EP1631529A2 - Composition de verre silico-sodo-calcique, notamment pour la realisation de substrats. - Google Patents

Composition de verre silico-sodo-calcique, notamment pour la realisation de substrats.

Info

Publication number
EP1631529A2
EP1631529A2 EP04742689A EP04742689A EP1631529A2 EP 1631529 A2 EP1631529 A2 EP 1631529A2 EP 04742689 A EP04742689 A EP 04742689A EP 04742689 A EP04742689 A EP 04742689A EP 1631529 A2 EP1631529 A2 EP 1631529A2
Authority
EP
European Patent Office
Prior art keywords
glass
composition according
bao
cao
mgo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP04742689A
Other languages
German (de)
English (en)
Inventor
Catherine Goulas
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1631529A2 publication Critical patent/EP1631529A2/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/078Glass compositions containing silica with 40% to 90% silica, by weight containing an oxide of a divalent metal, e.g. an oxide of zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/083Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound
    • C03C3/085Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal
    • C03C3/087Glass compositions containing silica with 40% to 90% silica, by weight containing aluminium oxide or an iron compound containing an oxide of a divalent metal containing calcium oxide, e.g. common sheet or container glass
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/076Glass compositions containing silica with 40% to 90% silica, by weight
    • C03C3/089Glass compositions containing silica with 40% to 90% silica, by weight containing boron
    • C03C3/091Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium
    • C03C3/093Glass compositions containing silica with 40% to 90% silica, by weight containing boron containing aluminium containing zinc or zirconium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/86Vessels; Containers; Vacuum locks
    • H01J29/863Vessels or containers characterised by the material thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2329/00Electron emission display panels, e.g. field emission display panels
    • H01J2329/86Vessels
    • H01J2329/8605Front or back plates
    • H01J2329/8615Front or back plates characterised by the material

Definitions

  • the present invention relates to glass compositions suitable for being transformed into a glass ribbon, in particular by the “Float” process, from which heat-resistant plates can be cut. These plates can be used in particular for the production of substrates used in the manufacture of emissive screens such as plasma screens, electroluminescent screens and cold cathode screens (Field Emission Display - FED), or fire-resistant glazing.
  • emissive screens such as plasma screens, electroluminescent screens and cold cathode screens (Field Emission Display - FED), or fire-resistant glazing.
  • the glass used to produce such substrates is a glass belonging to the family of soda-lime-silica glasses, commonly used to form glazing intended for buildings or motor vehicles. If this type of glass is satisfactory with regard to chemical resistance, flatness and the defects it contains, on the other hand the level of performance in terms of yellowing ability proves to be insufficient for the intended application.
  • the substrate is subjected to several treatments which aim to stabilize its dimensions and to fix a series of layers of different compounds, such as enamels, deposited on its surface.
  • the substrate is generally heat treated at a temperature above 550 ° C.
  • it is important to ensure that the coefficient of expansion of the glass used is of the same order of magnitude as that of the compounds deposited on its surface so as to avoid the appearance of cracks.
  • the soda-lime-silica glass generally has a suitable coefficient of expansion, on the other hand its temperature resistance is insufficient and it is necessary to place it on a rectified slab to avoid any deformation during heat treatments.
  • the glasses used for the manufacture of fire-resistant glazing belong to the category of borosilicate glasses. These glasses, which have good resistance to heat and thermal shock, are characterized by a relatively low coefficient of expansion. As a result, the mechanical strength of this type of glass cannot be improved significantly by thermal toughening because it is not allowed to have the development of high stresses in the glass. Glass compositions making it possible to obtain plates or substrates with practically zero deformation during heat treatments of the order of 550 to 600 ° C. and capable of undergoing thermal toughening are described in WO-A-96/11887. These are glass compositions having the desired properties for plasma screens that use little or no Al 2 O 3 alumina (0 to 18%), a high level of ZrO zirconia (6.5 to 20%) and an SiO 2 content not exceeding 63%.
  • FR-A-2 578 550 are also described compositions making it possible to provide thermally stable substrates which combine alumina (0 to 5%) and zirconia (5 to 10%).
  • the present invention aims to provide a glass composition for manufacturing a plate or a substrate having improved resistance to yellowing, and which retains the properties mentioned above, in particular a coefficient of thermal expansion ⁇ at least equivalent to silica glasses. known soda-lime.
  • the subject of the invention is a glass composition intended for the manufacture of thermally stable substrates or plates which comprises the following constituents, in the following weight proportions:
  • composition having a coefficient of thermal expansion between 80 and 90 x 10 "7 / ° C, in particular less than 85 x 10 " 7 / ° C, and preferably between 81 and 84 x 10 "7 / ° C.
  • the substrates or the plates obtained from the compositions in accordance with the invention are capable of undergoing the heat treatments necessary for their application, for example as a plasma screen, and have a lower degree of yellowing compared to silico glasses. -sodo-lime.
  • the improvement in the aging of the glass consisting in limiting the appearance of the yellow coloration is however not obtained at the expense of the other properties of the glass.
  • the reduction of yellowing is based on the choice of a high SiO 2 content.
  • glasses whose coefficient of thermal expansion remains of the same order of magnitude as that of a traditional silica-soda-lime glass know that it is between 80 and 90 x 10 "7 / ° C, in particular less than 85 x 10 " 7 / ° C, and preferably between 81 and 84 x 10 "7 / ° C measured at a temperature included between 20 and 300 ° C.
  • the combination of the aforementioned constituents also makes it possible to obtain glasses having a lower annealing temperature ("strain point") greater than 570 ° C., preferably 580 ° C., a temperature which is at least approximately 70 ° C. higher than that a traditional silica-soda-lime glass. It is known that the glass no longer has any viscous behavior below the strain point corresponding to the temperature at which the glass has a viscosity of the order of 10 14 ' 5 poises. In fact, the strain point is an interesting benchmark for evaluating the temperature resistance of a glass. The strain point of the glasses according to the invention is comparable to that which is obtained for other glasses known for making screens (see WO 96/11 887 and FR 2 758 550).
  • the glasses according to the invention generally have a density at 25 ° C. of less than
  • the glasses according to the invention are well suited to the melting techniques associated with the "Float” process which operates by floating the glass on a bath of molten metal, in particular of tin. They only cause very slight corrosion of refractories, of the AZS type
  • the glasses according to the invention can be easily melted and transformed into glass ribbon at temperatures of the same order as those used for the manufacture of a conventional soda-lime-silica glass.
  • liquidus temperature T ⁇ q corresponding to the melting temperature of the vitrifiable raw materials of at most 1180 ° C, in particular between 1130 and 1170 ° C.
  • This bearing although narrow, is sufficient to ensure forming in good conditions without major risk in particular in terms of the operation of the furnace.
  • the role of the constituents entering into the glass composition according to the invention is defined below.
  • SiO 2 plays an essential role. Its content is necessarily equal to or greater than 67%, without however exceeding 75%; beyond this, the melting of the batch and the refining of the glass require high temperatures which cause premature wear of the refractories of the furnace. Below 67% by weight of silica, the performance of the glass, in particular in terms of yellowing, is reduced.
  • the glasses which are best suited to the conditions of floating on a bath of molten metal and have the best properties, comprise between 67 and 71% of SiO 2 .
  • Alumina plays a stabilizing role. It contributes to increase the chemical resistance of the glass and the strain point.
  • ZrO 2 also plays a stabilizing role. This oxide increases to some extent the chemical resistance of the glass and promotes the increase in the strain point. The percentage of ZrO 2 generally does not exceed 7% so as not to penalize the merger. If this oxide is difficult to melt, it has the advantage of only moderately increasing the viscosity of the glasses according to the invention at high temperatures, unlike the others oxides such as silica or alumina.
  • the use of ZrO 2 makes it possible to avoid introducing oxides such as B 2 O 3 into these glasses or to increase the amount of alkaline oxides, one of the effects of these oxides being to reduce the viscosity of the glass .
  • Alumina and zirconia play fairly similar roles: the sum of the Al O 3 and ZrO 2 contents is preferably less than 6%.
  • the oxides Na 2 O and K 2 O make it possible to maintain the melting temperature of the glasses and the viscosity at high temperatures within the limits indicated above. To do this, the sum of these oxides remains equal to or greater than 10%, preferably between 10 and 15%.
  • the presence of Na 2 O and K 2 O makes it possible to considerably increase their chemical resistance, in particular their hydrolytic resistance, as well as their resistivity.
  • the content of K 2 O which increases because this makes it possible to thin the glass without lowering the strain point too much.
  • the weight ratio of the Na O content to the KO content is less than or equal to 0.7.
  • the alkaline earth oxides have the overall effect of raising the strain point: as a general rule their total content, in particular of MgO, CaO, SrO, and BaO, is greater than 12%, preferably greater than or equal to 15%.
  • the ability of the glasses to devitrify increases and can become incompatible with the conditions for manufacturing the glass by floating on a molten metal bath. It is essentially CaO and MgO which increase the value of the strain point.
  • the content by weight of CaO and MgO does not exceed 5% and 10%, respectively.
  • BaO and SrO increase the chemical resistance of the glass and BaO also has the effect of reducing the melting temperature and the viscosity at high temperatures.
  • Boron oxide, B 2 O 3 is optional. This network forming oxide can be added to or substituted for SiO 2 . It reduces the melting temperature of the batch and the viscosity of the glass at high temperatures. It also reduces the ability of the glass to devitrify, in particular by avoiding the rise in temperature in liquidus.
  • the preferred glass compositions according to the invention comprise the following constituents in the following proportions: SiO 2 67 - 75%
  • the glass compositions according to the invention can be used for the manufacture of heat-resistant plates, in particular for forming substrates for screens of the plasma, electroluminescent or cold cathode type.
  • These substrates can be obtained by cutting glass sheets from a continuous glass ribbon obtained by floating the glass on a molten metal bath. They can have a glass thickness varying from 0.5 mm to 10 mm.
  • These plates can also be used for the manufacture of fire-resistant glazing, in particular also obtained by cutting a strip of float glass.
  • compositions according to the invention will be better appreciated through the exemplary embodiments gathered in table 1 in the appendix.
  • Examples 1 to 4 describe glass compositions in accordance with the invention.
  • the glass of Example 5 corresponds to a conventional silica-soda-lime glass composition used to manufacture a glass ribbon according to the Float process.
  • the glass of Example 6 is a glass sold under the name PD200 by ASAHI suitable for producing emissive screens.
  • PD200 glass sold under the name PD200 by ASAHI suitable for producing emissive screens.
  • b * is representative of the degree of yellowing of the glass. It is measured as follows:
  • a layer of metallic silver is deposited on the surface of the glass according to the so-called “sputtering” method.
  • the glass is then heated to 580 ° C at the speed of 10 ° C / min, kept at this temperature for 30 min and then cooled to room temperature at the speed of 5 ° / min.
  • the glass is immersed in an HNO solution to remove the silver layer.
  • the measurement of the chromatic coordinate b * is carried out under illuminant D65 by taking the colorimetric reference observer described by the International Commission on Lighting (CLE.) 1931.
  • the degree of yellowing after heat treatment of the glasses according to the invention is significantly lower than that of the soda lime glass of Example 5 or the screen glass of Example 6 .
  • the coefficient ⁇ retains a satisfactory value, greater than 80 ⁇ 10 -7 / ° C., comparable to the above-mentioned reference glasses.
  • the strain point of the glasses according to the invention is much higher than that of soda-lime glass. calcic and improved compared to screen glass.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Compositions (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)

Abstract

La présente invention concerne une composition de verre destinée à la fabrication de substrats ou de plaques thermiquement stables qui comprend les constituants ci-après dans les proportions pondérales suivantes SiO2 67 - 75%, Al2O3 0,5 - 1%, ZrO2 2 - 7%, Na2O 2 - 9%, K2O 4 - 11%, MgO 0 - 5%, CaO 5 - 10%, SrO 5 - 12%, BaO 0 - 3%, B2O3 0 - 3%, Li2O 0 - 2% avec les relations Na2O + K2O > 10% MgO + CaO + SrO + BaO > 12% et ladite composition présentant un coefficient de dilatation thermique compris entre 80 et 90 x 10<-7>/°C. Elle concerne également l'utilisation de ces compositions de verre pour la réalisation de substrats, notamment pour écrans émissifs, et de vitrages anti-feu.

Description

COMPOSITION DE VERRE SILICO-SODO-CALCIQUE, NOTAMMENT POUR LA REALISATION DE SUBSTRATS.
La présente invention se rapporte à des compositions de verre aptes à être transformées en ruban de verre, notamment par le procédé « Float », dans lequel peuvent être découpées des plaques résistant à la chaleur. Ces plaques peuvent être utilisées notamment pour la réalisation de substrats entrant dans la fabrication d'écrans émissifs tels que des écrans plasmas, des écrans électroluminescents et des écrans à cathode froide (Field Emission Display - FED), ou de vitrages anti-feu.
Le verre employé pour réaliser de tels substrats est un verre appartenant à la famille des verres silico-sodo-calciques, couramment utilisés pour former des vitrages destinés aux bâtiments ou aux véhicules automobiles. Si ce type de verre est satisfaisant en ce qui concerne la résistance chimique, la planéité et les défauts qu'il contient, en revanche le niveau de performances en matière d'aptitude au jaunissement s'avère insuffisant pour l'application visée.
Lors de la fabrication d'écrans émissifs, le substrat est soumis à plusieurs traitements qui ont pour but de stabiliser ses dimensions et de fixer une série de couches de différents composés, tels que des émaux, déposées sur sa surface. Pour fixer ces couches d'épaisseurs variables, le substrat est traité thermiquement en général à une température supérieure à 550°C. A cet égard, il est important de faire en sorte que le coefficient de dilatation du verre utilisé soit du même ordre de grandeur que celui des composés déposés à sa surface de manière à éviter l'apparition de craquelures. Si le verre silico-sodo-calcique a généralement un coefficient de dilation qui convient, en revanche sa tenue en température est insuffisante et il est nécessaire de le placer sur une dalle rectifiée pour éviter toute déformation lors des traitements thermiques.
Par ailleurs, il a été observé que les substrats en verre silico-sodo-calcique portant des couches à base d'argent traitées thermiquement ont tendance à développer une coloration jaune. On attribue ce phénomène de jaunissement à la migration des ions Ag+ dans le verre, lesquels ions sont ensuite réduits sous la forme de particules colloïdales Ag° qui absorbent la lumière dans l'intervalle à longueur d'onde de 390 à 420 nanomètres. Le jaunissement du verre contribue à dégrader la qualité de l'image.
Les verres utilisés pour la fabrication de vitrages anti-feu appartiennent à la catégorie des verres borosilicates. Ces verres, qui présentent une bonne résistance à la chaleur et aux chocs thermiques, se caractérisent par un coefficient de dilatation relativement faible. Il en résulte que la résistance mécanique de ce type de verre ne peut pas être améliorée de manière importante par trempe thermique car il n'est pas permis d'avoir le développement de fortes contraintes dans le verre. Des compositions de verre permettant d'obtenir des plaques ou des substrats à déformation quasiment nulle lors de traitements thermiques de l'ordre de 550 à 600°C et aptes à subir une trempe thermique sont décrites dans WO-A-96/11887. Il s'agit de compositions de verre ayant les propriétés recherchées pour des écrans plasmas qui utilisent peu ou pas d'alumine Al2O3 (0 à 18 %), un taux élevé de zircone ZrO (6,5 à 20 %) et une teneur en SiO2 n'excédant pas 63 %.
Dans FR-A-2 578 550 sont également décrites des compositions permettant de fournir des substrats stables thermiquement qui associent de l'alumine (0 à 5 %) et de la zircone (5 à 10 %).
Cependant, que ce soit avec l'une ou l'autre des compositions, le phénomène de jaunissement du verre persiste. Il y a donc un besoin de disposer de compositions de verre améliorées qui permettent d'obtenir des verres ayant un degré de jaunissement le plus faible possible.
La présente invention a pour but de proposer une composition de verre permettant de fabriquer une plaque ou un substrat présentant une résistance au jaunissement améliorée, et qui conserve les propriétés précédemment évoquées, en particulier un coefficient de dilatation thermique α au moins équivalent aux verres silico-sodo-calciques connus.
L'invention a pour objet une composition de verre destinée à la fabrication de substrats ou de plaques thermiquement stables qui comprend les constituants ci-après, dans les proportions pondérales suivantes :
SiO2 67 - 75 %
Al2O3 0,5 - 1 %
ZrO2 2 - 7 %
Na2O 2 - 9 %
K2O 4 - 11 %
MgO 0 - 5 %
CaO 5 - 10 %
SrO 5 - 12 %
BaO 0 - 3 % B2O3 0 - 3 %
Li2O 0 - 2 % avec les relations
Na2O + K2O > 10 % MgO + CaO + SrO + BaO > 12 % et ladite composition présentant un coefficient de dilatation thermique compris entre 80 et 90 x 10"7/°C, notamment inférieur à 85 x 10"7/°C, et de préférence compris entre 81 et 84 x 10"7/°C.
Les substrats ou les plaques obtenues à partir des compositions conformes à l'invention, sont aptes à subir les traitements thermiques nécessaires à leur application, par exemple en tant qu'écran plasma, et présentent un degré de jaunissement plus faible par rapport aux verres silico-sodo-calciques. L'amélioration du vieillissement du verre consistant à limiter l'apparition de la coloration jaune n'est cependant pas obtenue au détriment des autres propriétés du verre. La réduction du jaunissement repose sur le choix d'une teneur élevée en SiO2
(égale ou supérieure à 67 %), très faible en Al2O (0,5 à 1 %) et faible en ZrO2 (2 à 7 %).
Grâce à la combinaison des constituants telle qu'elle résulte de la définition de l'invention, on peut obtenir des verres dont le coefficient de dilatation thermique reste du même ordre de grandeur que celui d'un verre silico-sodo-calcique traditionnel, à savoir qu'il est compris entre 80 et 90 x 10"7/°C, notamment inférieur à 85 x 10"7/°C, et de préférence compris entre 81 et 84 x 10"7/°C mesuré à une température comprise entre 20 et 300°C.
La combinaison des constituants précités permet également d'obtenir des verres présentant une température inférieure de recuisson (« strain point ») supérieure à 570°C, de préférence 580°C, température qui est supérieure d'au moins 70°C environ à celle d'un verre silico-sodo-calcique traditionnel. Il est connu que le verre n'a plus aucun comportement visqueux au-dessous du strain point correspondant à la température à laquelle le verre a une viscosité de l'ordre de 1014'5 poises. De fait, le strain point est un point de repère intéressant pour évaluer la tenue en température d'un verre. Le strain point des verres selon l'invention est comparable à celui que l'on obtient pour d'autres verres connus pour réaliser des écrans (voir WO 96/11 887 et FR 2 758 550).
Les verres selon l'invention présentent en général une densité à 25°C inférieure à
3, de préférence de l'ordre de 2,7, comparable à celle des verres existants utilisés pour la fabrication d'écrans. } y ( , ,
4 Les verres selon l'invention sont bien adaptés aux techniques de fusion associées au procédé « Float » qui opère par flottage du verre sur un bain de métal fondu, notamment d'étain. Ils n'entraînent qu'une très faible corrosion des réfractaires, du type AZS
(alumine-zircone-silice), habituellement employés dans ce type de four. Les verres selon l'invention peuvent être facilement fondus et transformés en ruban de verre à des températures du même ordre que celles retenues pour la fabrication d'un verre silico-sodo-calcique classique.
Ainsi, ils présentent généralement une température de liquidus Tκq correspondant à la température de fusion des matières premières vitrifiables d'au plus 1180°C, notamment comprise entre 1130 et 1170°C. Ces verres présentent aussi pour une viscosité η, en poises, telle que log η = 3,5, une température au moins égale à 1160°C, notamment comprise entre 1160 et 1200°C. Cette température correspond pour l'homme du métier à la viscosité idéale pour opérer le formage du verre.
Les compositions selon l'invention présentent un « palier de travail », défini par la différence de température Tlog η = 3)5 - Tϋq (correspondant à la zone de température permettant d'effectuer la fusion et le formage du verre), d'au moins 10 à 30 °C. Ce palier, bien qu'étroit, est suffisant pour assurer le formage dans de bonnes conditions sans risque majeur au niveau notamment du fonctionnement du four.
Le rôle des constituants entrant dans la composition de verre selon l'invention est défini ci-après.
SiO2 joue un rôle essentiel. Sa teneur est nécessairement égale ou supérieure à 67 %, sans toutefois excéder 75 % ; au-delà, la fusion du mélange vitrifiable et l'affinage du verre nécessitent des températures élevées qui provoquent une usure prématurée des réfractaires du four. Au-dessous de 67 % en poids de silice, les performances du verre, notamment en terme de jaunissement, se trouvent réduites. Les verres qui sont le mieux adaptés aux conditions de flottage sur un bain de métal fondu et présentent les meilleures propriétés, comprennent entre 67 et 71 % de SiO2.
L'alumine joue un rôle de stabilisant. Elle contribue à augmenter la résistance chimique du verre et le strain point. ZrO2 joue également un rôle de stabilisant. Cet oxyde augmente dans une certaine mesure la résistance chimique du verre et favorise l'augmentation du strain point. Le pourcentage de ZrO2 n'excède généralement pas 7 % afin de ne pas pénaliser la fusion. Si cet oxyde est difficile à fondre, il présente l'avantage de n'augmenter que modérément la viscosité des verres selon l'invention aux températures élevées, contrairement aux autres oxydes comme la silice ou l'alumine. L'utilisation de ZrO2 permet d'éviter d'introduire dans ces verres des oxydes tels que B2O3 ou d'augmenter la quantité d'oxydes alcalins, l'un des effets de ces oxydes étant de réduire la viscosité du verre.
L'alumine et la zircone jouent des rôles assez similaires : la somme des teneurs en Al O3 et ZrO2 est de préférence inférieure à 6 %.
Les oxydes Na2O et K2O permettent de maintenir la température de fusion des verres et la viscosité aux températures élevées dans les limites indiquées précédemment. Pour ce faire, la somme de ces oxydes demeure égale ou supérieure à 10 %, de préférence comprise entre 10 et 15 %. Comparativement à un verre silico-sodo-calcique traditionnel, la présence de Na2Oet K2O permet d'augmenter considérablement leur résistance chimique, notamment leur résistance hydrolytique, ainsi que leur résistivité. Lorsqu'on souhaite augmenter la teneur globale en Na O et K O, il est préférable que ce soit la teneur en K2O qui augmente car cela permet de fluidifier le verre sans trop abaisser le strain point. De manière avantageuse, le rapport pondéral de la teneur en Na O à la teneur en K O est inférieur ou égal à 0,7.
Les oxydes alcalino-terreux ont pour effet globalement d'élever le strain point : en règle générale leur teneur totale, notamment en MgO, CaO, SrO, et BaO, est supérieure à 12 %, de préférence supérieure ou égale à 15 %.
Au-delà de 15 % environ, l'aptitude des verres à dévitrifier s'accroît et peut devenir incompatible avec les conditions de fabrication du verre par flottage sur bain métallique fondu. Ce sont pour l'essentiel CaO et MgO qui permettent d'accroître la valeur du strain point.
Afin de maintenir la dévitrification des verres dans des limites acceptables, la teneur pondérale en CaO et MgO n'excède pas 5 % et 10 %, respectivement. BaO et SrO permettent d'augmenter la résistance chimique du verre et BaO a également pour effet de diminuer la température de fusion ainsi que la viscosité aux températures élevées.
L'oxyde de bore, B2O3, est optionnel. Cet oxyde formateur de réseau peut être ajouté ou se substituer à SiO2. Il diminue la température de fusion du mélange vitrifiable ainsi que la viscosité du verre aux températures élevées. Il diminue aussi l'aptitude du verre à dévitrifier, en particulier en évitant l'élévation de la température en liquidus.
L'oxyde de lithium, Li2O, est également optionnel. Il peut être introduit dans le verre en une quantité n'excédant pas 2 %, et a notamment pour effet d'abaisser la température de fusion. D'une façon globale, la fusion des verres selon l'invention reste dans des limites de températures acceptables sous réserve que la somme des teneurs en SiO2, Al2O et ZrO demeure égale ou inférieure à 83 %, de préférence 80 %. Par limites acceptables, on entend ici que la température du verre correspondant à une viscosité η, telle que log η = 2, ne dépasse pas environ 1560°C et de préférence 1550°C.
Les compositions de verre préférées selon l'invention comprennent les constituants ci-après dans les proportions suivantes : SiO2 67 - 75 %
Al2O3 0,5 - 1 % ZrO2 2 - 5 %
Na2O 2 - 4 %
K2O 7 - 11 %
MgO 0 - 2 %
CaO 6 - 10 % SrO 6 - 12 %
BaO 0 - 2 %
B2O3 0 - 3 %
Li2O 0 - 2 %
Les compositions de verre selon l'invention peuvent être utilisées pour la fabrication de plaques résistant à la chaleur, pour former notamment des substrats pour écrans de type plasma, électroluminescent ou à cathode froide. Ces substrats peuvent être obtenus par découpe de feuilles de verre à partir d'un ruban de verre continu obtenu par flottage du verre sur bain de métal fondu. Ils peuvent présenter une épaisseur de verre variant de 0,5 mm à 10 mm. Ces plaques peuvent aussi être utilisées pour la fabrication de vitrages anti-feu, notamment également obtenus par découpe d'un ruban de verre flotté.
Les avantages présentés par les compositions selon l'invention seront mieux appréciés au travers des exemples de réalisation rassemblés dans le tableau 1 en annexe.
Les exemples 1 à 4 décrivent des compositions de verre conformes à l'invention. Le verre de l'exemple 5 correspond à une composition de verre silico-sodo-calcique classique utilisée pour fabriquer un ruban de verre selon le procédé Float. Le verre de l'exemple 6 est un verre vendu sous la dénomination PD200 par ASAHI adapté à la réalisation d'écrans émissifs. Dans ce tableau sont regroupées pour chaque exemple les teneurs pondérales et les valeurs des propriétés des verres obtenus : température inférieure de recuisson (strain point), coefficient de dilatation thermique α25- 0o°c, b*, T^ - Tlog η = 3,5, Tιog η= 2 et densité.
La valeur de b* est représentative du degré de jaunissement du verre. Elle est mesurée de la manière suivante :
Une couche d'argent métallique est déposée à la surface du verre selon la méthode dite « sputtering ». Le verre est ensuite chauffé à 580°C à la vitesse de 10°C/min, maintenu à cette température pendant 30 min puis refroidi à la température ambiante à la vitesse de 5°/min. Le verre est immergé dans une solution de HNO pour éliminer la couche d'argent. La mesure de la coordonnée chromatique b* est réalisée sous illuminant D65 en prenant l'observateur de référence colorimétrique décrit par la Commission Internationale de l'Eclairage (CLE.) 1931.
Les autres propriétés ont été mesurées selon des méthodes bien connues de l'homme du métier. Comme le montrent les exemples 1 à 4, le degré de jaunissement après traitement thermique des verres selon l'invention est nettement plus faible que celui du verre silico- sodo-calcique de l'exemple 5 ou du verre pour écran de l'exemple 6.
On note que le coefficient α conserve une valeur satisfaisante, supérieure à 80 x 10"7/°C, comparable aux verres de référence précités. Le strain point des verres selon l'invention est bien plus élevé que celui du verre silico-sodo-calcique et amélioré par rapport au verre pour écran.
Par ailleurs, la fabrication des verres selon l'invention dans les conditions du procédé Float s'effectue sans problème, que ce soit au niveau de la fusion dans le four ou du flottage sur le bain de métal fondu, étant donné que l'écart entre la température Tιog η = 3>5 et la température de liquidus Tnq reste positive.
Tableau 1

Claims

REVENDICATIONS
1. Composition de verre destinée à la fabrication de substrats ou de plaques thermiquement stables, caractérisée en ce qu'elle comprend les constituants ci-après dans les proportions pondérales suivantes : SiO2 67 - 75 %
Al2O3 0,5 - 1 %
ZrO2 2 - 7 %
Na2O 2 - 9 % K2O 4 - 11 %
MgO 0 - 5 %
CaO 5 - 10 %
SrO 5 - 12 %
BaO 0 - 3 % B2O3 0 - 3 %
Li2O 0 - 2 % avec les relations
Na2O + K2O > 10 % MgO + CaO + SrO + BaO > 12 % et ladite composition présentant un coefficient de dilatation thermique compris entre 80 et 90 x 10"7/°C, notamment inférieur à 85 x 10"7/°C, et de préférence compris entre 81 et 84 x lO"7/°C.
2. Composition selon la revendication 1, caractérisée en ce que la somme des teneurs en MgO, CaO, SrO et BaO est supérieure ou égale à 15 %.
3. Composition selon l'une des revendications 1 ou 2, caractérisée en ce que la somme des teneurs en Na2O et K2O est comprise entre 10 et 15 %.
4. Composition selon l'une des revendications 1 à 3, caractérisée en ce que le rapport pondéral de la teneur en Na2O à la teneur en K2O est inférieur ou égal à 0,7.
5. Composition selon l'une des revendications 1 à 4, caractérisée en ce que la teneur en SiO2 est inférieure à 71 %.
6. Composition selon l'une des revendications 1 à 5, caractérisée en ce que la somme des teneurs en Al2O3 et ZrO2 est inférieure ou égale à 6 %.
7. Composition selon l'une des revendications 1 à 6, caractérisée en ce qu'elle comprend les constituants ci-après dans les proportions pondérales suivantes : SiO2 67 - 75 %
Al2O3 0,5 - 1 % ZrO2 2 - 5 %
Na2O 2 - 4 %
K2O 7 - 11 %
MgO 0 - 2 %
CaO 6 - 10 % SrO 6 - 12 %
BaO 0 - 2 %
B2O3 0 - 3 %
Li2O 0 - 2 %.
8. Composition selon l'une des revendications 1 à 7, caractérisée en ce qu'elle présente un strain point supérieur à 570°C, de préférence supérieure à 580°C.
9. Composition selon l'une des revendications 1 à 8, caractérisée en ce qu'elle présente une température de liquidus Tijq d'au plus 1180°C, de préférence comprise entre 1130 et ll70°C.
10. Composition selon l'une des revendications 1 à 9, caractérisée en ce qu'elle présente une viscosité correspondant à log η = 3,5 à une température au moins égale à
1160°C, de préférence comprise entre 1160 et 1200°C.
11. Composition selon l'une des revendications 1 à 10, caractérisée en ce qu'elle présente une viscosité correspondant à log η = 2 à une température ne dépassant pas 1560°C, de préférence 1550°C.
12. Composition selon l'une des revendications 1 à 11, caractérisée en ce qu'elle présente une densité à 25°C inférieure à 3, de préférence de l'ordre de 2,7.
13. Utilisation de la composition selon l'une des revendications 1 à 12 pour la fabrication de substrat pour écran émissif de type plasma, écran luminescent ou écran à cathode froide, notamment à partir d'une feuille de verre découpée dans un ruban de verre obtenu par flottage du verre sur un bain de métal fondu.
14. Utilisation de la composition selon l'une des revendications 1 à 12 pour la fabrication de vitrage anti-feu, notamment réalisé à partir d'une feuille de verre découpée dans un ruban de verre obtenu par flottage du verre sur un bain de métal fondu.
EP04742689A 2003-05-07 2004-05-07 Composition de verre silico-sodo-calcique, notamment pour la realisation de substrats. Withdrawn EP1631529A2 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0305588A FR2854627B1 (fr) 2003-05-07 2003-05-07 Composition de verre silico-sodo-calcique, notamment pour la realisation de substrats
PCT/FR2004/001132 WO2004099096A2 (fr) 2003-05-07 2004-05-07 Composition de verre silico-sodo-calcique, notamment pour la realisation de substrats.

Publications (1)

Publication Number Publication Date
EP1631529A2 true EP1631529A2 (fr) 2006-03-08

Family

ID=33306230

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04742689A Withdrawn EP1631529A2 (fr) 2003-05-07 2004-05-07 Composition de verre silico-sodo-calcique, notamment pour la realisation de substrats.

Country Status (7)

Country Link
US (3) US20070037686A1 (fr)
EP (1) EP1631529A2 (fr)
JP (1) JP2006525213A (fr)
KR (1) KR20060006958A (fr)
CN (1) CN100376499C (fr)
FR (1) FR2854627B1 (fr)
WO (1) WO2004099096A2 (fr)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2854627B1 (fr) * 2003-05-07 2006-05-26 Saint Gobain Composition de verre silico-sodo-calcique, notamment pour la realisation de substrats
JP4958062B2 (ja) * 2005-06-22 2012-06-20 日本電気硝子株式会社 フラットパネルディスプレイ装置用ガラス基板
CN100366560C (zh) * 2005-11-25 2008-02-06 中国洛阳浮法玻璃集团有限责任公司 钠钙硅系列防火玻璃
WO2007099974A1 (fr) * 2006-03-02 2007-09-07 Asahi Glass Co., Ltd. Enveloppe d'ecran a emission de champ
FR2911335B1 (fr) * 2007-01-12 2009-09-04 Saint Gobain Composition de verre silico-sodo-calcique pour ecran de visualisation
GB0705894D0 (en) * 2007-03-28 2007-05-02 Pilkington Group Ltd Glass composition
JP5051329B2 (ja) * 2010-05-19 2012-10-17 旭硝子株式会社 化学強化用ガラスおよびディスプレイ装置用ガラス板
PL2571824T3 (pl) * 2010-05-20 2019-01-31 Saint-Gobain Glass France Podłoża szklane do zastosowań wysokotemperaturowych
BE1020331A4 (fr) * 2011-11-29 2013-08-06 Agc Glass Europe Vitrage de contrôle solaire.
TWI564262B (zh) 2012-02-29 2017-01-01 康寧公司 高cte之硼矽酸鉀核心玻璃與包含其之玻璃物件
JP5947364B2 (ja) * 2014-12-17 2016-07-06 Hoya株式会社 ガラス基板
GB201505091D0 (en) 2015-03-26 2015-05-06 Pilkington Group Ltd Glass
FR3045596B1 (fr) * 2015-12-17 2018-01-19 Saint-Gobain Glass France Verre mince colore renforce chimiquement

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4438434A (en) * 1981-07-27 1984-03-20 Cain Encoder Company Self-sequencing data bus allocation system
FR2727399B1 (fr) * 1994-10-13 1997-01-31 Saint Gobain Vitrage Compositions de verre silico-sodo-calciques et leurs applications
US5635911A (en) * 1995-05-11 1997-06-03 Dickey-John Corporation Apparatus and method for monitoring an article dispensing device such as a seed planter and the like
US5752047A (en) * 1995-08-11 1998-05-12 Mcdonnell Douglas Corporation Modular solid state power controller with microcontroller
EP0795522B1 (fr) * 1996-03-14 1999-08-18 Asahi Glass Company Ltd. Composition de verre pour un substrat
JP3957348B2 (ja) * 1996-11-21 2007-08-15 日本板硝子株式会社 防火用板ガラス
FR2758550B1 (fr) * 1997-01-17 1999-02-12 Saint Gobain Vitrage Compositions de verre silico-sodo-calcique et leurs applications
ATE221031T1 (de) * 1997-03-13 2002-08-15 Saint Gobain Kalknatron-silikatglaszusammensetzungen und deren anwendungen
JP2000143280A (ja) * 1998-11-09 2000-05-23 Central Glass Co Ltd ソーダ石灰シリカ系ガラス
FR2801302B1 (fr) * 1999-11-22 2001-12-21 Saint Gobain Vitrage Procede de traitement de substrats en verre et substrats en verre pour la realisation d'ecrans de visualisation
JP4953541B2 (ja) * 2000-02-24 2012-06-13 富士通株式会社 入出力制御装置及び装置識別方法並びにストレージシステム
JP2001294441A (ja) * 2000-04-11 2001-10-23 Asahi Glass Co Ltd 基板用ガラス
JP4924974B2 (ja) * 2001-08-13 2012-04-25 日本電気硝子株式会社 フラットパネルディスプレイ装置用ガラス基板
WO2003094001A1 (fr) * 2002-05-02 2003-11-13 Elmos Semiconductor Ag Procede d'adressage de dispositifs utilisateurs d'un systeme a bus au moyen de courants d'identification
US20040176877A1 (en) * 2003-03-05 2004-09-09 Scott Hesse Building automation system and method
FR2854627B1 (fr) * 2003-05-07 2006-05-26 Saint Gobain Composition de verre silico-sodo-calcique, notamment pour la realisation de substrats
US7376780B2 (en) * 2005-10-31 2008-05-20 Lsi Corporation Protocol converter to access AHB slave devices using the MDIO protocol
US7420292B2 (en) * 2006-04-13 2008-09-02 Eaton Corporation Vehicle bus control system
US20090316836A1 (en) * 2008-04-23 2009-12-24 Green Mark Technology Inc. Single-wire, serial, daisy-chain digital communication network and communication method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004099096A2 *

Also Published As

Publication number Publication date
KR20060006958A (ko) 2006-01-20
WO2004099096A2 (fr) 2004-11-18
US20080188367A1 (en) 2008-08-07
US20090325777A1 (en) 2009-12-31
CN100376499C (zh) 2008-03-26
WO2004099096A3 (fr) 2005-09-15
FR2854627B1 (fr) 2006-05-26
CN1784362A (zh) 2006-06-07
FR2854627A1 (fr) 2004-11-12
US20070037686A1 (en) 2007-02-15
JP2006525213A (ja) 2006-11-09

Similar Documents

Publication Publication Date Title
EP0734356B1 (fr) Compositions de verre silico-sodo-calciques et leurs applications
EP0854117B1 (fr) Compositions de verre silico-sodo-calcique et leurs applications
EP0914299B1 (fr) Compositions de verre silico-sodo-calciques et leurs applications
US20090325777A1 (en) Silico-sodo-calcic glass composition for the production of substrates
FR2921357A1 (fr) Composition de verre silico-sodo-calcique
FR3025793A1 (fr) Plaque en vitroceramique
EP1599426B1 (fr) Composition de verre silico-sodo-calcique gris destinee a la fabrication de vitrages
EP1888473A2 (fr) Substrats de verre pour ecrans plats
EP0576362B1 (fr) Verres thermiquement stables et chimiquement résistants
EP2193104A1 (fr) Feuille de verre silico-sodo-calcique
FR2796063A1 (fr) Nouvelle composition d&#39;email noir, recyclable, comprenant du zinc, procede de fabrication et produits emailles obtenus
EP0526272A1 (fr) Verres pour substrats destinés à l&#39;électronique et produits en résultant
EP1718571A2 (fr) Plaque de verre destinee a recevoir un depot metallique et resistant a la coloration susceptible d etre provoquee par un tel depot.
FR2911335A1 (fr) Composition de verre silico-sodo-calcique pour ecran de visualisation
FR2778398A1 (fr) Verres crown et verres flint au lanthane et sans plomb
FR3090624A1 (fr) Verres aluminoborosilicates de cuivre et leurs utilisations
EP0887321A2 (fr) Compositions de verre silico-sodo-calciques et leurs applications
FR2762838A1 (fr) Compositions de verre silico-sodo-calcique et leurs applications
FR2868769A1 (fr) Plaque de verre destinee a recevoir un depot metallique et resistant a la coloration susceptible d&#39;etre provoquee par un tel depot
FR3002533A1 (fr) Substrat pour dispositif a diode electroluminescente organique
FR2870844A1 (fr) Plaque de verre destinee a recevoir un depot metallique et resistant a la coloration susceptible d&#39;etre provoquee par un tel depot
FR2911334A1 (fr) Composition de verre silico-sodo-calcique pour ecran de visualisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

17P Request for examination filed

Effective date: 20060315

RBV Designated contracting states (corrected)

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20110718