EP1631646A1 - Brennstoffzusammensetzungen mit verbesserten kaltfliesseigenschaften - Google Patents

Brennstoffzusammensetzungen mit verbesserten kaltfliesseigenschaften

Info

Publication number
EP1631646A1
EP1631646A1 EP04739405A EP04739405A EP1631646A1 EP 1631646 A1 EP1631646 A1 EP 1631646A1 EP 04739405 A EP04739405 A EP 04739405A EP 04739405 A EP04739405 A EP 04739405A EP 1631646 A1 EP1631646 A1 EP 1631646A1
Authority
EP
European Patent Office
Prior art keywords
copolymer
fuel
acrylic acid
weight
use according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04739405A
Other languages
English (en)
French (fr)
Inventor
Wolfgang Ahlers
Andreas FECHTENKÖTTER
Frank-Olaf Mähling
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1631646A1 publication Critical patent/EP1631646A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/22Organic compounds containing nitrogen
    • C10L1/234Macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/196Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof
    • C10L1/1963Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and a carboxyl group or salts, anhydrides or esters thereof homo- or copolymers of compounds having one or more unsaturated aliphatic radicals each having one carbon bond to carbon double bond, and at least one being terminated by a carboxyl radical or of salts, anhydrides or esters thereof mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/195Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds
    • C10L1/197Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid
    • C10L1/1973Macromolecular compounds obtained by reactions involving only carbon-to-carbon unsaturated bonds derived from monomers containing a carbon-to-carbon unsaturated bond and an acyloxy group of a saturated carboxylic or carbonic acid mono-carboxylic
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/192Macromolecular compounds
    • C10L1/198Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid
    • C10L1/1985Macromolecular compounds obtained otherwise than by reactions involving only carbon-to-carbon unsaturated bonds homo- or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon to carbon double bond, and at least one being terminated by an acyloxy radical of a saturated carboxylic acid, of carbonic acid polyethers, e.g. di- polygylcols and derivatives; ethers - esters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M145/00Lubricating compositions characterised by the additive being a macromolecular compound containing oxygen
    • C10M145/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M145/10Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate
    • C10M145/12Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate monocarboxylic
    • C10M145/14Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/022Ethene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/024Propene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2205/00Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions
    • C10M2205/02Organic macromolecular hydrocarbon compounds or fractions, whether or not modified by oxidation as ingredients in lubricant compositions containing acyclic monomers
    • C10M2205/026Butene
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/06Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to an acyloxy radical of saturated carboxylic or carbonic acid
    • C10M2209/062Vinyl esters of saturated carboxylic or carbonic acids, e.g. vinyl acetate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2209/00Organic macromolecular compounds containing oxygen as ingredients in lubricant compositions
    • C10M2209/02Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C10M2209/08Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds containing monomers having an unsaturated radical bound to a carboxyl radical, e.g. acrylate type
    • C10M2209/084Acrylate; Methacrylate
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2030/00Specified physical or chemical properties which is improved by the additive characterising the lubricating composition, e.g. multifunctional additives
    • C10N2030/08Resistance to extreme temperature

Definitions

  • the invention relates to the use of copolymers which contain at least one polymerized acrylic acid ester which is derived from a heteroatom-functionalized alcohol, as an additive for fuel oils and lubricants and in particular as a cold flow improver in fuel oils; the fuel oils and lubricants added with these copolymers; and additive packages containing such copolymers.
  • Mineral oils containing paraffinic waxes such as middle distillates, diesel and heating oils, show a marked deterioration in the flow properties when the temperature is lowered.
  • the reason for this is the crystallization of longer-chain paraffins, which form large, platelet-shaped wax crystals, starting from the temperature of the cloud point.
  • These wax crystals have a sponge-like structure and lead to the inclusion of other fuel components in the crystal composite.
  • the appearance of these crystals quickly leads to the sticking of fuel filters both in tanks and in motor vehicles. Finally, at temperatures below the pour point (PP), the fuel no longer flows.
  • fuel additives have been added for a long time in small concentrations, which often consist of combinations of nucleators for the early formation of small crystallites of the paraffins with the actual cold flow improvers (also known as CFI or MDFI). These in turn show similar crystallization properties as the paraffins of the fuel, but prevent their growth, so that the filter can be passed at significantly lower temperatures than the unadditized fuel.
  • CFI Cold Filter Plugging Point
  • WASA wax anti-settling additives
  • WASA wax anti-settling additives
  • Cold flow improvers are added in amounts of approximately 50 to 500 ppm, depending on the nature of the base fuel and the additive.
  • Various CFI products are known from the prior art (see, for example, US Pat. Nos. 3,038,479, 3,627,838 and 3,961, 961, EP-A-0,261,957 or DE-A-31 41 507 and 25 15 805).
  • Common CFIs are usually polymeric Compounds, in particular ethylene-vinyl acetate (EVA) copolymers, such as, for example, the products sold by BASF AG under the trade name Keroflux.
  • EVA ethylene-vinyl acetate
  • EP-A 0 997 517 describes a mixture of a copolymer which is composed of ethylene, a further olefinically unsaturated monomer which contains hydroxyl groups and, if appropriate, further ethylenically unsaturated monomers, and a polar nitrogen-containing compound. Such mixtures are said to be suitable as lubricity improvers.
  • a first subject of the invention relates to the use of an oil-soluble copolymer which contains at least one acrylic acid ester copolymerized, which is derived from a heteroatom-functionalized alcohol, as an additive for fuel oils and lubricants.
  • those copolymers are used which contain the acrylic acid ester and any other comonomers present in copolymerized form in a random distribution.
  • acrylic acid esters which are derived from a heteroatom-functionalized alcohol are understood to mean compounds which contain a single carbon-carbon double bond to which a carboxyl group COOR is bonded directly, the radical R being a heteroatom functionalized alcohol.
  • the remaining three substituents on the carbon-carbon double bond are selected from H and -CC 4 alkyl.
  • At least one heteroatom is preferably bonded to a carbon atom which is ⁇ , ⁇ , ⁇ and / or ⁇ constant to the carboxyl group of the acrylic acid ester.
  • the heteroatom is bonded to a carbon atom which is ß-to the carboxyl group of the acrylic acid ester.
  • the heteroatom can be bonded to the carbon atom carrying it via a single, double or triple bond. It is preferably bound via a single bond.
  • heteroatoms are understood to mean all elements other than carbon and hydrogen which, with carbon, form a covalent bond which is stable under customary ambient conditions (room temperature, air humidity, light irradiation, etc.) and polymerization conditions and do not conflict with the use of the copolymer according to the invention.
  • ambient conditions room temperature, air humidity, light irradiation, etc.
  • polymerization conditions do not conflict with the use of the copolymer according to the invention.
  • These include e.g. Si, O, S, N and P.
  • the heteroatom is preferably oxygen.
  • copolymers which are essentially composed of monomers comprising the monomers M1, M2 and optionally M3, where M1, M2 and M3 have the following general formulas
  • R 1 represents H or C 1 -C 40 -, such as CrC 20 -, in particular CrC 10 -, preferably C 1 -C 4 - hydrocarbyl;
  • R 2 , R 3 , R 4 and R 5 are the same or different and are for H, CrC 40 , such as C 1 -C 20 , in particular C C 0 , preferably CrC 4 hydrocarbyl, COOR 14 or OCOR 14 stand, wherein R 14 stands for CrC 40 -, such as CC 20 -, in particular CrCio-, preferably CrC 4 -hydrocarbyl and wherein at least one of the radicals R 2 , R 3 , R 4 and R 5 stands for -COOR 14 or -OCOR 14 stands; R 6 , R 7 and R 8 are the same or different and stand for H or CC 4 alkyl and R 9 stands for COOR 10 , where R 10 represents a group of the formula
  • A is C 2 -C 4 alkylene
  • R 11 stands for H, CrC-io-alkyl or for a 3- to 16-membered carbo- or heterocyclic, saturated, mono- or poly-unsaturated ring or for a corresponding condensed ring system and n stands for a number from 1 to 20.
  • R 1 is preferably H.
  • radicals R 2 , R 3 , R 4 and R 5 which do not represent COOR 14 or OCOR 14 are preferably H or methyl, especially H.
  • R 6 , R 7 and R 8 are preferably independently of one another H or methyl.
  • R 6 and R 7 are particularly preferably H and R 8 is H or methyl and especially H.
  • the 3 to 6-membered, carbo- or heterocyclic, saturated or mono- to polyunsaturated ring or the corresponding condensed ring system is, for example, cyclopropyl, cyclopentyl, cyclohexyl, cyclooctyl, cyclodecyl, cyclopentenyl, cyclohexenyl, Cyclooctenyl, cyclodecenyl, cyclopentadienyl, cyclohexadienyl, cycloctadienyl, phenyl, cyclooctatetraenyl, oxiranyl, aziridinyl, oxolanyl, dioxolanyl, oxolenyl, dioxolenyl, furanyl, oxazolanyl, oxathiolanyl, pyrrololylylylyl, pyrrololylylylylylylylyly
  • the rings can also be substituted one to more times. Suitable substituents are, for example, CrC 4 alkyl, CC 4 alkoxy, C r C 4 hydroxyalkyl and hydroxy groups. If R 11 is H, M1 in R 1 is preferably H and / or the proportion x of M3 in the copolymer is preferably 0 ⁇ x ⁇ 20 mol%.
  • R 11 is not H.
  • R 11 stands for CC 4 -alkyl or for phenyl.
  • A preferably represents ethylene.
  • n is preferably a number from 1 to 10, particularly preferably from 1 to 5 and especially 1 or 2.
  • the copolymers used according to the invention can contain the monomers M1, M2 and M3 in the following molar proportions (Mx / (M1 + M2 + M3) in the copolymer: M1: 0.55 to 0.999, preferably 0.6 to 0.95, in particular 0.7 to 0.95; M2: 0.001 to 0.25, preferably 0.006 to 0.25, in particular 0.008 to 0.22; M3: 0 to 0.2, preferably 0 to 0.15, in particular 0.01 to 0 , 15th
  • copolymers used according to the invention are preferably obtainable by, preferably free-radical, polymerization, in particular high-pressure polymerization, of the monomers M1, M2 and, if appropriate, M3, and in particular of the monomers M1, M2 and M3.
  • Preferred monomers M1 are selected from ethylene, propylene and 1-butene.
  • Preferred monomers M2 are selected from monomers of the following formula:
  • Preferred monomers M3 are selected from CrC ⁇ -carboxylic acid vinyl esters and CrC 20 - hydrocarbyl (meth) acrylates and in particular from C r C 20 -carboxylic acid vinyl esters.
  • a particularly preferred monomer M3 is vinyl acetate.
  • M2 represents one of the acrylic acid esters 1, 2 or 3 and especially 2
  • M1 is preferably ethylene and / or the proportion x of M3 in the copolymer is preferably 0 ⁇ x ⁇ 20 mol%.
  • Copolymers used with particular preference are selected from ethylene / acrylic acid 2- (2-ethoxyethoxy) ethyl ester copolymers and ethylene / acrylic acid 2- (2-ethoxyethoxy) ethyl ester / vinyl acetate copolymers.
  • the copolymers are preferably used as cold flow improvers.
  • copolymers described above are used alone or in combination with other such copolymers in amounts to show an effect as a cold flow improver in the additive fuel or lubricant.
  • the present invention also relates to a copolymer as defined above.
  • Another object of the invention relates to fuel oil compositions containing a larger proportion by weight of a middle distillate fuel boiling in the range of approximately 120-500 ° C. and a smaller proportion by weight of at least one cold flow improver as defined above.
  • Such fuel oil compositions can further comprise biodiesel (from animal and / or vegetable production) as a fuel component in proportions of 0-30% by weight.
  • Preferred fuel oil compositions are selected from diesel fuels, kerosene and heating oil, it being possible for the diesel fuel to be obtainable by refining, coal gasification or gas liquefaction, to be a mixture of such products and, if appropriate, to be mixed with regenerative fuels.
  • Such fuel oil compositions are preferred, the sulfur content of the mixture being at most 500 ppm.
  • the invention further relates to lubricant compositions comprising a larger proportion by weight of a conventional lubricant and a smaller proportion. percentage by weight of at least one cold flow improver as defined above.
  • copolymers according to the invention can be used in combination with further conventional cold flow improvers and / or further lubricating and fuel oil additives.
  • a last subject of the invention also relates to additive packages comprising a copolymer according to the invention as defined above in combination with at least one further conventional lubricant and fuel oil additive.
  • the copolymers according to the invention are preferably essentially composed of the monomers M1, M2 and optionally M3 defined above. Depending on the manufacturing process, small amounts of a compound used as a regulator (chain terminator) may be present.
  • -C-C 40 hydrocarbyl is in particular C 1 -C 40 -alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2 -Ethylhexyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl, No-nadecyl, Eicosyl, Hencosyl, Docosyl, Tricosyl, Tetracosyl, Pentacosyl, Hexacosyl, Octacosyl, Octacosyl, Octacosyl, Heptacosyl and the higher homologues and the associated positional isomers.
  • C Cio-hydrocarbyl is especially CrC-io-alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl, 2-ethylhexyl, Nonyl and decyl.
  • CrC 4 hydrocarbyl is in particular C 1 -C 4 -alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl and tert-butyl.
  • C 1 -C 4 hydroxyalkyl represents C 1 -C 4 alkyl which is substituted by at least one hydroxyl group, such as 2-hydroxyethyl, 2- and 3-hydroxypropyl, 2-, 3- and 4-hydroxybutyl.
  • CrOrAlkoxy stands in particular for methoxy, ethoxy, propoxy, isopropoxy, butoxy, isobutoxy and tert-butoxy.
  • Alkylene is in particular methylene, ethylene, 1, 2- or 1, 3-propylene, 1, 2-, 1, 3-, 2,3-, 2,4-, 3,4- or 1,4-butylene and especially for ethylene.
  • Suitable monomers M1 are: mono-alkenes with a non-terminal or preferably terminal double bond, in particular ethylene, propylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonen and 1-decene and the higher monounsaturated homologues with up to 40 carbon atoms.
  • acrylic acid esters M2 examples include: 2-methoxyethyl acrylate, 2-ethoxyethyl acrylate, 2-propoxyethyl acrylate, 2-isopropoxyethyl acrylate, 2-butoxyethyl acrylate, 2-isobutoxyethyl acrylate, 2-isobutoxyethyl acrylate, acrylic acid 2-tert-butoxyethyl ester, acrylic acid 3-methoxypropyl ester, acrylic acid 3-ethoxypropyl ester, acrylic acid 3-propoxypropyl ester, acrylic acid 3-isopropoxypropyl ester, acrylic acid 3-butoxypropyl ester, acrylic acid 3-isobutoxypropyl ester, acrylic acid 3-tert-butoxypropyl ester, Acrylic acid 2-phenoxyethyl ester, acrylic acid 3-phenoxypropyl ester, acrylic acid 2-benzyloxyethyl ester, acrylic acid 3-benzyloxypropyl ester, acrylic acid ester of diethylene glyco
  • Suitable monomers M3 are: CrC 20 -carboxylic acid vinyl esters, in particular the vinyl esters of formic acid, acetic acid, propionic acid, butyric acid, valeric acid, caproic acid, oenanthic acid, caprylic acid, pelargonic acid, capric acid, lauric acid, myristic acid, palmitic acid, stearic acid, arearic acid - re, behenic acid, lignoceric acid, cerotic acid and melissic acid; further C ⁇ -C 20 - alkyl acrylates and CrC ⁇ alkyl methacrylates, wherein CrC ⁇ alkyl for methyl, ethyl, n-propyl, isopropyl, n-butyl, sec-butyl, isobutyl, tert-butyl, pentyl, hexyl, heptyl, octyl , 2-ethylhexyl
  • the copolymers according to the invention also have a number average molecular weight M n in the range from about 1000 to 20,000, particularly preferably from 1,000 to 10,000 and in particular from 1,000 to 6,000.
  • the copolymers can also have a weight-average molecular weight M w of 1,000 to 30,000, in particular 1,500 to 15,000 and / or an M w / M n ratio of 1.5 to 5.0, in particular 1.8 to 4.0.
  • Particularly preferred copolymers are composed of the monomers ethylene, acrylic acid ester 2 (acrylic acid 2- (2-ethoxyethoxy) ethyl ester; AEEE) and optionally vinyl acetate (VAC). Based on the polymer, the weight fraction of the monomers is:
  • VAC 0 -42% by weight, preferably 0 to 35% by weight, in particular approximately 1 to 30% by weight, specifically 1 to 20% by weight
  • AEEE 2-70% by weight, preferably 2.5 to 70% by weight, in particular approximately 3.5 to 65% by weight
  • the viscosity of such copolymers is about 5 - 25000 mm 2 / s, 10 to 10000 in particular about 10 to 1000 or 20 to 800 mm 2 / s each at a temperature of about 120 ° C.
  • copolymers according to the invention are prepared by processes known per se, preferably according to the state of the art (see, for example, Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, keyword: Waxes, Vol. A 28, p. 146 ff., VCH Weinheim , Basel, Cambridge, New York, Tokyo, 1996) known methods for the direct radical high-pressure copolymerization of unsaturated compounds.
  • the copolymers are preferably produced in stirred high-pressure autoclaves or in high-pressure tube reactors or combinations of the two.
  • the ratio length / diameter predominates in the range from 5: 1 to 30: 1, preferably 10: 1 to 20: 1.
  • Suitable pressure conditions for the polymerization are 1000 to 3000 bar, preferably 1500 to 2000 bar.
  • the reaction temperatures are e.g. in the range from 160 to 320 ° C, preferably in the range from 200 to 280 ° C.
  • An aliphatic aldehyde or an aliphatic ketone of the general formula I is used, for example, as a regulator for adjusting the molecular weight of the copolymers
  • radicals R a and R b are the same or different and selected from
  • - CrC- 6 alkyl such as methyl, ethyl, n-propyl, iso-propyl, n-butyl, iso-butyl, sec-butyl, tert-butyl, n-pentyl, iso-pentyl, sec-pentyl, neo -Pentyl, 1, 2-dimethylpropyl, iso-amyl, n-hexyl, iso-hexyl, sec-hexyl; C 1 -C 4 -alkyl, such as methyl, ethyl, n-propyl, isopropyl, n-butyl, isobutyl, sec-butyl and tert-butyl;
  • cycloalkyl such as cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, cycloctyl, cyclononyl, cyclodecyl, cycloundecyl and cyclododecyl; cyclopentyl, cyclohexyl and cycloheptyl are preferred.
  • R a and R b can also be covalently bonded to one another to form a 4- to 13-membered ring.
  • R a and R b can together form the following alkylene groups: - (CH 2 ) 4 -, - (CH 2 ) 5 -, - (CH 2 ) 6l - (CH 2 ) 7 -, -CH (CH 3 ) -CH 2 -CH 2 -CH (CH 3 ) - or- CH (CH 3 ) -CH 2 -CH 2 -CH 2 -CH (CH 3 ) -.
  • Suitable regulators are unbranched aliphatic hydrocarbons, such as propane or branched aliphatic hydrocarbons with tertiary H atoms, such as isobutane, isopentane, isooctane or isododecane (2,2,4,6,6-pentamethylheptane).
  • tertiary H atoms such as isobutane, isopentane, isooctane or isododecane (2,2,4,6,6-pentamethylheptane).
  • Higher olefins, such as propylene can be used as further additional regulators.
  • the amount of regulator used corresponds to the amounts customary for the high-pressure polymerization process.
  • the usual radical initiators such as organic peroxides, oxygen or azo compounds, can be used as starters for the radical polymerization. Mixtures of several radical initiators are also suitable. For example, one or more peroxides selected from the following commercially available substances can be used as radical initiators:
  • Di-tert-butyl peroxide, tert-butyl peroxypivalate, tert-butyl peroxyisononanoate or dibenzoyl peroxide or mixtures thereof are particularly suitable as peroxides.
  • Azobisisobutyronitrile (“AIBN”) may be mentioned as an example as an azo compound.
  • the radical initiators are dosed in amounts customary for polymerizations.
  • the copolymers according to the invention are prepared by mixing the monomers M1, M2 and optionally M3 in the presence of the regulator at a temperature in the range from about 20 to 50 ° C, e.g. of 30 ° C, preferably continuously through a stirred autoclave which operates at a pressure in the range of about 1500 to 2000 bar, e.g. of about 1700 bar.
  • a suitable solvent such as. Isododecane
  • the temperature in the reactor is increased to the desired reaction temperature, e.g. kept at 200 to 250 ° C.
  • the polymer obtained after the relaxation of the reaction mixture is then isolated in a conventional manner.
  • fuel oil compositions are preferably understood to mean fuels.
  • Suitable fuels are petrol and middle distillates, such as diesel fuels, heating oil or kerosene, with diesel fuel and heating oil being particularly preferred.
  • the heating oils are, for example, low-sulfur or high-sulfur petroleum refinates or hard or lignite distillates, which usually have a boiling range of 150 to 400 ° C.
  • the heating oils are preferably low-sulfur heating oils, for example those with a sulfur content of at most 0.1% by weight, preferably at most 0.05% by weight, particularly preferably at most 0.005% by weight, and in particular of at most 0.001% by weight.
  • Examples of heating oil include heating oil for domestic oil firing systems or heating oil EL.
  • the quality requirements for such heating oils are specified, for example, in DIN 51-603-1 (see also Ullmann's Encyclopedia of Industrial Chemistry, 5th edition, vol. A12, p. 617 ff., To which express reference is hereby made).
  • Diesel fuels are, for example, petroleum raffinates, which usually have a boiling range of 100 to 400 ° C. These are mostly distillates with a 95% point up to 360 ° C or beyond. However, these can also be so-called “ultra low sulfur diesel” or “city diesel”, characterized by a 95% point of, for example, a maximum of 345 ° C. and a sulfur content of a maximum of 0.005% by weight or by a 95% point of, for example, 285 ° C. and a maximum sulfur content of 0.001% by weight.
  • diesel fuels obtainable by refining
  • those which are obtainable by coal gasification or gas liquefaction (“gas to liquid” (GTL) fuels) are suitable.
  • GTL gas to liquid
  • the additive according to the invention is particularly preferred for the additization of diesel fuels with a low sulfur content, that is to say with a sulfur content of less than 0.05% by weight, preferably less than 0.02% by weight, in particular less than 0.005% by weight. % and especially less than 0.001% by weight sulfur or for the additive of heating oil with a low sulfur content, for example with a sulfur content of at most 0.1% by weight, preferably at most 0.05% by weight, particularly preferably at most 0.005% by weight, and in particular at most 0.001% by weight.
  • the additive according to the invention is preferably used in a proportion, based on the total amount of the fuel oil composition, which in itself has an essentially sufficient influence on the cold flow properties of the fuel oil compositions.
  • the additive is particularly preferably used in an amount of 0.001 to 1% by weight, in particular 0.01 to 0.1% by weight, based on the total amount of the fuel oil composition.
  • the copolymers according to the invention are usually used as cold flow improvers in an amount which has the effect that the CFPP value (determined according to DIN EN116) of the additive fuel is at least 1 degree Celsius, for example 1 to 30, 1 to 25, 3 to 15 or 5 to 10 degrees Celsius drops.
  • the correspondingly determined CFPP value of the fuel to be added can vary over a wide range depending on the composition of the base fuel used and the type and amount of any co-additives (such as conventional cold flow improvers) added, e.g. in the range of about 0 to -35, -5 to -28 or -8 to -28 degrees Celsius.
  • copolymers according to the invention can be added to the fuel oil compositions individually or as a mixture of such copolymers and, if appropriate, in combination with other additives known per se.
  • Suitable additives which can be contained in the fuel oils according to the invention in addition to the copolymer according to the invention, in particular for diesel fuels and heating oils include detergents, corrosion inhibitors, dehazers, demulsifiers, antifoam ("antifoam”), antioxidants, metal deactivators, multifunctional stabilizers, cetane number improvers, combustion improvers, dyes. Markers, solubilizers, antistatic agents, lubricity improvers, and further additives which improve the cold properties of the fuel, such as nucleators, other conventional flow improvers (“MDFI"), paraffin dispersants (“WASA”) and the combination of the last two additives mentioned (“WAFI”) (cf.
  • MDFI flow improvers
  • WASA paraffin dispersants
  • the monomer is preferably selected from alkenyl carboxylic acid esters, (meth) acrylic acid esters and olefins.
  • Suitable olefins are, for example, those with 3 to 10 carbon atoms and with 1 to 3, preferably with 1 or 2, in particular with one, carbon-carbon double bond. In the latter case, the carbon-carbon double bond can be arranged both terminally ( ⁇ -olefins) and internally.
  • ⁇ -olefins particularly preferably ⁇ -olefins having 3 to 6 carbon atoms, such as propene, 1-butene, 1-pentene and 1-hexene.
  • Suitable (meth) acrylate are, for example, esters of (meth) acrylic acid with C ⁇ -C 0 - alkanols, in particular methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, pentanol, hexanol, heptanol , Octanol, 2-ethylhexanol, nanol and decanol.
  • esters of (meth) acrylic acid with C ⁇ -C 0 - alkanols in particular methanol, ethanol, propanol, isopropanol, n-butanol, sec-butanol, isobutanol, tert-butanol, pentanol, hexanol, heptanol , Octanol, 2-ethylhexanol, nanol and decan
  • Suitable alkenyl carboxylic acid esters are, for example, the vinyl and propenyl esters of carboxylic acids having 2 to 20 carbon atoms, the hydrocarbon radical of which can be linear or branched. Among these, the vinyl esters are preferred. Among the carboxylic acids having a branched hydrocarbon group, preferred are those whose branch is in the position O p is the carboxyl group, the ⁇ -carbon atom is particularly preferred tertiary carboxylic acid that is, a neocarboxylic acid is. However, the hydrocarbon residue of the carboxylic acid is preferably linear.
  • alkenyl carboxylic acid esters examples include vinyl acetate, vinyl propionate, vinyl butirate, vinyl 2-ethylhexanoate, vinyl neopentanoate, vinyl hexanoate, vinyl neononate, vinyl neodecanoate and the corresponding propenyl esters, with the vinyl esters being preferred.
  • a particularly preferred alkenyl carboxylic acid ester is vinyl acetate.
  • the ethylenically unsaturated monomer is particularly preferably selected from alkenyl carboxylic acid esters.
  • Copolymers which contain two or more different alkenyl carboxylic acid esters in copolymerized form are also suitable, these differing in the alkenyl function and / or in the carboxylic acid group. Also suitable are copolymers which, in addition to the alkenyl carboxylic acid ester (s), contain at least one olefin and / or at least one (meth) acrylic acid ester in copolymerized form.
  • the ethylenically unsaturated monomer is copolymerized in the copolymer in an amount of preferably 1 to 50 mol%, particularly preferably 10 to 50 mol% and in particular 5 to 20 mol%, based on the total copolymer.
  • the copolymer a) preferably has a number average molecular weight M n from 1000 to 20,000, particularly preferably from 1000 to 10,000 and in particular from 1000 to 6000.
  • Comb polymers b) are, for example, those described in "Comb-Like Polymers. Structure and Properties", N.A. Plate and V.P. Shibaev, J. Poly. Be. Macromolecular Revs. 8, pages 117 to 253 (1974). Of the compounds described there, comb polymers of the formula II are suitable, for example
  • D represents R 17 , COOR 17 , OCOR 17 , R 18 , OCOR 17 or OR 17 ,
  • E represents H, CH 3 , D or R 18 ,
  • G represents H or D
  • J represents H, R 18 , COOR 17 , R 18 COOR 17 , aryl or heterocyclyl,
  • K represents H, COOR 18 , OCOR 18 , OR 18 or COOH
  • L represents H, R 18 COOR 18 , COOR 18 , OCOR 18 , COOH or aryl, where
  • R 17 represents a hydrocarbon radical with at least 10 carbon atoms, preferably with 10 to 30 carbon atoms
  • R 18 stands for a hydrocarbon radical with at least one carbon atom, preferably with 1 to 30 carbon atoms
  • m stands for a mole fraction in the range from 1.0 to 0.4
  • n stands for a mole fraction in the range from 0 to 0.6.
  • Preferred comb polymers can be obtained, for example, by copolymerizing maleic anhydride or fumaric acid with another ethylenically unsaturated monomer, for example with a ⁇ -olefin or an unsaturated ester such as vinyl acetate, and then esterifying the anhydride or acid function with an alcohol having at least 10 carbon atoms.
  • Further preferred comb polymers are copolymers of olefins and esterified comonomers, for example esterified copolymers of styrene and maleic anhydride or esterified copolymers of styrene and fumaric acid. Mixtures of comb polymers are also suitable.
  • Comb polymers can also be polyfumarates or polymaleates. Homopolymers and copolymers of vinyl ether are also suitable comb polymers.
  • Suitable polyoxyalkylenes c) are, for example, polyoxyalkylene esters, ethers, esters / ethers and mixtures thereof.
  • the polyoxyalkylene compounds preferably contain at least one, particularly preferably at least two linear alkyl groups with 10 to 30 carbon atoms and a polyoxyalkylene group with a molecular weight of up to 5000.
  • the alkyl group of the polyoxyalkylene radical preferably contains 1 to 4 carbon atoms.
  • Such polyoxyalkylene compounds are described, for example, in EP-A-0 061 895 and in US 4,491,455, to which reference is hereby made in full.
  • Preferred polyoxyalkylene esters, ethers and esters / ethers have the general formula III
  • R 19 and R 20 each independently represent R 21 , R 21 CO-, R 21 -O-CO (CH 2 ) 2 - or R 21 -O- CO (CH 2 ) z -CO-, where R 21 is linear CC 3 o-alkyl, y stands for a number from 1 to 4, x stands for a number from 2 to 200, and z stands for a number from 1 to 4.
  • Preferred polyoxyalkylene compounds of the formula III in which both R 19 and R 20 are R 21 , are polyethylene glycols and polypropylene glycols with a number average molecular weight of 100 to 5000.
  • Preferred polyoxyalkylenes of the formula III, in which one of the R 19 for R 21 and the other for R 21 -CO- are polyoxyalkylene esters of fatty acids having 10 to 30 carbon atoms, such as stearic acid or behenic acid.
  • Preferred polyoxyalkylene compounds in which both R 19 and R 20 represent a radical R 21 -CO- are diesters of fatty acids having 10 to 30 carbon atoms, preferably stearic or behenic acid.
  • the polar nitrogen compounds d), which are suitably oil-soluble, can be both ionic and non-ionic and preferably have at least one, particularly preferably at least 2, substituents of the formula> NR 22 , where R 22 is a C 8 -C 40 hydrocarbon radical.
  • the nitrogen substituents can also be quaternized, that is to say in cationic form.
  • An example of such nitrogen compounds are ammonium salts and / or amides which can be obtained by reacting at least one amine substituted with at least one hydrocarbon radical with a carboxylic acid having 1 to 4 carboxyl groups or with a suitable derivative thereof.
  • the amines preferably contain at least one linear C 8 -C 40 alkyl radical.
  • Suitable primary amines include octyiamine, nonylamine, decylamine, undecylamine, dodecylamine, tetradecylamine and the higher linear homologues.
  • Suitable secondary amines are, for example, diocadecylamine and methylbehenylamine. Also suitable are amine mixtures, in particular amine mixtures which are commercially available, such as fatty amines or hydrogenated tallamines, as described, for example, in Ullmann's Encyclopedia of Industrial Chemistry, 6th edition, 2000 electronic release, chapter "Amines, aliphatic".
  • Acids suitable for the reaction are, for example, cyclohexane-1,2-dicarboxylic acid, cyclohexene-1,2-dicarboxylic acid, cyclopentane-1,2-dicarboxylic acid, naphthalenedicarboxylic acid, phthalic acid, isophthalic acid, terephthalic acid and succinic acids substituted with long-chain hydrocarbon radicals.
  • a further example of polar nitrogen compounds are ring systems which carry at least two substituents of the formula -A-NR 3 R 24 , in which A stands for a linear or branched aliphatic hydrocarbon group which may be replaced by one or more groups which are selected from O, S , NR 35 and CO, is interrupted, and R 23 and R 24 stand for a C 9 -C 40 hydrocarbon radical which is optionally interrupted by one or more groups which are selected from O, S, NR 35 and CO, and / or is substituted by one or more substituents which are selected from OH, SH and NR 35 R 36 , where R 35 is CrC 0 -alkyl, which is optionally by one or more groupings which are selected from CO, NR 35 , O and S, interrupted, and / or by one or more radicals which are selected from NR 37 R 38 , OR 37 , SR 37 , COR 37 , COOR 37 , CONR 37 R 38 , aryl or heterocyclyl, where R 37 and
  • A is preferably a methylene or polymethylene group having 2 to 20 methylene units.
  • suitable radicals R 23 and R 24 are 2-hydroxyethyl, 3-hydroxypropyl, 4-hydroxybutyl, 2-ketopropyl, ethoxyethyl and propoxypropyl.
  • the cyclic system can be both homocyclic, heterocyclic, condensed polycyclic or uncondensed polycyclic systems.
  • the ring system is preferably carbo- or heteroaromatic, in particular carboaromatic.
  • polycyclic ring systems examples include condensed benzoid structures such as naphthalene, anthracene, phenanthrene and pyrene, condensed nonbenzoic structures such as azulene, indene, hydrindenes and fluorene, uncondensed polycycles such as diphenyl, heterocycles such as quinoline, indole, dihydroindole, Benzofuran, coumarin, isocoumarin, benzthiophene, carbazole, diphenylene oxide and diphenylene sulfide, non-aromatic or partially saturated ring systems, such as decalin, and three-dimensional structures, such as -pinene, camphene, bornylene, norbonane, norbonen, bicyclooctane and bicyclooctene.
  • condensed benzoid structures such as naphthalene, anthracene, phenanthrene and pyrene
  • Suitable polar nitrogen compounds are condensates of long-chain primary or secondary amines with polymers containing carboxyl groups.
  • Suitable polar nitrogen compounds are e.g. also described in DE-A-198 48 621, DE-A-196 22 052 or EP-B-398 101, to which reference is hereby made.
  • Suitable sulfocarboxylic acids / sulfonic acids or their derivatives e) are, for example, those of the general formula IV
  • R 25 represents a hydrocarbon radical
  • R 26 and R 27 represent alkyl, alkoxyalkyl or polyalkoxyalkyl with at least 10 carbon atoms in the main chain, R 28 stands for C 2 -C 5 alkylene, Z "stands for an anion equivalent and
  • a and B represent alkyl, alkenyl or two substituted hydrocarbon radicals or together with the carbon atoms to which they are attached form an aromatic or cycloaliphatic ring system.
  • Suitable poly (meth) acrylic acid esters f) are both homo- and copolymers of acrylic and methacrylic acid esters. Copolymers of at least two mutually different (meth) acrylic acid esters, which differ in terms of a condensed alcohol, are preferred. Optionally, the copolymer contains another, different olefinically unsaturated monomer copolymerized. The weight average molecular weight of the polymer is preferably 50,000 to 500,000.
  • a particularly preferred polymer is a copolymer of methacrylic acid and methacrylic acid esters of saturated C 14 and C 15 alcohols, the acid groups being neutralized with hydrogenated tallamine. Suitable poly (meth) acrylic acid esters are described, for example, in WO 00/44857, to which reference is hereby made in full.
  • alkylphenol-aldehyde resins such as those e.g. are known from EP-A-0857776, 1088045, 0311452 or WO-A-92/07047 and DE-A-3328739.
  • an additive concentrate comprising an inventive copolymer as defined above and at least one diluent and optionally at least one further additive, in particular selected from the above co-additives.
  • Suitable diluents are, for example, fractions obtained in petroleum processing, such as kerosene, naphtha or brightstock.
  • Aromatic and aliphatic hydrocarbons and alkoxyalkanols are also suitable.
  • middle distillates particularly preferred diluents for diesel fuels and heating oils, naphtha, kerosene, diesel fuels, aromatic hydrocarbons such as heavy solvent naphtha, Solvesso ® or Shellsol ® and mixtures of these solvents and diluents.
  • the copolymer according to the invention is preferably present in the concentrates in an amount of 0.1 to 80% by weight, particularly preferably 1 to 70% by weight and in particular 20 to 60% by weight, based on the total weight of the concentrate. in front.
  • a total of sixteen different copolymers according to the invention were produced by high-pressure polymerization of ethylene, acrylic acid ester 2 (acrylic acid 2- (2-ethoxyethoxy) ethyl ester; AEEE) and optionally vinyl acetate (VAC).
  • acrylic acid ester 2 acrylic acid 2- (2-ethoxyethoxy) ethyl ester; AEEE
  • VAC vinyl acetate
  • Ethylene, AEEE and optionally VAC were polymerized with the addition of propionaldehyde as a regulator in a high-pressure autoclave as described in the literature (Buback, M. et al., Chem. Ing. Tech. 1994, 66, 510).
  • a mixture of 12.870 kg / h of ethylene, 1, 130 kg / h of vinyl acetate, 4.497 kg / h of acrylic acid ester 2 and 1.312 kg / h of propionaldehyde was continuously at a temperature of 30 ° C. by an 11 kept at a pressure of 1700 bar Stirred autoclaves passed. Vinyl acetate in the intermediate pressure range at 260 bar, the acrylic acid ester in the high pressure zone at 1700 bar at the preheater inlet and the propionaldehyde in the intermediate pressure range were metered in. The temperature in the autoclave reactor was kept at 220 ° C.
  • the polymer obtained in a quantity of 6.5 kg / h after the expansion of the reaction mixture corresponds to a total conversion of all starting materials of approx. 35%. It contains 40% by weight of ethylene, 3% by weight of vinyl acetate and 57% by weight of acrylic acid ester 2. The viscosity is 60 mm 2 / s at 120 ° C.
  • the polymerization conditions are listed in Table 1 and the analytical data of the polymers obtained are shown in Table 2.
  • the ethylene, AEEE and VAC content in the copolymers obtained was determined by NMR spectroscopy.
  • the viscosities were determined according to Ubbelohde DIN 51562.
  • PA propionaldehyde (modifier / regulator)
  • MDFI A ethylene-vinyl acetate-based polymer mixture (Kerofiux ES 6100, BASF AG)
  • MDFI B ethylene-vinyl acetate-based polymer mixture (Kerofiux ES 6103, BASF AG)
  • MDFI C ethylene-vinyl acetate-based polymer mixture (Kerofiux ES 6204, BASF AG)
  • MDFI D ethylene-vinyl acetate-based polymer mixture (Kerofiux ES 6310, BASF AG)
  • MDFi F Comparative sample: ethylene-vinyl acetate copolymer
  • MDFI G Comparative sample: ethylene-vinyl acetate copolymer
  • Table 3 The determined CFPP values (in ° C) of the additive middle distillate fuels are summarized in Table 3.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Emergency Medicine (AREA)
  • Liquid Carbonaceous Fuels (AREA)

Abstract

Die Erfindung betrifft die Verwendung von Copolymeren, die wenigstens einen Acrylsäureester einpolymerisiert enthalten, der sich von einem Heteroatom-funktionalisierten Alkohol ableitet, als Additiv für Brennstofföle und Schmierstoffe und insbesondere als Kaltfliessverbesserer in Brennstoffölen; die mit diesen Copolymeren additivierten Brennstofföle und Schmierstoffe; sowie Additivpakete, enthaltend derartige Copolymere.

Description

Brennstoffzusammensetzungen mit verbesserten Kaltfließeigenschaften
Beschreibung
Die Erfindung betrifft die Verwendung von Copolymeren, die wenigstens einen Acrylsäureester einpoly erisiert enthalten, der sich von einem Heteroatom-funktionalisierten Alkohol ableitet, als Additiv für Brennstofföle und Schmierstoffe und insbesondere als Kaltfließverbes- serer in Brennstoffölen; die mit diesen Copolymeren additivierten Brennstofföle und Schmierstoffe; sowie Additivpakete, enthaltend derartige Copolymere.
Stand der Technik:
Paraffinische Wachse enthaltende Mineralöle, wie Mitteldestillate, Diesel und Heizöle, zeigen bei Temperaturerniedrigung eine deutliche Verschlechterung der Fließeigenschaften. Die Ursache hierfür liegt in der ab der Temperatur des Cloud Points auftretenden Kristallisation längerkettiger Paraffine, die große, plättchenförmige Wachskristalle bilden. Diese Wachskristalle besitzen eine schwammartige Struktur und führen zu einem Einschluss anderer Kraftstoffbestandteile in den Kristallverbund. Das Auftreten dieser Kristalle führt schnell zur Verklebung von Kraftstofffiltern sowohl in Tanks als auch in Kraftfahrzeugen. Bei Temperaturen unterhalb des Pour Points (PP) findet schließlich kein Fluss des Kraftstoffs mehr statt.
Zur Behebung dieser Probleme werden schon seit langer Zeit Kraftstoffadditive in kleinen Konzentrationen zugesetzt, die häufig aus Kombinationen von Nukleatoren zur frühen Bildung von Kleinstkristalliten der Paraffine mit den eigentlichen Kaltfließverbesserem (auch als CFI oder MDFI bezeichnet) bestehen. Diese wiederum zeigen ähnliche Kristallisationseigenschaften wie die Paraffine des Kraftstoffs, verhindern jedoch deren Wachstum, so dass ein Passieren des Filters bei im Vergleich zum unadditivierten Kraftstoff deutlich niedrigeren Temperaturen möglich ist. Als Maß dafür wird der sogenannte Cold Filter Plugging Point (CFPP) bestimmt. Als weiteres Additiv können sogenannte Wax Anti Settling Additive (WASA) eingesetzt werden, die das Ab- sinken der Kleinstkristallite im Kraftstoff verhindern.
Kaltfließverbesserer werden je nach Beschaffenheit des Grundkraftstoffs und des Additivs in Mengen von etwa 50 bis 500 ppm zudosiert. Es sind aus dem Stand der Technik verschiedene CFI-Produkte bekannt (vgl. z.B. US-A-3,038,479, 3,627,838 und 3,961 ,961 , EΞP-A- 0,261,957 oder DE-A-31 41 507 und 25 15 805). Gängige CFI sind gewöhnlich polymere Verbindungen, insbesondere Ethylen-Vinylacetat(EVA)-Copolymere, wie z.B. die unter dem Handelsnamen Keroflux von der BASF AG vertriebenen Produkte.
Auch Kombinationen von herkömmlichen CFI mit Schmierfähigkeitsverbesserern (Estern von Mono- oder Polycarbonsäuren mit Mono- oder Polyalkoholen) werden als verbesserte CFI- Kombinationen beschrieben (EP-A-0721 492).
Die EP-A 0 997 517 beschreibt ein Gemisch aus einem Copolymer, das aus Ethylen, einem weiteren olefinisch ungesättigten Monomer, das Hydroxygruppen enthält, und gegebenen- falls weiteren ethylenisch ungesättigten Monomeren aufgebaut ist, und einer polaren stickstoffhaltigen Verbindung. Solche Gemische sollen als Schmierfähigkeitsverbesserer geeignet sein.
Es besteht ein fortwährender Bedarf an weiteren Additiven mit CFI-Eigenschaften, insbeson- dere solchen, welche kostengünstiger einzusetzen sind, beispielsweise deshalb, weil sie in geringerer Dosierung als handelsübliche CFI's die Kaltfließeigenschaften von Kraft- oder Schmierstoffen verbessern.
Kurze Beschreibung der Erfindung:
Es ist deshalb Aufgabe der vorliegenden Erfindung, neue derartige Additive bereitzustellen.
Überraschenderweise konnte diese Aufgabe gelöst werden durch die unerwartete Beobachtung, dass Copolymere, die spezielle Heteroatom-funktionalisierte Acrylsäureester einpoly- merisiert enthalten, als CFI-Additive brauchbar sind und außerdem eine bessere Performance als herkömmliche EVA-CFI's besitzen.
Ein erster Gegenstand der Erfindung betrifft die Verwendung eines öllöslichen Copolymers, das wenigstens einen Acrylsäureester einpolymerisiert enthält, der sich von einem Hetero- atom-funktionalisierten Alkohol ableitet, als Additiv für Brennstofföle und Schmierstoffe. Insbesondere werden solche Copolymere eingesetzt, die den Acrylsäureester und gegebenenfalls vorhandene weitere Comonomere in statistischer Verteilung einpolymerisiert enthalten.
Unter Acrylsäureestern, die sich von einem Heteroatom-funktionalisierten Alkohol ableiten, versteht man im Rahmen der vorliegenden Anmeldung Verbindungen, die eine einzige Kohlenstoff-Kohlenstoff-Doppelbindung enthalten, an die eine Carboxylgruppe COOR direkt gebunden ist, wobei der Rest R sich von einem Heteroatom-funktionalisierten Alkohol ableitet. Die übrigen drei Substituenten an der Kohlenstoff-Kohlenstoff-Doppelbindung sind unter H und Cι-C4-Alkyl ausgewählt.
Vorzugsweise ist im Rest R dieser Acrylsäureester wenigstens ein Heteroatom an ein Koh- lenstoffatom gebunden, das α-, ß-, γ- und/oder δ-ständig zur Carboxylgruppe des Acrylsäu- reesters steht. Insbesondere ist das Heteroatom an ein Kohlenstoffatom gebunden, dass ß- ständig zur Carboxylgruppe des Acrylsäureesters steht.
Das Heteroatom kann über eine Einfach-, Doppel- oder Dreifachbindung an das ihn tragende Kohlenstoffatom gebunden sein. Vorzugsweise ist es über eine Einfachbindung gebunden.
Unter Heteroatomen versteht man im Rahmen der vorliegenden Erfindung alle von Kohlenstoff und Wasserstoff verschiedenen Elemente, die mit Kohlenstoff eine unter üblichen Umgebungsbedingungen (Raumtemperatur, Luftfeuchtigkeit, Lichteinstrahlung etc.) und Poly- merisationsbedingungen stabile kovalente Bindung eingehen und der erfindungsgemäßen Verwendung des Copolymers nicht entgegensteht. Hierzu gehören z.B. Si, O, S, N und P.
Vorzugsweise handelt es sich bei dem Heteroatom um Sauerstoff.
Bevorzugt verwendet man Copolymere, die im wesentlichen aufgebaut sind aus Monomeren, umfassend die Monomere M1 , M2 und gegebenenfalls M3, wobei M1 , M2 und M3 die folgenden allgemeinen Formeln besitzen
M1 R1
worin
R1 für H oder Cι-C40-, wie z.B. CrC20-, insbesondere CrC10-, vorzugsweise C-ι-C4- Hydrocarbyl steht; R2, R3, R4 und R5 gleich oder verschieden sind und für H, CrC40-, wie z.B. Cι-C20-, insbesondere C Cι0-, vorzugsweise CrC4-Hydrocarbyl, -COOR14 oder-OCOR14 stehen, wobei R14 für CrC40-, wie z.B. C C20-, insbesondere CrCio-, vorzugsweise CrC4-Hydrocarbyl steht und wobei wenigstens einer der Reste R2, R3, R4 und R5 für -COOR14 oder -OCOR14steht; R6, R7 und R8 gleich oder verschieden sind und für H oder C C4-Alkyl stehen und R9 für COOR10 steht, wobei R10 für eine Gruppe der Formel
-A-O+nR 11
steht, worin A für C2-C4-Alkylen steht,
R11 für H, CrC-io-Alkyl oder für einen 3- bis16-gliedrigen carbo- oder heterocyclischen, gesättigten, ein- oder mehrfach ungesättigten Ring oder für ein entsprechendes kondensiertes Ringsystem steht und n für eine Zahl von 1 bis 20 steht.
Vorzugsweise steht R1 für H.
Vorzugsweise stehen diejenigen Reste R2, R3, R4 und R5, die nicht für COOR14 oder OCOR14 stehen, für H oder Methyl, speziell für H.
Vorzugsweise stehen R6, R7 und R8 unabhängig voneinander für H oder Methyl. Besonders bevorzugt stehen R6 und R7 für H und R8 steht für H oder Methyl und speziell für H.
In der Definition von R11 steht der 3 bis 6-gliedrige, carbo- oder heterocyclische, gesättigte oder ein- bis mehrfach ungesättigte Ring oder das entsprechende kondensierte Ringssystem beispielsweise für Cyclopropyl, Cyclopentyl, Cyclohexyl, Cyclooctyl, Cyclodecyl, Cyclopen- tenyl, Cyclohexenyl, Cyclooctenyl, Cyclodecenyl, Cyclopentadienyl, Cyclohexadienyl, Cyc- looctadienyl, Phenyl, Cyclooctatetraenyl, Oxiranyl, Aziridinyl, Oxolanyl, Dioxolanyl, Oxolenyl, Dioxolenyl, Furanyl, Oxazolanyl, Oxathiolanyl, Pyrrolidinyl, Pyrrolinyl, Pyrrolyl, Pyrazolyl, Imi- dazolyl, Oxazolyl, Isoxazolyl, Thiazolyl, Isothiazolyl, Triazolyl, Tetrazolyl, Thiolanyl, Di- hydrothiophenyl, Thiophenyl, Piperidinyl, Piperazinyl, Morpholinyl, Pyridinyl, Pyridazinyl, Pyri- midinyl, Pyrazinyl, Triazinyl, Tetrahydropyranyl, Pyranyl, Thiopyranyl, Thiazinyl, Naphthyl, Anthracenyl, Phenanthrenyl, Indolyl, Carbazolyl, Dibenzofuranyl, Chinolinyl, Isochinolinyl, Acridinyl, Phenazinyl, Phenoxazinyl und dergleichen. Die Ringe können auch ein- bis mehrfach substituiert sein. Geeignete Substituenten sind beispielsweise CrC4-Alkyl, C C4- Alkoxy, CrC4-Hydroxyalkyl und Hydroxygruppen. Wenn R11 für H steht, so steht in M1 R1 vorzugsweise für H und /oder der Anteil x von M3 im Copolymer beträgt vorzugsweise 0 < x <20 Mol-%.
Vorzugsweise steht R11 nicht für H.
Insbesondere steht R11 für C C4-AIkyl oder für Phenyl.
A steht vorzugsweise für Ethylen.
n steht vorzugsweise für eine Zahl von 1 bis 10, besonders bevorzugt von 1 bis 5 und speziell für 1 oder 2.
In den erfindungsgemäß eingesetzten Copolymeren können die Monomeren M1 , M2 und M3 in folgenden molaren Anteilen (Mx/(M1+M2+M3) im Copolymer enthalten sein: M1 : 0,55 bis 0,999, vorzugsweise 0,6 bis 0,95, insbesondere 0,7 bis 0,95; M2: 0,001 bis 0,25, vorzugsweise 0,006 bis 0,25, insbesondere 0,008 bis 0,22; M3: 0 bis 0,2, vorzugsweise 0 bis 0,15 insbesondere 0,01 bis 0,15.
Bevorzugt sind die erfϊndungsgemäß eingesetzten Copolymere erhältlich durch, vorzugsweise radikalische, Polymerisation, insbesondere Hochdruckpolymerisation, der Monomeren M1 , M2, und gegebenenfalls M3, und insbesondere der Monomeren M1 , M2 und M3.
Bevorzugte Monomere M1 sind ausgewählt unter Ethylen, Propylen und 1 -Buten.
Bevorzugte Monomere M2 sind ausgewählt unter Monomeren der folgenden Formel:
1 2
3 4 Bevorzugte Monomere M3 sind ausgewählt unter CrC^-Carbonsäurevinylestem und CrC20- Hydrocarbyl(meth)acrylaten und insbesondere unter CrC20-Carbonsäurevinylestern. Ein besonders bevorzugtes Monomer M3 ist Vinyiacetat.
Wenn M2 für einen der Acrylsäureester 1 , 2 oder 3 und speziell für 2 steht, ist M1 vorzugsweise Ethylen und/oder der Anteil x von M3 im Copolymer beträgt vorzugsweise 0 < x <20 Mol-%.
Besonders bevorzugt verwendete Copolymere sind ausgewählt unter Ethylen/Acrylsäure-2- (2-ethoxyethoxy)-ethylester -Copolymeren und Ethylen/ Acrylsäure-2-(2-ethoxyethoxy)- ethylester /Vinylacetat-Copolymeren.
Vorzugsweise werden die Copolymere als Kaltfließverbesserer verwendet.
Die oben beschriebenen Copolymere werden alleine oder in Kombination mit anderen derartigen Copolymeren in Mengen eingesetzt, um eine Wirkung als Kaltfließverbesserer im addi- tivierten Brennstoff oder Schmierstoff zu zeigen.
Gegenstand der vorliegenden Erfindung ist auch ein wie vorstehend definiertes Copolymer.
Ein weiterer Gegenstand der Erfindung betrifft Brennstoffölzusammensetzungen, enthaltend einen größeren Gewichtsanteil eines im Bereich von etwa 120-500 °C siedenden Mitteldestillatbrennstoffs und einen kleineren Gewichtsanteil wenigstens eines Kaltfließverbesserers gemäß obigerer Definition.
Derartige Brennstoffölzusammensetzungen können weiterhin als Brennstoffkomponente Biodiesel (aus tierischer und/oder pflanzlicher Produktion) in Anteilen von 0-30 Gew.-% umfassen.
Bevorzugte Brennstoffölzusammensetzungen sind ausgewählt unter Dieselkraftstoffen, Ke- rosin und Heizöl, wobei der Dieselkraftstoff durch Raffination, Kohlevergasung oder Gasverflüssigung erhältlich sein kann, ein Gemisch solcher Produkte darstellen und gegebenenfalls mit regenerativen Kraftstoffen vermischt sein kann. Solche Brennstoffölzusammensetzungen sind bevorzugt, wobei der Schwefelgehalt der Mischung höchstens 500 ppm beträgt.
Ein weiterer Gegenstand der Erfindung betrifft Schmierstoffzusammensetzungen, enthaltend einen größeren Gewichtsanteil eines herkömmlichen Schmierstoffs und einen kleineren Ge- wichtsanteil wenigstens eines Kaltfließverbesserers gemäß obiger Definition.
Im Rahmen der vorliegenden Erfindung können die erfindungsgemäßen Copolymere in Kombination mit weiteren herkömmlichen Kaltfließverbesserem und /oder weiteren Schmier- und Brennstofföladditiven verwendet werden.
Ein letzter Gegenstand der Erfindung betrifft außerdem Additivpakete, umfassend ein erfindungsgemäßes Copolymer gemäß obiger Definition in Kombination mit wenigstens einem weiteren konventionellen Schmier- und Brennstofföladditiv.
Detaillierte Beschreibung der Erfindung:
a) erfindungsgemäße Copolymere
Die erfindungsgemäßen Copolymere sind vorzugsweise im wesentlichen aus den oben definierten Monomeren M1 , M2 und gegebenenfalls M3 aufgebaut. Herstellungsbedingt können gegebenenfalls geringe Anteile einer als Regler (Ketten-Terminator) eingesetzten Verbindung enthalten sein.
Werden keine anderen Angaben gemacht so gelten folgende allgemeine Definitionen:
Cι-C40-Hydrocarbyl steht insbesondere für Cι-C40-Alkyl, wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, Isobutyl, tert-Butyl, Pentyl, Hexyl, Heptyl, Octyl, 2-Ethylhexyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl, No- nadecyl, Eicosyl, Hencosyl, Docosyl, Tricosyl, Tetracosyl, Pentacosyl, Hexacosyl, Heptaco- syl, Octacosyl, Nonacosyl, Squalyl und die höheren Homologen sowie die dazugehörigen Stellungsisomere. Analoges gilt für C C20-Hydrocarbylreste. C Cio-Hydrocarbyl steht insbesondere für CrC-io-Alkyl, wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, Isobutyl, tert-Butyl, Pentyl, Hexyl, Heptyl, Octyl, 2-Ethylhexyl, Nonyl und Decyl. CrC4-Hydrocarbyl steht insbesondere für Cι-C -Alkyl, wie Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, Isobutyl und tert-Butyl.
C-ι-C4-Hydroxyalkyl steht für C^C^Alkyl, das durch wenigstens eine Hydroxygruppe substituiert ist, wie 2-Hydroxyethyl, 2- und 3-Hydroxypropyl, 2-, 3- und 4-Hydroxybutyl.
CrOrAlkoxy steht insbesondere für Methoxy, Ethoxy, Propoxy, Isopropoxy, Butoxy, Isobuto- xy und tert-Butoxy. Alkylen steht insbesondere für Methylen, Ethylen, 1 ,2- oder 1 ,3-PropyIen, 1 ,2-, 1 ,3-, 2,3-, 2,4- , 3,4- oder 1 ,4-ButyIen und speziell für Ethylen.
Als Beispiele für geeignete Monomere M1 sind zu nennen: Mono-Alkene mit nicht-terminaler oder vorzugsweise terminaler Doppelbindung, insbesondere Ethylen, Propylen, 1-Buten, 1- Penten, 1-Hexen, 1-Hepten, 1-Octen, 1-Nonen und 1-Decen sowie die höheren einfach ungesättigten Homologen mit bis zu 40 Kohlenstoffatomen.
Als Beispiele für bevorzugte Acrylsäureester M2 sind zu nennen: Acrylsäure-2- methoxyethylester, Acrylsäure-2-ethoxyethylester, Acrylsäure-2-propoxyethylester, Acrylsäu- re-2-isopropoxyethylester, Acrylsäure-2-butoxyethylester, Acrylsäure-2-isobutoxyethylester, Acrylsäure-2-tert-butoxyethylester, Acrylsäure-3-methoxypropylester, Acrylsäure-3- ethoxypropylester, AcryIsäure-3-propoxypropylester, Acrylsäure-3-isopropoxypropylester, Acrylsäure-3-butoxypropylester, Acrylsäure-3-isobutoxypropylester, Acrylsäure-3-tert- butoxypropylester, Acrylsäure-2-phenoxyethylester, Acrylsäure-3-phenoxypropylester, Acryl- säure-2-benzyloxyethylester, Acrylsäure-3-benzyloxypropylester, Acrylsäureester von Diethy- lenglycolmonomethyl-, -ethyl- und -propylether, Acrylsäureester von Triethylenglycolmono- methyl-, -ethyl- und -propylether, Acrylsäureester von Tetraethylenglycolmonomethyl-, -ethyl- und -propylether und Acrylsäureester von Pentaethylenglycolmonomethyl-, -ethyl- oder - propylether. Ein besonders bevorzugter Acrylsäureester ist der Acrylsäureester von Diethy- lenglycolmonoethylether 2 (Acrylsäure-2-(2-ethoxyethoxy)-ethylester; AEEE).
Als Beispiele für geeignete Monomere M3 sind zu nennen: CrC20-Carbonsäurevinylester, insbesondere die Vinylester von Ameisensäure, Essigsäure, Propionsäure, Buttersäure, Valeriansäure, Capronsäure, Önanthsäure, Caprylsäure, Pelar- gonsäure, Caprinsäure, Laurinsäure, Myristinsäure, Palmitinsäure, Stearinsäure, Arachinsäu- re, Behensäure, Lignocerinsäure, Cerotinsäure und Melissinsäure; weiterhin Cι-C20- Alkylacrylate und CrC^-AIkylmethacrylate, worin CrC^-Alkyl für Methyl, Ethyl, n-Propyl, Isopropyl, n-Butyl, sec-Butyl, Isobutyl, tert-Butyl, Pentyl, Hexyl, Heptyl, Octyl, 2-Ethylhexyl, Nonyl, Decyl, Undecyl, Dodecyl, Tridecyl, Tetradecyl, Pentadecyl, Hexadecyl, Heptadecyl, Octadecyl, Nonadecyl oder Eicosyl steht.
Die erfindungsgemäßen Copolymere weisen außerdem ein zahlenmittleres Molekulargewicht Mn im Bereich von etwa 1000 bis 20000, besonders bevorzugt von 1000 bis 10000 und insbesondere von 1000 bis 6000 auf. Die Copolymere können auch ein gewichtsmittleres Molekulargewicht Mw von 1000 bis 30000, insbesondere 1500 bis 15000 und/oder ein Mw/Mn-Verhältnis von 1 ,5 bis 5,0, insbesondere 1 ,8 bis 4,0 aufweisen.
Besonders bevorzugte Copolymere sind aufgebaut aus den Monomeren Ethylen, Acrylsäureester 2 (Acrylsäure-2-(2-ethoxyethoxy)-ethylester; AEEE) und gegebenenfalls Vinylacetat (VAC). Bezogen auf das Polymer beträgt der Gewichtsanteil der Monomere:
VAC: 0 -42 Gew.-%, vorzugsweise 0 bis 35 Gew.-%, insbesondere etwa 1 bis 30 Gew.-%, spe- ziell 1 bis 20 Gew.-%
AEEE: 2 - 70 Gew.-%, vorzugsweise 2,5 bis 70 Gew.%, insbesondere etwa 3,5 bis 65 Gew.-%
Die Viskosität derartiger Copolymere (bestimmt nach Ubbelohde DIN 51562) liegt bei etwa 5 - 25000 mm2/s, 10 bis 10000 insbesondere etwa 10 bis 1000 oder 20 bis 800 mm2/s jeweils bei einer Temperatur von etwa 120 °C.
b) Herstellung der Copolymere
Die erfindungsgemäßen Copolymere werden nach an sich bekannten Verfahren hergestellt, vorzugsweise nach dem aus dem Stand der Technik (vgl. z.B. Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Stichwort: Waxes, Bd. A 28, S. 146 ff., VCH Weinheim, Basel, Cambridge, New York, Tokio, 1996) bekannten Verfahren zur direkten radikalischen Hochdruck-Copolymerisation ungesättigter Verbindungen.
Die Herstellung der Copolymere erfolgt bevorzugt in gerührten Hochdruckautoklaven oder in Hochdruckrohrreaktoren oder Kombinationen aus beiden. Bei ihnen verhält sich überwiegend das Verhältnis Länge/Durchmesser in Bereichen von 5:1 bis 30:1 , bevorzugt 10:1 bis 20:1.
Geeignete Druckbedingungen für die Polymerisation sind 1000 bis 3000 bar, bevorzugt 1500 bis 2000 bar. Die Reaktionstemperaturen liegen z.B. im Bereich von 160 bis 320 °C, bevorzugt im Bereich von 200 bis 280 °C.
Als Regler zur Einstellung des Molekulargewichts der Copolymere verwendet man beispiels- weise ein aliphatisches Aldehyd oder ein aliphatisches Keton der allgemeinen Formel I
oder Mischungen derselben.
Dabei sind die Reste Ra und Rb gleich oder verschieden und ausgewählt unter
- Wasserstoff;
- CrC-6-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec-Pentyl, neo-Pentyl, 1 ,2-Dimethylpropyl, iso-Amyl, n-Hexyl, iso-Hexyl, sec-Hexyl; besonders bevorzugt Cι-C4-Alkyl, wie Methyl, Ethyl, n-Propyl, iso-Propyl, n-Butyl, iso-Butyl, sec-Butyl und tert.-Butyl;
- C3-C12-Cycloalkyl, wie Cyclopropyl, Cyclobutyl, Cyclopentyl, Cyclohexyl, Cycloheptyl, Cyc- looctyl, Cyclononyl, Cyclodecyl, Cycloundecyl und Cyclododecyl; bevorzugt sind Cyclopentyl, Cyclohexyl und Cycloheptyl;.
Die Reste Ra und Rb können auch miteinander unter Bildung eines 4- bis 13-gliedrigen Rings kovalent verbunden sein. So können Ra und Rb beispielsweise gemeinsam folgende Alky- lengruppen bilden: -(CH2)4-, -(CH2)5-, -(CH2)6l -(CH2)7-, -CH(CH3)-CH2-CH2-CH(CH3)- oder- CH(CH3)-CH2-CH2-CH2-CH(CH3)-.
Die Verwendung von Propionaldehyd oder Ethylmethylketon als Regler ist ganz besonders bevorzugt.
Weitere gut geeignete Regler sind unverzweigte aliphatische Kohlenwasserstoffe, wie beispielsweise Propan oder verzweigte aliphatische Kohlenwasserstoffe mit tertiären H-Atomen, wie beispielsweise Isobutan, Isopentan, Isooctan oder Isododekan (2,2,4,6,6- Pentamethylheptan). Als weitere zusätzliche Regler können höhere Olefine, wie beispielsweise Propylen, eingesetzt werden.
Auch Mischungen der obigen Regler mit Wasserstoff oder Wasserstoff alleine sind ebenfalls bevorzugt.
Die Menge an verwendetem Regler entspricht den für das Hochdruckpolymerisationsverfah- ren üblichen Mengen. Als Starter für die radikalische Polymerisation können die üblichen Radikalstarter, wie beispielsweise organische Peroxide, Sauerstoff oder Azoverbindungen, eingesetzt werden. Auch Mischungen mehrerer Radikalstarter sind geeignet. Als Radikalstarter können z.B. ein oder mehrere Peroxide, ausgewählt unter folgenden kommerziell erhältlichen Substanzen eingesetzt werden:
Didecanoylperoxid, 2,5-Dimethyl-2,5-di(2-ethylhexanoylperoxy)hexan, tert-Amylperoxy- 2-ethylhexanoat, Dibenzoylperoxid, tert-Butylperoxy-2-ethylhexanoat, tert- Butylperoxydiethylacetat, tert-Butylperoxydiethylisobutyrat, 1 ,4-Di(tert- butylperoxycarbo)-cyclohexan als Isomerengemisch, tert-Butylperisononanoat, 1 ,1-Di- (tert-butylperoxy)-3,3,5-trimethylcyclohexan, 1 ,1 -Di-(tert-butylperoxy)-cyclohexan, Me- thyl-isobutylketonperoxid, tert-Butylperoxyisopropylcarbonat, 2,2-Di-tert- butylperoxy)butan oder tert-Butylperoxacetat; tert-Butylperoxybenzoat, Di-tert-amylperoxid, Dicumylperoxid, die isomeren Di-(tert- butylperoxyisopropyl)benzole, 2,5-DimethyI-2,5-di-tert-butylperoxyhexan, tert- Butylcumylperoxid, 2,5-Dimethyl-2,5-di(tert-butylperoxy)-hex-3-in, Di-tert-butylperoxid,
1 ,3-Diisopropylmonohydroperoxid, Cumolhydroperoxid oder tert-Butylhydroperoxid; oder dimere oder trimere Ketonperoxide, so wie sie z.B. aus der EP-A-0 813 550 bekannt sind
Als Peroxide sind Di-tert-butylperoxid, tert-Butylperoxypivalat, tert-Butylperoxyisononanoat oder Dibenzoylperoxid oder Gemische derselben besonders geeignet. Als Azoverbindung sei Azobisisobutyronitril ("AIBN") beispielhaft genannt. Die Radikalstarter werden in für Polymerisationen üblichen Mengen dosiert.
In einer bevorzugten Fahrweise werden die erfindungsgemäßen Copolymere so hergestellt, dass man eine Mischung der Monomeren M1 , M2 und gegebenenfalls M3 in Gegenwart des Reglers bei einer Temperatur im Bereich von etwa 20 bis 50°C, wie z.B. von 30°C, vorzugsweise kontinuierlich durch einen Rührautoklaven leitet, welcher auf einem Druck im Bereich von etwa 1500 bis 2000 bar, wie z.B. von etwa 1700 bar, gehalten wird. Durch die vorzugsweise kontinuierliche Zugabe von Initiator, der in der Regel in einem geeigneten Lösemittel, wie z.B. Isododecan, gelöst ist, wird die Temperatur im Reaktor auf der gewünschten Reaktionstemperatur, wie z.B. bei 200 bis 250°C, gehalten. Das nach der Entspannung des Reaktionsgemisches anfallende Polymerisat wird dann in herkömmlicher Weise isoliert.
Abwandlungen dieser Fahrweise sind natürlich möglich und können vom Fachmann ohne unzumutbaren Aufwand vorgenommen werden. So können beispielsweise die Comonomere und der Regler getrennt dem Reaktionsgemisch zudosiert werden, die Reaktionstemperatur kann während des Verfahrens variiert werden, um nur einige Beispiele zu nennen.
c) Brennstoffölzusammensetzungen
Unter Brennstoffölzusammensetzungen versteht man erfindungsgemäß vorzugsweise Kraftstoffe. Geeignete Kraftstoffe sind Ottokraftstoffe und Mitteldestillate, wie Dieselkraftstoffe, Heizöl oder Kerosin, wobei Dieselkraftstoff und Heizöl besonders bevorzugt sind.
Bei den Heizölen handelt es sich beispielsweise um schwefelarme oder schwefelreiche Erdölraffinate oder um Stein- oder Braunkohledestillate, die üblicherweise einen Siedebereich von 150 bis 400 °C aufweisen. Vorzugsweise handelt es sich bei den Heizölen um schwefelarme Heizöle, beispielsweise um solche mit einem Schwefelgehalt von höchstens 0,1 Gew.-%, bevorzugt von höchstens 0,05 Gew.-%, besonders bevorzugt von höchstens 0,005 Gew.-%, und insbesondere von höchstens 0,001 Gew.-%. Als Beispiele für Heizöl sei insbesondere Heizöl für häusliche Ölfeuerungsanlagen oder Heizöl EL genannt. Die Qualitätsanforderungen für solche Heizöle sind beispielsweise in DIN 51-603-1 festgelegt (vgl. auch Ullmann's Encyclopedia of Industrial Chemistry, 5. Auflage, Bd. A12, S. 617 ff., worauf hiermit ausdrücklich Bezug genommen wird).
Bei den Dieselkraftstoffen handelt es sich beispielsweise um Erdölraffinate, die üblicherweise einen Siedebereich von 100 bis 400 °C haben. Dies sind meist Destillate mit einem 95%- Punkt bis zu 360 °C oder auch darüber hinaus. Dies können aber auch sogenannte "Ultra low sulfur diesel" oder "City diesel" sein, gekennzeichnet durch einen 95%-Punkt von bei- spielsweise maximal 345 °C und einem Schwefelgehalt von maximal 0,005 Gew.-% oder durch einen 95%-Punkt von beispielsweise 285 °C und einem Schwefelgehalt von maximal 0,001 Gew.-%. Neben den durch Raffination erhältlichen Dieselkraftstoffen sind solche, die durch Kohlevergasung oder Gasverflüssigung ("gas to liquid" (GTL) Kraftstoffe) erhältlich sind, geeignet. Geeignet sind auch Mischungen der vorstehend genannten Dieselkraftstoffe mit regenerativen Kraftstoffen, wie Biodiesel oder Bioethanol.
Besonders bevorzugt wird das erfindungsgemäße Additiv zur Additivierung von Dieselkraftstoffen mit niedrigem Schwefelgehalt, das heißt mit einem Schwefelgehalt von weniger als 0,05 Gew.-%, vorzugsweise von weniger als 0,02 Gew.-%, insbesondere von weniger als 0,005 Gew.-% und speziell von weniger als 0,001 Gew.-% Schwefel oder zur Additivierung von Heizöl mit einem niedrigen Schwefelgehalt, beispielsweise mit einem Schwefelgehalt von höchstens 0,1 Gew.-%, bevorzugt von höchstens 0.05 Gew.-%, besonders bevorzugt von höchstens 0,005 Gew.-%, und insbesondere von höchstens 0,001 Gew.-%, verwendet.
Das erfindungsgemäße Additiv wird vorzugsweise in einem Mengenanteil, bezogen auf die Gesamtmenge der Brennstoffölzusammensetzung, eingesetzt, der für sich gesehen einen im wesentlichen ausreichenden Einfluss auf die Kaltfließeigenschaften der Brennstoffölzusammensetzungen besitzt. Besonders bevorzugt wird das Additiv in einer Menge von 0,001 bis 1 Gew.-%, insbesondere von 0,01 bis 0,1 Gew.-%, bezogen auf die Gesamtmenge der Brennstoffölzusammensetzung, eingesetzt.
Die erfindungsgemäßen Copolymere werden als Kaltfließverbesserer gewöhnlich in einer Menge eingesetzt, die bewirkt, dass der CFPP-Wert (bestimmt nach DIN EN116) des additi- vierten Brennstoffs um wenigstens 1 Grad Celsius , wie z.B um 1 bis 30, 1 bis 25, 3 bis 15 oder 5 bis 10 Grad Celsius sinkt. Der entsprechend bestimmte CFPP-Wert des zu additivie- renden Brennstoffs kann dabei je nach Zusammensetzung des eingesetzten Grundbrennstoffs und Art und Menge der gegebenenfalls zugesetzten Co-Additive (wie z.B. herkömmlichen Kaltfließverbesserern) über einen weiten Bereich variieren und liegt z.B. im Bereich von etwa 0 bis -35, -5 bis -28 oder -8 bis -28 Grad Celsius.
d) Co-Additive
Die erfindungsgemäßen Copolymere können einzeln oder als Gemisch solcher Copolymere und gegebenenfalls in Kombination mit weiteren an sich bekannten Zusatzstoffen den Brennstoffölzusammensetzungen zugegeben werden.
Geeignete Zusatzstoffe, die in erfindungsgemäßen Brennstoffölen neben den erfindungsgemäßen Copolymer enthalten sein können, insbesondere für Dieselkraftstoffe und Heizöle, umfassen Detergentien, Korrosionsinhibitoren, Dehazer, Demulgatoren, Schaumverhinderer ("Antifoam"), Antioxidantien, Metalldesaktivatoren, multifunktionelle Stabilisatoren, Cetanzahlverbesserer, Verbrennungsverbesserer, Farbstoffe, Marker, Lösungsvermittler, Antistatika, Schmierfähigkeitsverbesserer, sowie weitere die Kälteeigenschaften des Brennstoffs verbessernde Additive, wie Nukleatoren, weitere herkämmliche Fließverbesserer ("MDFI"), Paraffindispergatoren ("WASA") und die Kombination der beiden zuletzt genannten Additive ("WAFI") (vgl. auch Ullmann's Encyclo- pedia of Industrial Chemistry , 5. Auflage, Bd.A16, S.719 ff; oder die eingangs zitierten Patentschriften zur Fließverbesserem). Als weitere konventionelle Kaltfließverbesserer sind insbesondere zu nennen: a) Copolymere von Ethylen mit wenigstens einem weiteren ethylenisch ungesättigten Monomer; b) Kammpolymere; c) Polyoxyalkylene; d) polare Stickstoffverbindungen; e) Suifocarbonsäuren oder Sulfonsäuren oder deren Derivate; und f) Poly(meth)acrylsäureester.
Bei den Copolymeren von Ethylen mit wenigstens einem weiteren ethylenisch ungesättigten Monomer a) ist das Monomer vorzugsweise ausgewählt unter Alkenylcarbonsäureestern, (Meth)Acrylsäureestern und Olefinen.
Geeignete Olefine sind beispielsweise solche mit 3 bis 10 Kohlenstoffatomen sowie mit 1 bis 3, vorzugsweise mit 1 oder 2, insbesondere mit einer, Kohlenstoff-Kohlenstoff- Doppelbindung. Im zuletzt genannten Fall kann die Kohlenstoff-Kohlenstoff-Doppelbindung sowohl terminal (α-Olefine) als auch intern angeordnet sein kann. Bevorzugt sind jedoch α- Olefine, besonders bevorzugt α-Olefine mit 3 bis 6 Kohlenstoffatomen, wie Propen, 1-Buten, 1-Penten und 1 -Hexen.
Geeignete (Meth)Acrylsäureester sind beispielsweise Ester der (Meth)Acrylsäure mit Cι-C 0- Alkanolen, insbesondere mit Methanol, Ethanol, Propanol, Isopropanol, n-Butanol, sec- Butanol, Isobutanol, tert-Butanol, Pentanol, Hexanol, Heptanol, Octanol, 2-Ethylhexanol, No- nanol und Decanol.
Geeignete Alkenylcarbonsäureester sind beispielsweise die Vinyl- und Propenylester von Carbonsäuren mit 2 bis 20 Kohlenstoffatomen, deren Kohlenwasserstoffrest linear oder verzweigt sein kann. Bevorzugt sind hierunter die Vinylester. Unter den Carbonsäuren mit verzweigtem Kohlenwasserstoffrest sind solche bevorzugt, deren Verzweigung sich in der Opposition zur Carboxylgruppe befindet, wobei das σ-Kohlenstoffatom besonders bevorzugt tertiär ist, d. h. die Carbonsäure eine sogenannte Neocarbonsäure ist. Vorzugsweise ist der Kohlenwasserstoffrest der Carbonsäure jedoch linear.
Beispiele für geeignete Alkenylcarbonsäureester sind Vinylacetat, Vinylpropionat, Vinylbuty- rat, Vinyl-2-ethylhexanoat, Neopentansäurevinylester, Hexansäurevinylester, Neononansäu- revinylester, Neodecansäurevinylester und die entsprechenden Propenylester, wobei die Vinylester bevorzugt sind. Ein besonders bevorzugter Alkenylcarbonsäureester ist Vinylacetat. Besonders bevorzugt ist das ethylenisch ungesättigte Monomer ausgewählt unter Alkenyl- carbonsäureestem.
Geeignet sind auch Copolymere, die zwei oder mehrere voneinander verschiedene Alkenylcarbonsäureester einpolymerisiert enthalten, wobei diese sich in der Alkenylfunktion und/oder in der Carbonsäuregruppe unterscheiden. Ebenfalls geeignet sind Copolymere, die neben dem/den Alkenylcarbonsäureester(n) wenigstens ein Olefin und/oder wenigstens ein (Meth)Acrylsäureester einpolymerisiert enthalten.
Das ethylenisch ungesättigte Monomer ist im Copolymer in einer Menge von vorzugsweise 1 bis 50 Mol.-%, besonders bevorzugt von 10 bis 50 Mol.-% und insbesondere von 5 bis 20 Mol.-%, bezogen auf das Gesamtcopolymer, einpolymerisiert.
Das Copolymer a) weist vorzugsweise ein zahlenmittleres Molekulargewicht Mn von 1000 bis 20000, besonders bevorzugt von 1000 bis 10000 und insbesondere von 1000 bis 6000, auf.
Kammpolymere b) sind beispielsweise solche, die in "Comb-Like Polymers. Structure and Properties", N. A. Plate und V. P. Shibaev, J. Poly. Sei. Macromolecular Revs. 8, Seiten 117 bis 253 (1974) beschrieben sind. Von den dort beschriebenen sind beispielsweise Kammpolymere der Formel II geeignet
worin
D für R17, COOR17, OCOR17, R18, OCOR17 oder OR17 steht,
E für H, CH3, D oder R18 steht,
G für H oder D steht,
J für H, R18, COOR17, R18 COOR17, Aryl oder Heterocyclyl steht,
K für H, COOR18, OCOR18, OR18 oder COOH steht,
L für H, R18 COOR18, COOR18, OCOR18, COOH oder Aryl steht, wobei
R17 für einen Kohlenwasserstoffrest mit wenigstens 10 Kohlenstoffatomen, vorzugsweise mit 10 bis 30 Kohlenstoffatomen, steht, R18 für einen Kohlenwasserstoffrest mit wenigstens einem Kohlenstoffatom, vorzugsweise mit 1 bis 30 Kohlenstoffatomen, steht, m für einen Molenbruch im Bereich von 1 ,0 bis 0,4 steht und n für einen Molenbruch im Bereich von 0 bis 0,6 steht.
Bevorzugte Kammpolymere sind beispielsweise durch die Copolymerisation von Maleinsäureanhydrid oder Fumarsäure mit einem anderen ethylenisch ungesättigten Monomer, beispielsweise mit einem σ-Olefin oder einem ungesättigten Ester, wie Vinyiacetat, und anschließende Veresterung der Anhydrid- bzw. Säurefunktion mit einem Alkohol mit wenigstens 10 Kohlenstoffatomen erhältlich. Weitere bevorzugte Kammpolymere sind Copolymere von -Olefinen und veresterten Comonomeren, beispielsweise veresterte Copolymere von Styrol und Maleinsäureanhydrid oder veresterte Copolymere von Styrol und Fumarsäure. Auch Gemische von Kammpolymeren sind geeignet. Kammpolymere können auch Polyfumarate oder Polymaleinate sein. Außerdem sind Homo- und Copolymere von Vinylethem geeignete Kammpolymere.
Geeignete Polyoxyalkylene c) sind beispielsweise Polyoxyalkylenester, -ether, -ester/ether und Gemische davon. Bevorzugt enthalten die Polyoxyalkylenverbindungen wenigstens eine, besonders bevorzugt wenigstens zwei lineare Alkylgruppen mit 10 bis 30 Kohlenstoffatomen und eine Polyoxyalkylengruppe mit einem Molekulargewicht von bis zu 5000. Die Alkylgruppe des Polyoxyalkylenrestes enthält dabei vorzugsweise 1 bis 4 Kohlenstoffatome. Derartige Polyoxyalkylenverbindungen sind beispielsweise in der EP-A-0 061 895 sowie in der US 4,491 ,455 beschrieben, worauf hiermit im vollem Umfang Bezug genommen wird. Bevorzugte Polyoxyalkylenester, -ether und ester/ether besitzen die allgemeine Formel III
19{O-(CH2 xO-R20 (III)
worin
R19 und R20 jeweils unabhängig voneinander für R21, R21CO-, R21-O-CO(CH2)2- oder R21-O- CO(CH2)z-CO- stehen, wobei R21 für lineares C C3o-Alkyl steht, y für eine Zahl von 1 bis 4 steht, x für eine Zahl von 2 bis 200 steht, und z für eine Zahl von 1 bis 4 steht.
Bevorzugte Polyoxyalkylenverbindungen der Formel III, in denen sowohl R19 als auch R20 für R21 stehen, sind Polyethylenglykole und Polypropylenglykole mit einem zahlenmittleren Molekulargewicht von 100 bis 5000. Bevorzugte Polyoxyalkylene der Formel III, in denen einer der Reste R19 für R21 und der andere für R21-CO- steht, sind Polyoxyalkylenester von Fettsäuren mit 10 bis 30 Kohlenstoffatomen, wie Stearinsäure oder Behensäure. Bevorzugte Polyoxyalkylenverbindungen, in denen sowohl R19 als auch R20 für einen Rest R21-CO- stehen, sind Diester von Fettsäuren mit 10 bis 30 Kohlenstoffatomen, bevorzugt von Stearin- oder Be- hensäure.
Die polaren Stickstoffverbindungen d), die geeigneterweise öllöslich sind, können sowohl ionisch als auch nicht ionisch sein und besitzen vorzugsweise wenigstens einen, besonders bevorzugt wenigstens 2 Substituenten der Formel >NR22, worin R22 für einen C8-C40- Kohlenwasserstoffrest steht. Die Stickstoffsubstituenten können auch quaternisiert, das heißt in kationischer Form, vorliegen. Ein Beispiel für solche Stickstoffverbindungen sind Ammoniumsalze und/oder Amide, die durch die Umsetzung wenigstens eines mit wenigstens einem Kohlenwasserstoffrest substituierten Amins mit einer Carbonsäure mit 1 bis 4 Carboxylgrup- pen bzw. mit einem geeignetem Derivat davon erhältlich sind. Vorzugsweise enthalten die Amine wenigstens einen linearen C8-C40-Alkylrest. Geeignete primäre Amine sind beispielsweise Octyiamin, Nonylamin, Decylamin, Undecylamin, Dodecylamin, Tetradecylamin und die höheren linearen Homologen. Geeignete sekundäre Amine sind beispielsweise Diocta- decylamin und Methylbehenylamin. Geeignet sind auch Amingemische, insbesondere großtechnisch zugänglicher Amingemische, wie Fettamine oder hydrierte Tallamine, wie sie bei- spielsweise in Ullmanns Encyclopedia of Industrial Chemistry, 6th edition, 2000 electronic release, Kapitel "Amines, aliphatic" beschrieben werden. Für die Umsetzung geeignete Säuren sind beispielsweise Cyclohexan-1 ,2-dicarbonsäure, Cyclohexen-1 ,2-dicarbonsäure, Cyc- lopentan-1 ,2-dicarbonsäure, Naphthalindicarbonsäure, Phthalsäure, Isophthalsäure, Te- rephthalsäure und mit langkettigen Kohlenwasserstoffresten substituierte Bernsteinsäuren.
Ein weiteres Beispiel für polare Stickstoffverbindungen sind Ringsysteme, die wenigstens zwei Substituenten der Formel -A-NR 3R24 tragen, worin A für eine lineare oder verzweigte aliphatische Kohlenwasserstoffgruppe steht, die gegebenenfalls durch eine oder mehrere Gruppen, die ausgewählt sind unter O, S, NR35 und CO, unterbrochen ist, und R23 und R24 für einen C9-C40-Kohlenwasserstoffrest stehen, der gegebenenfalls durch eine oder mehrere Gruppen, die ausgewählt sind unter O, S, NR35 und CO, unterbrochen und/oder durch einen oder mehrere Substituenten, die ausgewählt sind unter OH, SH und NR35R36 substituiert ist, wobei R35 für CrC 0-Alkyl, das gegebenenfalls durch eine oder mehrere Gruppierungen, die ausgewählt sind unter CO, NR35, O und S, unterbrochen, und/oder durch einen oder mehrere Reste, die ausgewählt sind unter NR37R38, OR37, SR37, COR37, COOR37, CONR37R38, Aryl oder Heterocyclyl substituiert ist, wobei R37 und R38 jeweils unabhängig voneinander ausgewählt sind unter H oder CrC4-Aikyl; und R36 für H oder R35 steht. Vorzugsweise ist A eine Methylen- oder Polymethyiengruppe mit 2 bis 20 Methyleneinheiten. Beispiele für geeignete Reste R23 und R24sind 2-Hydroxyethyl, 3-Hydroxypropyl, 4- Hydroxybutyl, 2-Ketopropyl, Ethoxyethyl und Propoxypropyl. Bei dem cyclischen System kann es sich sowohl um homocyclische, heterocyclische, kondensierte polycyclische oder nicht kondensierte polycyclische Systeme handeln. Vorzugsweise ist das Ringsystem carbo- oder heteroaromatisch, insbesondere carboaromatisch. Beispiele für derartige polycyclische Ringsysteme sind kondensierte benzoide Strukturen, wie Naphthalin, Anthracen, Phe- nanthren und Pyren, kondensierte nichtbenzoide Strukturen, wie Azulen, Inden, Hydrinden und Fluoren, nicht kondensierte Polycyclen, wie Diphenyl, Heterocyclen, wie Chinolin, Indol, Dihydroindol, Benzofuran, Cumarin, Isocumarin, Benzthiophen, Carbazol, Diphenylenoxid und Diphenylensulfid, nicht aromatische oder teilweise gesättigte Ringsysteme, wie Decalin, und dreidimensionale Strukturen, wie -Pinen, Camphen, Bornylen, Norbonan, Norbonen, Bicyclooctan und Bicycloocten.
Ein weiteres Beispiel für geeignete polare Stickstoffverbindungen sind Kondensate von lang- kettigen primären oder sekundären Aminen mit Carboxylgruppen-haltigen Polymeren.
Die hier genannten polaren Stickstoffverbindungen sind in der WO 00/44857 sowie in den darin genannten Literaturstellen beschrieben, worauf hiermit im vollem Umfang Bezug genommen wird.
Geeignete polare Stickstoffverbindungen sind z.B. auch in der DE-A-198 48 621 der DE-A- 196 22 052 oder der EP-B-398 101 beschrieben, worauf hiermit Bezug genommen wird.
Geeignete Sulfocarbonsäuren/Sulfonsäuren bzw. deren Derivate e) sind beispielsweise solche der allgemeinen Formel IV
A X
(IV)
C
worin
Y für SO3 '(NR25 3R26)+, SO3-(NHR25 2R26)+, SO3-(NH2R25R26), SO3 '(NH3R26) oder SO2NR25R26 steht,
X für Y, CONR25R27, CO2-(NR25 3R27)+, CO2-(NHR25 2R27)+, R28-COOR27, NR25COR27, R28OR27, R28OCOR27, R28R27, N(COR25)R27oder Z-(NR25 3R27)+ steht, wobei
R25 für einen Kohlenwasserstoffrest steht,
R26 und R27 für Alkyl, Alkoxyalkyl oder Polyalkoxyalkyl mit wenigstens 10 Kohlenstoffatomen in der Hauptkette stehen, R28 für C2-C5-Alkylen steht, Z" für ein Anionenäquivalent steht und
A und B für Alkyl, Alkenyl oder zwei substituierte Kohlenwasserstoffreste stehen oder gemeinsam mit den Kohlenstoffatomen, an die sie gebunden sind, ein aromatisches oder cyc- loaliphatisches Ringsystem bilden.
Derartige Sulfocarbonsäuren bzw. Sulfonsäuren und ihre Derivate sind in der EP-A-0 261 957 beschrieben, worauf hiermit im vollem Umfang Bezug genommen wird.
Geeignete Poly(meth)acrylsäureester f) sind sowohl Homo- als auch Copolymere von Acryl- und Methacrylsäureestern. Bevorzugt sind Copolymere von wenigstens zwei voneinander verschiedenen (Meth)Acrylsäureestem, die sich bezüglich des ein kondensierten Alkohols unterscheiden. Gegebenenfalls enthält das Copolymer noch ein weiteres, davon verschiedenes olefinisch ungesättigtes Monomer einpolymerisiert. Das gewichtsmittlere Molekulargewicht des Polymers beträgt vorzugsweise 50000 bis 500000. Ein besonders bevorzugtes Polymer ist ein Copolymer von Methacrylsäure und Methacrylsäureestern von gesättigten C14- und C15-Alkoholen, wobei die Säuregruppen mit hydriertem Tallamin neutralisiert sind. Geeignete Poly(meth)acrylsäureester sind beispielsweise in der WO 00/44857 beschrieben, worauf hiermit in vollem Umfang Bezug genommen wird.
Weitere geeignete Kaltfließverbesserer sind auch Alkylphenol-Aldehydharze, wie sie z.B. aus der EP-A-0857776, 1088045, 0311452 oder der WO-A-92/07047 und der DE-A-3328739 bekannt sind.
e) Additivpakete
Schließlich ist Gegenstand der vorliegenden Anmeldung ein Additivkonzentrat, enthaltend ein wie vorstehend definiertes erfindungsgemäßes Copolymer und wenigstens ein Verdünnungsmittel sowie gegebenenfalls mindestens einen weiteren Zusatzstoff, insbesondere ausgewählt unter obigen Co-Additiven. Geeignete Verdünnungsmittel sind beispielsweise bei der Erdölverarbeitung anfallende Fraktionen, wie Kerosin, Naphtha oder Brightstock. Geeignet sind darüber hinaus aromatische und aliphatische Kohlenwasserstoffe und Alkoxyalkanole. Bei Mitteldestillaten, insbesondere bei Dieselkraftstoffen und Heizölen bevorzugt verwendete Verdünnungsmittel sind Naphtha, Kerosin, Dieselkraftstoffe, aromatische Kohlenwasserstoffe, wie Solvent Naphtha schwer, Solvesso® oder Shellsol® sowie Gemische dieser Lösungs- und Verdünnungsmittel.
Das erfindungsgemäße Copolymer liegt in den Konzentraten vorzugsweise in einer Menge von 0,1 bis 80 Gew.-%, besonders bevorzugt von 1 bis 70 Gew.-% und insbesondere von 20 bis 60 Gew.-%, bezogen auf das Gesamtgewicht des Konzentrats, vor.
Die Erfindung wird nun anhand der folgenden nichtlimitierenden Beispiele näher erläutert.
Experimenteller Teil:
a) Herstellungsbeispiele 1 bis 16
Es wurden insgesamt sechzehn verschiedene erfindungsgemäße Copolymere durch Hochdruckpolymerisation von Ethylen, Acrylsäureester 2 (Acrylsäure-2-(2-ethoxyethoxy)-ethylester; AEEE) und gegebenenfalls Vinylacetat (VAC) hergestellt.
Ethylen, AEEE und gegebenenfalls VAC wurden unter Zusatz von Propionaldehyd als Regler in einem Hochdruckautoklaven, wie er in der Literatur beschrieben wird (M. Buback et al., Chem. Ing. Tech. 1994, 66, 510), polymerisiert.
Eine Mischung von 12,870 kg/h Ethylen, 1 ,130 kg/h Vinylacetat, 4,497 kg/h Acrylsäureester 2 und 1 ,312 kg/h Propionaldehyd wurde bei einer Temperatur von 30°C kontinuierlich durch einen auf einen Druck von 1700 bar gehaltenen 11 Rührautoklaven geleitet. Dabei wurde Vinylacetat im Zwischendruckbereich bei 260 bar, der Acrylsäureester in der Hochdruckzone bei 1700 bar am Vorwärmer-Eingang und der Propionaldehyd im Zwischendruckbereich zudosiert. Durch die kontinuierlich Zugabe von 11 ,6 g Initiator (tert-Butylperoxypivalat; TBPP) pro Stunde (in Isododecan) in der Hochdruckzone bei 1700 bar am Vorwärmer-Ausgang wurde die Temperatur im Autoklavenreaktor auf 220°C gehalten. Das nach der Entspannung des Reaktionsgemisches in einer Menge von 6,5 kg/h anfallende Polymerisat entspricht ei- nem Gesamtumsatz aller Einsatzstoffe von ca. 35%. Es enthält 40 Gew.-% Ethylen, 3 Gew.- % Vinylacetat und 57 Gew.-% Acrylsäureester 2. Die Viskosität liegt bei 60 mm2/s bei 120°C. In Tabelle 1 sind die Polymerisationsbedingungen und in der Tabelle 2 die analytischen Daten der erhaltenen Polymerisate zusammengestellt.
Der Gehalt an Ethylen, AEEE und VAC in den erhaltenen Copolymeren wurde NMR- spektroskopisch bestimmt. Die Viskositäten wurden nach Ubbelohde DIN 51562 bestimmt.
Tabelle 1
E: Ethylen
VAC: Vinylacetat
AEEE: Acrylsäureester 2
PA: Propionaldehyd (Modifier/Regler)
TBPP: tert-Butylperoxypivalat
ID: Isodecan
AEEE:ID = 1:2
Tabelle 2
Viskosität bestimmt nach Ubbelohde DIN 51562
b) Testbeispiele 1 bis 3
Mit den oben hergestellten Copolymeren 1 bis 16 wurden die nachfolgenden Versuche durchgeführt. Zu Vergleichszwecken wurden folgende herkömmliche MDFI mitgetestet:
MDFI A: Ethylen-Vinylacetat-basierte Polymermischung (Kerofiux ES 6100, BASF AG) MDFI B: Ethylen-Vinylacetat-basierte Polymermischung (Kerofiux ES 6103, BASF AG)
MDFI C: Ethylen-Vinylacetat-basierte Polymermischung (Kerofiux ES 6204, BASF AG)
MDFI D: Ethylen-Vinylacetat-basierte Polymermischung (Kerofiux ES 6310, BASF AG)
MDFI E: Vergleichsmuster: Ethylen-Vinylacetat-Copolymer
MDFi F: Vergleichsmuster: Ethylen-Vinylacetat-Copolymer MDFI G: Vergleichsmuster: Ethylen-Vinylacetat-Copolymer
Es wurden herkömmliche Mitteldestillat-Brennstoffe mit obigen erfindungsgemäßen bzw. herkömmlichen Kaltfließverbesserem in unterschiedlichen Dosierraten additiviert und der CFPP-Wert nach DIN EN116 bestimmt
Testbeispiel 1
Eingesetztes Mitteldestillat: Winterdiesel-Kraftstoff, Deutschland, CP = -5,9 °C (ASTM D2500), CFPP = -9 °C (DIN EN116), d = 825 kg/m3, CFPP-Ziel = -22 °C, IBP (Siedebeginn) = 197 °C, FBP (Siedeende) = 358 °C, 90-20 (Temperaturdifferenz des 90 Vol.-%- und 20 Vol.-%-Wertes der Siedekurve) = 94 °C, 24,3 % n-Paraffine Die ermittelten CFPP-Werte (in °C) der additivierten Mitteldestillatbrennstoffe sind in Tabelle 3 zu- sammengefasst.
Tabelle 3
Testbeispiel 2
Eingesetztes Mitteldestillat: ADO, Belgien, CP = -17 °C (ASTM D2500), CFPP = -19 °C (DIN EN116), d = 836 kg/m3, CFPP-Ziel = -21 °C, IBP = 180°C, FBP = 340°C, 90-20 = 89 °C, 18,7 % n-Paraffine
Die ermittelten CFPP-Werte (in °C) der additivierten Mitteldestillatbrennstoffe sind in Tabelle 4 zu- sammengefasst. Tabelle 4
Testbeispiel 3
Eingesetztes Mitteldestillat: Dieselkraftstoff, Niederlande, CP = -8,6 °C (ASTM D2500), CFPP = -9 °C (DIN EN116), d = 838 kg/m3, CFPP-Ziel = -21 °C, IBP = 157°C, FBP = 354°C, 90-20 = 101 °C, 19,7 % n-Paraffine
Die ermittelten CFPP-Werte (in °C) der additivierten Mitteldestillatbrennstoffe sind in Tabelle 5 zu- sammengefasst.
Tabelle 5
Die in den Tabellen 3 bis 5 zusammengefassten Testergebnisse belegen eine überraschend gute Performance der erfindungsgemäßen Copolymere als Cold Flow Improverin Mitteldestillatbrennstoffzusammensetzungen. Mit den erfindungsgemäßen Additiven ist es nun einerseits möglich, vergleichbare CFPP-Werte wie mit herkömmlichen MDFI's, jedoch bei geringerer Dosierrate einzustellen, bzw. bei gleicher Dosierung verbesserte (höhere) CFPP-Werte zu erzielen.

Claims

Patentansprüche
1. Verwendung eines Copolymers, das einen Acrylsäureester einpolymerisiert enthält, der sich von einem Heteroatom-funktionalisierten Alkohol ableitet, als Additiv für
Brennstofföle und Schmierstoffe.
2. Verwendung nach Anspruch 1 , wobei das Heteroatom unter O und N ausgewählt ist.
3. Verwendung nach einem der vorhergehenden Ansprüche, wobei das Copolymer den Acrylsäureester in statistischer Verteilung einpolymerisiert enthält.
4. Verwendung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass das Copolymer aufgebaut ist aus den Monomeren, umfassend M1 , M2 und ge- gebenenfalls M3, wobei M1 , M2 und M3 die folgenden allgemeinen Formeln besitzen:
R1
M1
worin
R1 für H oder CrC^-Hydrocarbyl steht;
R2, R3, R4 und R5 gleich oder verschieden sind und für H, C C40-Hydrocarbyl, -COOR14 oder -OCOR14 stehen, wobei R14 für C C 0-Hydrocarbyl steht und wobei wenigstens einer der Reste R2, R3, R4 und R5 für -COOR14 oder -OCOR14 steht; R6, R7 und R8 gleich oder verschieden sind und für H oder C-ι-C4-Alkyl stehen und R9 für COOR10 steht, wobei R10 für eine Gruppe der Formel
-r-A-O+nR11
M/44081 steht, worin A für C2-C4-Alkylen steht,
R11 für H, CrCio-Alkyl oder für einen 3- bis16-gliedrigen carbo- oder heterocyclischen, gesättigten, ein- oder mehrfach ungesättigten Ring oder für ein entsprechendes kon- densiertes Ringsystem steht und n für eine Zahl von 1 bis 20 steht.
5. Verwendung nach Anspruch 4, dadurch gekennzeichnet, dass die Monomeren M1 , M2 und M3 in folgenden molaren Anteilen im Copolymer enthalten sind: M1: 0,55 bis 0,999
M2: 0,001 bis 0,25 M3: 0 bis 0,2.
6. Verwendung nach einem der Ansprüche 4 oder 5, wobei Monomer M1 ausgewählt ist unter Ethylen, Propylen und 1-Buten.
7. Verwendung nach einem der vorhergehenden Ansprüche, wobei M2 ausgewählt ist unter
8. Verwendung nach einem der Ansprüche 4 bis 7, wobei M3 ausgewählt ist unter C C20-Carbonsäurevinylestern oder C C2o-Hydrocarbyl(meth)acrylaten.
9. Verwendung nach einem der vorhergehenden Ansprüche, wobei das Copolymer ausgewählt ist unter EthyIen/Acrylsäure-2-(2-ethoxyethoxy)-ethylester und Ethylen/ Acrylsäure-2-(2-ethoxyethoxy)-ethylester/Vinylacetat.
10. Verwendung nach einem der vorherigen Ansprüche, wobei das Copolymer als Kaltfließverbesserer eingesetzt wird.
11. Copolymer gemäß der Definition in einem der vorhergehenden Ansprüche.
12. Brennstoffölzusammensetzung, enthaltend einen größeren Gewichtsanteil eines im Bereich von 120-500 °C siedenden Mitteldestillatbrennstoffs und einen kleineren Gewichtsanteil wenigstens eines Kaltfließverbesserers gemäß der Definition in einem der Ansprüche 1 bis 11.
13. Brennstoffölzusammensetzung nach Anspruch 12, wobei die Brennstoffkomponente Biodiesel (aus tierischer oder pflanzlicher Produktion) in Anteilen von 0-30 Gew.-% umfasst.
14. Brennstoffölzusammensetzung nach Anspruch 12, ausgewählt unter Dieselkraftstoffen, Kerosin und Heizöl.
15. Brennstoffölzusammensetzung nach Anspruch 14, wobei der Dieselkraftstoff durch Raffination, Kohlevergasung oder Gasverflüssigung erhältlich ist, oder ein Gemisch solcher Produkte darstellt und gegebenenfalls mit regenerativen Kraftstoffen vermischt ist.
16. Brennstoffölzusammensetzung nach einem der Ansprüche 12 bis 15, wobei der Schwefelgehalt der Mischung höchstens 500 ppm beträgt.
17. Schmierstoffzusammensetzung, enthaltend einen größeren Gewichtsanteil eines herkömmlichen Schmierstoffs und einen kleineren Gewichtsanteil wenigstens eines Kaltfließverbesserers gemäß der Definition in einem der Ansprüche 1 bis 11.
18. Verwendung oder Zusammensetzung nach einem der vorherigen Ansprüche, wobei das Copolymer in Kombination mit wenigstens einem weiteren herkömmlichen Kaltfließverbesserer und/oder wenigstens einem weiteren Schmier- und Brennstofföladdi- tiv verwendet wird.
19. Additivpaket, umfassend ein Copolymer gemäß der Definition in einem der Ansprüche 1 bis 10 in Kombination mit wenigstens einem weiteren konventionellen Schmier- und Brennstofföladditiv.
EP04739405A 2003-05-27 2004-05-27 Brennstoffzusammensetzungen mit verbesserten kaltfliesseigenschaften Withdrawn EP1631646A1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10324101A DE10324101A1 (de) 2003-05-27 2003-05-27 Brennstoffzusammensetzungen mit verbesserten Kaltfließeigenschaften
PCT/EP2004/005736 WO2004106471A1 (de) 2003-05-27 2004-05-27 Brennstoffzusammensetzungen mit verbesserten kaltfliesseigenschaften

Publications (1)

Publication Number Publication Date
EP1631646A1 true EP1631646A1 (de) 2006-03-08

Family

ID=33482224

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04739405A Withdrawn EP1631646A1 (de) 2003-05-27 2004-05-27 Brennstoffzusammensetzungen mit verbesserten kaltfliesseigenschaften

Country Status (6)

Country Link
EP (1) EP1631646A1 (de)
KR (1) KR20060026411A (de)
CN (1) CN1795259A (de)
DE (1) DE10324101A1 (de)
RU (1) RU2005140538A (de)
WO (1) WO2004106471A1 (de)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005015931A1 (de) * 2005-04-06 2006-10-12 Rohmax Additives Gmbh Polyalkyl(meth) acrylat-Copolymere mit hervorragenden Eigenschaften
AU2006237132B2 (en) * 2005-04-18 2011-06-23 Basf Aktiengesellschaft Turbine fuel composition exhibiting improved cold properties
EP1715027A1 (de) * 2005-04-18 2006-10-25 Basf Aktiengesellschaft Turbinenkraftstoffzusammensetzungen mit verbesserten Kälteeigenschaften
KR100806517B1 (ko) * 2006-11-07 2008-02-21 김학로 저온 유동성이 향상된 바이오디젤 제조방법
EP1923454A1 (de) * 2006-11-17 2008-05-21 Basf Se Kaltfliessverbesserer
FR2925916B1 (fr) * 2007-12-28 2010-11-12 Total France Terpolymere ethylene/acetate de vinyle/esters insatures comme additif ameliorant la tenue a froid des hydrocarbures liquides comme les distillats moyens et les carburants ou combustibles
FR2947558B1 (fr) * 2009-07-03 2011-08-19 Total Raffinage Marketing Terpolymere et ethylene/acetate de vinyle/esters insatures comme additif ameliorant la tenue a froid des hydrocarbures liquides comme les distillats moyens et les carburants ou combustibles
WO2012004240A2 (de) * 2010-07-06 2012-01-12 Basf Se COPOLYMERISAT MIT HOHER CHEMISCHER EINHEITLICHKEIT UND SEINE VERWENDUNG ZUR VERBESSERUNG DER KALTFLIEßEIGENSCHAFTEN VON BRENNSTOFFÖLEN
FR2991992B1 (fr) * 2012-06-19 2015-07-03 Total Raffinage Marketing Compositions d'additifs et leur utilisation pour ameliorer les proprietes a froid de carburants et combustibles
RU2684412C1 (ru) * 2017-11-02 2019-04-09 Публичное акционерное общество "Нефтяная компания "Роснефть" (ПАО "НК "Роснефть") Депрессорно-диспергирующая присадка к дизельному топливу, способ ее получения и способ получения депрессорного и диспергирующего компонентов депрессорно-диспергирующей присадки
EP3765529A1 (de) * 2018-03-16 2021-01-20 Basf Se Hochdruckpolymerisationsverfahren für flüssige ethylencopolymere
WO2019175300A1 (en) 2018-03-16 2019-09-19 Basf Se A lubricant comprising a liquid ethylene copolymer

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517348A (en) * 1979-03-17 1985-05-14 Denki Kagaku Kogyo Kabushiki Kaisha Rubbery polymer composition
JPS612712A (ja) * 1984-06-14 1986-01-08 Denki Kagaku Kogyo Kk 共重合体エラストマー
JPH01172250A (ja) * 1987-12-28 1989-07-07 Denki Kagaku Kogyo Kk セメント用遅延剤
JPH0345607A (ja) * 1989-07-12 1991-02-27 Kurashiki Kako Co Ltd 耐劣化油亀裂成長性ゴム組成物
JP2000302509A (ja) * 1999-04-15 2000-10-31 Denki Kagaku Kogyo Kk リバウンド低減剤及びそれを用いた吹付工法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4155719A (en) * 1977-11-23 1979-05-22 Texaco Inc. Low pour residual fuel compositions
DE3107245A1 (de) * 1981-02-26 1982-09-09 Basf Ag, 6700 Ludwigshafen Gleitmittel fuer die formgebende verarbeitung von chlorhaltigen thermoplasten, die als wirksames prinzip veresterte ethylen-acrylsaeure-copolymerisate enthalten
JPS5840391A (ja) * 1981-09-03 1983-03-09 Sumitomo Chem Co Ltd 燃料油の低温流動性改良方法
EP0997517B1 (de) * 1998-10-27 2004-01-14 Clariant GmbH Polymermischungen zur Verbesserung der Schmierwirkung von Mitteldestillaten

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4517348A (en) * 1979-03-17 1985-05-14 Denki Kagaku Kogyo Kabushiki Kaisha Rubbery polymer composition
JPS612712A (ja) * 1984-06-14 1986-01-08 Denki Kagaku Kogyo Kk 共重合体エラストマー
JPH01172250A (ja) * 1987-12-28 1989-07-07 Denki Kagaku Kogyo Kk セメント用遅延剤
JPH0345607A (ja) * 1989-07-12 1991-02-27 Kurashiki Kako Co Ltd 耐劣化油亀裂成長性ゴム組成物
JP2000302509A (ja) * 1999-04-15 2000-10-31 Denki Kagaku Kogyo Kk リバウンド低減剤及びそれを用いた吹付工法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2004106471A1 *

Also Published As

Publication number Publication date
KR20060026411A (ko) 2006-03-23
WO2004106471A1 (de) 2004-12-09
DE10324101A1 (de) 2005-01-05
CN1795259A (zh) 2006-06-28
RU2005140538A (ru) 2006-08-10

Similar Documents

Publication Publication Date Title
EP1692196B1 (de) Brennstoffölzusammensetzungen mit verbesserten kaltfliesseigenschaften
EP2092045B2 (de) Kaltfliessverbesserer
EP1554365B1 (de) Verwendung von hydrocarbylvinyletherhomopolymeren zur verbesserung der wirkung von kaltfliessverbesserern
EP1746147B1 (de) Copolymere auf Basis von Olefinen und Estern von ethylenisch ungesättigten Carbonsäuren zur Erniedrigung des CP-Werts von Brennstoffölen und Schmierstoffen
WO2006111326A1 (de) Turbinenkraftstoffzusammensetzungen mit verbesserten kälteeigenschaften
EP1631646A1 (de) Brennstoffzusammensetzungen mit verbesserten kaltfliesseigenschaften
US20070094920A1 (en) Fuel oil compositions with improved cold flow properties
EP1631645A1 (de) Brennstoffzusammensetzungen mit verbesserten kaltfliesseigenschaften
WO2004101716A1 (de) Brennstoffzusammensetzungen, enthaltend terpolymere mit verbesserten kaltfliesseigenschaften
WO2004078891A1 (de) Brennstoffzusammensetzungen mit verbesserten kaltfliesseigenschaften
DE10254640A1 (de) Verwendung von Homopolymeren ethylenisch ungesättigter Ester zur Vebesserung der Wirkung von Kaltfließverbesserern
EP1715027A1 (de) Turbinenkraftstoffzusammensetzungen mit verbesserten Kälteeigenschaften
DE102005012097A1 (de) Terpolymere auf Basis von Olefinen, ungesättigten Carbonsäureestern und Vinylaromaten als Additive für Brennstofföle und Schmierstoffe
EP1705196A1 (de) Terpolymere auf Basis von Olefinen, ungesättigten Carbonsäureestern und Vinylaromaten als Additive für Brennstofföle und Schmierstoffe
WO2006097289A1 (de) Terpolymere auf basis von-olefinen, ungesättigten carbonsäureestern und vinylaromaten als additive für brennstofföle und schmierstoffe
EP0751964B1 (de) Als paraffindispergatoren geeignete modifizierte copolymerisate, ihre herstellung und verwendung sowie diese enthaltende erdölmitteldestillate
EP1770150A1 (de) Turbinenkraftstoffzusammensetzungen mit verbesserten Kälteeigenschaften
EP1746146A1 (de) Copolymere auf Basis von Olefinen und Estern von ethylenisch ungesättigten Carbonsäuren zur Erniedrigung des CP-Werts von Brennstoffölen und Schmierstoffen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051227

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

RIN1 Information on inventor provided before grant (corrected)

Inventor name: AHLERS, WOLFGANG

Inventor name: MAEHLING, FRANK-OLAF

Inventor name: FECHTENKOETTER, ANDREAS

DAX Request for extension of the european patent (deleted)
17Q First examination report despatched

Effective date: 20070504

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20150828