs-Anforderungsspannung und einen Luft-Überschussfaktor in Zuordnung zueinander zu speichern,
    eine Steuervorrichtung (4) mit einer Beurteilungseinheit, die ausgebildet ist, um die Drehzahl des Motors, den Öffnungsgrad des Brennstoff-Einstellventils und den Öffnungsgrad der Drossel bei dem Klimatisierungsvorgang zu messen,
    Informationen hinsichtlich des Drehmomentwerts der Maschine, der Zündungs-Anforderungsspannung und des Luft-Überschussfaktors auf Grundlage der Informationen, die in der Speichereinheit gespeichert sind und die bei dem Klimatisierungsvorgang gemessen werden, zu erhalten und auf Grundlage der erhaltenen Informationen zu beurteilen, ob der Motor in einem Überlastzustand ist oder nicht, und
    eine Steuereinheit, die ausgebildet ist, um eine Motor-Lastreduktionssteuerung zur Verminderung der Last des Motors durchzuführen, falls durch die Beurteilungseinheit festgestellt wird, dass der Motor in einem Überlastzustand ist.
  2. Motorbetriebene Klimaanlage (100) nach Anspruch 1, wobei die Speichereinheit (42) ausgebildet ist, um den Drehmomentwert des Motors, die Drehzahl des Motors, den Öffnungsgrad des Brennstoff-Einstellventils, den Öffnungsgrad der Drossel, die Zündungs-Anforderungsspannung und den Luft-Überschussfaktor zu speichern, die durch eine Messung erhalten werden, während ein vorgegebenes Drehmoment als eine Last an den Motor angelegt wird, wobei der Öffnungsgrad des Brennstoff-Einstellventils und der Drossel-Öffnungsgrad so eingestellt werden, dass der Motor mit einer vorgegebenen Drehzahl dreht.
  3. Motorbetriebene Klimaanlage (100) nach Anspruch 2, wobei:
    die Speichereinheit (42) ausgebildet ist, um den Drehmomentwert des Motors, die Drehzahl des Motors, den Öffnungsgrad des Brennstoff-Einstellventils, den Öffnungsgrad der Drossel, die Zündungs-Anforderungsspannung und den Luft-Überschussfaktor, die durch mehrere Messungen durch Variation des an den Motor angelegten Drehmoments und der Drehzahl des Motors gemessen wurden, zu kartieren und das Kartierungsergebnis zu speichern, und
    die Beurteilungseinheit sich auf die Informationen, die in der Speichereinheit gespeichert sind, bezieht, um den Drehmomentwert des Motors, die Zündungs-Anforderungsspannung und den Luft-Überschussfaktor auf Grundlage der Drehzahl des Motors, des Öffnungsgrads des Brennstoff-Einstellventil, des Öffnungsgrads der Drossel, die bei dem Klimatisierungsvorgang gemessen wurden, zu spezifizieren, den spezifizierten Wert mit einem vorgegebenen Einstellwert zu vergleichen und auf Grundlage des Vergleichsergebnisses zu beurteilen, ob der Motor (10) in einem Überlastzustand ist.
  4. Motorbetriebene Klimaanlage (100) nach einem der Ansprüche 1 bis 3, wobei die Speichereinheit (42) ausgebildet ist, um eine Berechnungsgleichung zur Berechnung des Drehmomentwert des Motors, der Zündungs-Anforderungsspannung und des Luft-Überschussfaktors auf Grundlage der Drehzahl des Motors, des Öffnungsgrads des Brennstoff-Einstellventils und des Öffnungsgrads der Drossel, die bei dem Klimatisierungsvorgang gemessen wurden, zu speichern und
    die Beurteilungseinheit den Drehmomentwert des Motors, die Zündungs-Anforderungsspannung und den Luft-Überschussfaktor auf Grundlage der Informationen, die so erhalten wurden, durch Verwendung der Berechnungsgleichung, die in der Speichereinheit gespeichert ist, zu spezifizieren, den spezifizierten Wert mit einem vorgegebenen Einstellwert zu vergleichen und auf Grundlage des Vergleichsergebnisses zu beurteilen, ob der Motor (10) in einem Überlastzustand ist.
  5. Motorbetriebene Klimaanlage nach Anspruch 1 mit ferner einer Umgehungsleitung (70), die zwischen einer Kühlmittel-Hochdruckseite und einer Kühlmittel-Niederdruckseite bezüglich des Kompressors (11) angeordnet ist, um einen Teil des Kühlmittels an der Kühlmittel-Hochdruckseite des Kompressors (11) zu der Kühlmittel-Niederdruckseite des Kompressors zurückzuführen, und einem Umgehungsventil (18), das in der Umgehungsleitung angeordnet ist, um den zurückzuführenden Anteil des Kühlmittels einzustellen.
  6. Motorbetriebene Klimaanlage nach Anspruch 5, wobei, wenn beurteilt wird, dass der Motor in einem Überlastzustand ist, die Steuereinheit mindestens eines der Einstellung des Expansionsventils (14) entsprechend einer Wärmetauscherfunktion als einer von dem Außen-Wärmetauscher und dem Innen-Wärmetauscher, eine Einstellung der Drehgeschwindigkeit des Gebläses entsprechend dem anderen Wärmetauscher von dem Außen-Wärmetauscher und dem Innen-Wärmetauscher, der als Kondensor funktioniert, eine Einstellung der Drehzahl des Motors (10) und eine Einstellung des Öffnungsgrads des Umgehungsventils in der Umgehungsleitung, die zwischen der Kühlmittel-Hochdruckseite und der Kühlmittel-Niederdruckseite vorgesehen ist, durchführt.
  7. Motorbetriebene Klimaanlage nach Anspruch 5, wobei in Übereinstimmung mit der Klimatisierungslast die Steuereinheit mindestens eines aus dem unteren Grenzwert des Öffnungsgrades des Expansionsventils entsprechend dem Wärmetauscher, der als Verdampfer funktioniert, wenn der betreffende Öffnungsgrad, eingestellt wird, dem oberen Grenzwert der Drehgeschwindigkeit des Gebläses entsprechend dem Wärmetauscher, der als der Kondensor dient, wenn die Drehgeschwindigkeit eingestellt wird, dem unteren Grenzwert der Drehzahl des Motors (10), wenn die Drehzahl des Motors eingestellt wird, und dem oberen Grenzwert des Öffnungsgrades des Umgehungsventils, wenn der betreffende Öffnungsgrad eingestellt wird, ändert.
  8. Verfahren der Steuerung einer motorbetriebenen Klimaanlage (100), die mit einem Kompressor (11) ausgestattet ist, der durch einen Motor (10) betrieben wird, einer Außeneinheit (1) mit einem Außen-Wärmetauscher (13), einem Außen-Expansionsventil (14) und einem Außengebläse (16) und einer Inneneinheit (2a, 2b) mit einem Innen-Wärmetauscher (20a, 20b), einem Innen-Expansionsventil (21a, 21b) und einem Innengebläse (22a, 22b) und der eine Drehzahl eines Motors in Übereinstimmung mit einer Klimatisierungslast steuert und Kühlmittel, das aus dem Kompressor abgegeben wird, zwischen dem Außen-Wärmetauscher und dem Innen-Wärmetauscher zirkuliert, um dadurch einen Klimatisierungsvorgang zu steuern, gekennzeichnet durch die Schritte:
    Speichern eines Drehmomentwerts des Motors, der Drehzahl des Motors, eines Öffnungsgrades eines Brennstoff-Einstellventils, eines Öffnungsgrades einer Drossel, einer Zündungs-Anforderungsspannung und einem Luft-Überschussfaktor in Zuordnung zueinander,
    Messen der Drehzahl des Motors, des Öffnungsgrades des Brennstoff-Einstellventils und des Öffnungsgrades der Drossel bei dem Klimatisierungsvorgang, um Informationen hinsichtlich des Drehmomentwerts des Motors, der Zündungs-Anforderungsspannung und des Luft-Überschussfaktors auf Grundlage der Informationen, die in der Speichereinheit gespeichert sind und die bei dem Klimatisierungsvorgang gemessen werden, zu erhalten und aufgrund der erhaltenen Informationen zu beurteilen, ob der Motor in einem Überlastzustand ist oder nicht, und Durchführen einer Motorlast-Reduktionssteuerung der Reduktion der Last auf den Motor, falls durch die Beurteilungseinheit beurteilt wird, dass der Motor in einem Überlastzustand ist.
  9. Verfahren Anspruch 8, wobei der Speicherschritt ausgebildet ist, um den Drehmomentwert des Motors, die Drehzahl des Motors, den Öffnungsgrad des Brennstoff-Einstellventils, den Öffnungsgrad der Drossel, die Zündungs-Anforderungsspannung und den Luft-Überschussfaktor zu speichern, die durch Messung erhalten werden, während ein vorgegebenes Drehmoment als eine Last an den Motor angelegt wird, wobei der Öffnungsgrad des Brennstoff-Einstellventils und der Öffnungsgrad der Drossel so eingestellt werden, dass der Motor mit einer vorgegebenen Drehzahl dreht.
  10. Verfahren nach Anspruch 9, wobei:
    der Speicherschritt ausgebildet ist, um den Drehmomentwert des Motors, die Drehzahl des Motors, den Öffnungsgrad des Brennstoff-Einstellventils, den Öffnungsgrad der Drossel, die Zündungs-Anforderungsspannung und den Luft-Überschussfaktor, die durch mehrere Messungen durch Variation des an den Motor angelegten Drehmoments und der Drehzahl des Motors gemessen wurden, zu kartieren und das Kartierungsergebnis zu speichern,
    und
    der Beurteilungsschritt sich auf die Informationen, die in der Speichereinheit gespeichert sind, bezieht, um den Drehmomentwert des Motors, die Zündungs-Anforderungsspannung und den Luft-Überschussfaktor auf Grundlage der Drehzahl des Motors, des Öffnungsgrads des Brennstoff-Einstellventils, des Öffnungsgrads der Drossel, die bei dem Klimatisierungsvorgang gemessen wurden, zu spezifizieren, den spezifizierten Wert mit einem vorgegebenen Einstellwert zu vergleichen und auf Grundlage des Vergleichsergebnisses zu beurteilen, ob der Motor (10) in einem Überlastzustand ist.
  11. Verfahren nach einem der Ansprüche 8 bis 10, wobei:
    der Speicherschritt ausgebildet ist, um eine Berechnungsgleichung zur Berechnung des Drehmomentwerts des Motors, der Zündungs-Anforderungsspannung und des Luft-Überschussfaktors auf Grundlage der Drehzahl des Motors, des Öffnungsgrads des Brennstoff-Einstellventils und des Öffnungsgrads der Drossel, die bei dem Klimatisierungsvorgang gemessen wurden, zu speichern und der Beurteilungsschritt den Drehmomentwert des Motors, die Zündungs-Anforderungsspannung und den Luft-Überschussfaktor auf Grundlage der Informationen, die so erhalten wurden, durch Verwendung der Berechnungsgleichung, die in der Speichereinheit gespeichert ist, zu spezifizieren, den spezifizierten Wert mit einem vorgegebenen Einstellwert zu vergleichen und auf Grundlage des Vergleichsergebnisses zu beurteilen, ob der Motor (10) in einem Überlastzustand ist.
  12. Verfahren nach Anspruch 8, wobei die Klimaanlage ferner eine Umgehungsleitung aufweist, die zwischen einer Kühlmittel-Hochdruckseite und einer Kühlmittel-Niederdruckseite bezüglich des Kompressors angeordnet ist, um einen Teil des Kühlmittels an der Kühlmittel-Hochdruckseite des Kompressors zu der Kühlmittel-Niederdruckseite des Kompressors zurückzuführen, und ein Umgehungsventil, das in der Umgehungsleitung angeordnet ist, um den zurückzuführenden Anteil des Kühlmittels einzustellen, wobei, wenn beurteilt wird, dass der Motor in einem Überlastzustand ist, mindestens eines der Einstellung des Expansionsventils entsprechend einer Wärmetauscherfunktion als einer von dem Außen-Wärmetauscher und dem Innen-Wärmetauscher, eine Einstellung der Drehgeschwindigkeit des Gebläses entsprechend dem anderen Wärmetauscher von dem Außen-Wärmetauscher und dem Innen-Wärmetauscher, der als Kondensor funktioniert, eine Einstellung der Drehzahl des Motors und eine Einstellung des Öffnungsgrades des Umgehungsventils in der Umgehungsleitung, die zwischen der Kühlmittel-Hochdruckseite und der Kühlmittel-Niederdruckseite vorgesehen ist.
  13. Verfahren nach Anspruch 12 mit ferner einem Schritt, in Übereinstimmung mit der Klimatisierungslast, der Änderung von mindestens einem aus dem unteren Grenzwert des Öffnungsgrades des Expansionsventils entsprechend dem Wärmetauscher, der als Verdampfer funktioniert, wenn der betreffende Öffnungsgrad, eingestellt wird, dem oberen Grenzwert der Drehgeschwindigkeit des Gebläses entsprechend dem Wärmetauscher, der als der Kondensor dient, wenn die betreffende Drehgeschwindigkeit eingestellt wird, dem unteren Grenzwert der Drehzahl des Motors, wenn die Drehzahl des Motors eingestellt wird, und dem oberen Grenzwert des Öffnungsgrades des Umgehungsventils, wenn der betreffende Öffnungsgrad, eingestellt wird.
EP05015661.1A 2004-07-26 2005-07-19 Verbrennungsmotorgetriebene Klimaanlage und dazugehöriges Steuerungsverfahren Expired - Fee Related EP1632735B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217047 2004-07-26

Publications (3)

Publication Number Publication Date
EP1632735A2 EP1632735A2 (de) 2006-03-08
EP1632735A3 EP1632735A3 (de) 2014-04-02
EP1632735B1 true EP1632735B1 (de) 2017-03-29

Family

ID=35427828

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05015661.1A Expired - Fee Related EP1632735B1 (de) 2004-07-26 2005-07-19 Verbrennungsmotorgetriebene Klimaanlage und dazugehöriges Steuerungsverfahren

Country Status (3)

Country Link
EP (1) EP1632735B1 (de)
KR (1) KR100681973B1 (de)
CN (1) CN100381762C (de)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102313340A (zh) * 2011-03-30 2012-01-11 上海本家空调系统有限公司 热能驱动式空调装置及其控制方法
GB2513943B (en) * 2013-05-03 2015-11-04 Control Tech Ltd Method and system for cooling a device
JP6401658B2 (ja) * 2015-05-08 2018-10-10 日立ジョンソンコントロールズ空調株式会社 空気調和機
CN104819595B (zh) * 2015-05-12 2017-11-07 广东美的暖通设备有限公司 制冷系统、控制方法及装置和空调器
CN112926868B (zh) * 2021-03-11 2024-04-09 郑州畅威物联网科技有限公司 调压设备负载状态评估方法、设备及可读存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR930002428B1 (ko) * 1988-12-16 1993-03-30 산요덴끼 가부시끼가이샤 히이트 펌프장치
JPH06137701A (ja) * 1992-10-21 1994-05-20 Sanyo Electric Co Ltd エンジン駆動式空気調和機の運転制御方法
US5454229A (en) * 1994-05-18 1995-10-03 Thermo King Corporation Refrigeration unit control with shutdown evaluation and automatic restart
KR100235699B1 (ko) * 1996-12-06 1999-12-15 정몽규 자동차 공조시스템
JP3973441B2 (ja) * 2002-02-08 2007-09-12 三洋電機株式会社 空気調和装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
EP1632735A2 (de) 2006-03-08
CN1727793A (zh) 2006-02-01
KR20060046731A (ko) 2006-05-17
EP1632735A3 (de) 2014-04-02
KR100681973B1 (ko) 2007-02-15
CN100381762C (zh) 2008-04-16

Similar Documents

Publication Publication Date Title
US7380407B2 (en) Multi air conditioning system and method for operating the same
CN110940055B (zh) 一种空调器制热除霜控制方法、装置及空调器
CN101113834B (zh) 空调机的控制方法
KR101513768B1 (ko) 공기 조화 장치
US20030213254A1 (en) Air conditioner and control method thereof
JP5046895B2 (ja) 空気調和装置およびその運転制御方法
CN103842736B (zh) 制冷装置
CN107036245B (zh) 多联机系统及其室外压缩机的控制装置和方法
CN106765903B (zh) 一种用于空调系统的外风机的控制方法
EP1632735B1 (de) Verbrennungsmotorgetriebene Klimaanlage und dazugehöriges Steuerungsverfahren
EP1643193B1 (de) Verfahren zur Konfigurationsbestimmung eines Klimaanlagesystems
US20050155361A1 (en) Air conditioning system and method for controlling the same
EP1624261B1 (de) Motorbetriebene Klimaanlage und Steuerungsverfahren dafür
EP1724134A2 (de) Klimaanlage
CN104142031A (zh) 空调系统及其控制方法
JP4557828B2 (ja) エンジン駆動式空気調和装置及びその制御方法
JP4105413B2 (ja) マルチ式空気調和機
JP2002147819A (ja) 冷凍装置
KR100339552B1 (ko) 멀티형 공기조화기 및 그 운전제어방법
KR102521852B1 (ko) 공기조화기
CN218154581U (zh) 热泵空调系统
KR101951673B1 (ko) 멀티 공기조화기 및 멀티 공기조화기의 냉매 액고임 방지 운전방법
JP3152448B2 (ja) ガスヒートポンプエアコン
KR20090114837A (ko) 멀티형 공기조화기 및 그 제어방법
JP3719366B2 (ja) 空気調和機

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050719

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 27/00 20060101AFI20140121BHEP

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

RIC1 Information provided on ipc code assigned before grant

Ipc: F25B 27/00 20060101AFI20140224BHEP

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AKX Designation fees paid

Designated state(s): DE GB IT

AXX Extension fees paid

Extension state: YU

Extension state: HR

Extension state: MK

Extension state: BA

Extension state: AL

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20161114

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005051611

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005051611

Country of ref document: DE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20180103

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20180724

Year of fee payment: 14

Ref country code: DE

Payment date: 20180723

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20180719

Year of fee payment: 14

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005051611

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20190719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20200201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190719

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20190719