EP1627408B1 - Panneau de visualisation a plasma a zone d'expansion de decharge de section reduite - Google Patents

Panneau de visualisation a plasma a zone d'expansion de decharge de section reduite Download PDF

Info

Publication number
EP1627408B1
EP1627408B1 EP04742875A EP04742875A EP1627408B1 EP 1627408 B1 EP1627408 B1 EP 1627408B1 EP 04742875 A EP04742875 A EP 04742875A EP 04742875 A EP04742875 A EP 04742875A EP 1627408 B1 EP1627408 B1 EP 1627408B1
Authority
EP
European Patent Office
Prior art keywords
cell
electrodes
coplanar
display device
image
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
EP04742875A
Other languages
German (de)
English (en)
Other versions
EP1627408A2 (fr
Inventor
Laurent Tessier
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thomson Plasma SAS
Original Assignee
Thomson Plasma SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Plasma SAS filed Critical Thomson Plasma SAS
Publication of EP1627408A2 publication Critical patent/EP1627408A2/fr
Application granted granted Critical
Publication of EP1627408B1 publication Critical patent/EP1627408B1/fr
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/22Electrodes, e.g. special shape, material or configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/36Spacers, barriers, ribs, partitions or the like
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/24Sustain electrodes or scan electrodes
    • H01J2211/245Shape, e.g. cross section or pattern
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/32Disposition of the electrodes
    • H01J2211/326Disposition of electrodes with respect to cell parameters, e.g. electrodes within the ribs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/34Vessels, containers or parts thereof, e.g. substrates
    • H01J2211/36Spacers, barriers, ribs, partitions or the like
    • H01J2211/361Spacers, barriers, ribs, partitions or the like characterized by the shape
    • H01J2211/365Pattern of the spacers

Definitions

  • the invention as defined in claim 1 relates to a plasma display panel comprising a first slab 11 and a second slab 12 between them a space filled with partitioned waste gas, in particular using a network of barriers, in a plurality of discharge cells 17 arranged in rows and columns.
  • the first slab 11 comprises at least two networks of electrodes Y, Y 'coplanar said maintenance, which are oriented in general directions parallel to each other and to the cell lines, and which are coated with a dielectric layer 13 and a protective layer and secondary electron emission 14 (dashed in the figure).
  • the second slab 12 comprises at least one array of so-called addressing electrodes X, which are oriented in general directions parallel to one another and to the columns of cells, and which are coated with a dielectric layer 16.
  • the electrodes Y, Y ', X of the different networks are arranged in such a way that each discharge cell is traversed by an electrode of each network.
  • the network of insulating barriers comprises inter-cell separating elements 15 each separating two adjacent columns of cells.
  • the slopes of the barriers and the second slab are covered with a phosphor layer (not shown) capable of emitting visible light under the excitation of the discharges in the cells.
  • the triggering signals can be induced automatically or applied voluntarily using a suitable generator; these signals induce matrix discharges in the thickness of the gas space separating the slabs, in order to facilitate the start of maintenance discharges between the coplanar electrodes.
  • One objective pursued by the invention is to improve the luminous efficiency of this type of panel.
  • the invention as defined in claim 1 relates to a plasma display panel comprising a first slab and a second slab between them a space filled with partitioned discharge gas, using a network of barriers, in a plurality of discharge cells disposed in rows and columns, said first slab comprising at least two coplanar electrode networks called maintenance networks, which are oriented in general directions parallel to each other and to said lines, said second slab comprising at least one array of so-called addressing electrodes, which are oriented in general directions parallel to each other and to said columns, said electrodes being arranged so that, at each cell, an addressing electrode crosses an electrode of each maintenance network, said barrier network comprising inter-column separating elements separating, each, two adjacent columns of cells, each cell being subdivided into a trip zone at each of the crossings of the addressing electrode with a maintenance electrode, and at least one coplanar discharge expansion zone extending between the trip zones, said barrier network is adapted so that, at each cell, that is to say in each cell, each coplanar expansion zone has
  • each cell Since there are at least two coplanar electrode arrays and as, at each cell, an addressing electrode crosses an electrode of each maintenance network, there must be in each cell several crossings of the electrode. addressing with a maintenance electrode, and therefore several triggering areas, more precisely at least two; thus, each cell comprises at least two trigger zones, each located at a crossing of the addressing electrode with a maintenance electrode.
  • Each expansion zone forms a channel for containing the positive pseudo-column of the coplanar plasma discharge.
  • this channel has at least a narrower constriction part of the positive pseudo-column; this narrower part corresponds to the said interval situated between the trigger zones; the expansion zone may be narrow all along the channel, in which case said gap corresponds to the distance between the triggering zones.
  • the plasma panel described in the document WO03 / 060864 (not published on the priority date of this document, but benefiting in principle from an earlier priority date) has, at the level of each cell, one or more cavities; when these cavities are curved or elliptical as in Figures 10C and 10D of this document, these cavities provide zones of coplanar expansion whose width, measured along the lines, is not constant; nevertheless, nothing indicates in this document that there exists in each cell at least two trigger zones at the intersection of an addressing electrode carried by a slab and a coplanar electrode carried by another slab; nor, a fortiori, that there is a gap between these trigger zones; nor, a fortiori, that the width of the expansion zone measured along the lines in this range is less than the width of the triggering zones also measured along the lines.
  • the barrier network is adapted so that, at each cell, the width of each coplanar expansion zone measured in the direction of the lines between two adjacent separating elements delimiting it is at least 15% less than the width of all the trigger zones measured in the direction of the lines between two adjacent separating elements delimiting them.
  • the first slab comprises only two networks of coplanar maintenance electrodes, unlike the panel described in the document US2003 / 0080683 ; alternatively, each maintenance electrode serves the cells of two consecutive rows of cells; thus simplifying the manufacture of the panel.
  • said inter-column separating elements extend continuously over approximately the entire height of said space between the slabs, unlike the barriers described in the document US2003 / 0080683 .
  • the second slab comprises a single array of addressing electrodes, so that each cell is traversed only by a single addressing electrode; thus simplifying the manufacture of the panel.
  • the ignition voltage of a maintenance discharge between two coplanar maintenance electrodes obviously depends on the electrical charges previously stored on the dielectric layer covering these electrodes in the vicinity of the ignition zone; these charges may have been previously stored during a previous maintenance discharge or during an addressing operation; thus, before a maintenance discharge in a cell, positive charges are generally stored on the maintenance electrode which will serve as anode and negative charges on the maintenance electrode which will serve as a cathode; these stored charges create what's called a voltage of memory ; the ignition voltage corresponds to the voltage of a maintenance signal applied between the electrodes, to which the memory voltage is added.
  • the electronic avalanche that occurs in the discharge gas between the electrodes passing through this cell creates a positive space charge which concentrates towards the cathode to form what is called a cathodic sheath;
  • the plasma zone, called the positive pseudo-column which is situated between the cathode cladding and the anode end of the discharge, contains, in an identical proportion, positive and negative charges; this zone is therefore conductive of the current and the electric field is weak there; the electrons present in the pseudo-positive column area have a relatively low energy, which promotes the excitation of the discharge gas and the production of ultraviolet photons with high energy efficiency.
  • the largest potential drop portion corresponds to the cathode cladding zone; the impact of the ions which are accelerated in the intense field of the cathodic sheath and which are sprayed on the protective layer and secondary electron emission, which coat the dielectric layer and the maintenance electrodes, causes a significant emission secondary electrons in the vicinity of the cathode; under the effect of this intense electronic multiplication, the density of the conductive plasma then strongly increases between the electrodes, both in ions and in electrons, which causes a contraction of the cathodic sheath in the vicinity of the cathode and the positioning of this sheath at the level where the plasma ions are deposited, on the dielectric surface portion covering the coplanar electrode serving as a cathode; on the side of the anode or anodes, the electrons of the plasma, which are much more mobile than the ions, are deposited on the portion of dielectric surface covering the coplanar electrode serving as anode,
  • the luminous efficiency of the plasma panels is generally low because a large amount of electrical power supply and maintenance of the panel is dissipated in the acceleration of ions and in the heating of the walls under the effect of the spraying of ions.
  • the document US6184848 describes a method of piloting maintenance discharges which allows a first improvement of the light output of the discharges. As illustrated on Figures 1A and 1B the distance, or "gap", separating the maintenance electrodes Y, Y 'is substantially increased so that the discharges between these two electrodes are only possible via a low intensity tripping discharge.
  • such a triggering discharge D M is obtained as a result of a trigger signal, automatically induced or voluntarily applied, between a Y 'of the maintenance electrodes serving as a cathode and the addressing electrode X serving as anode intermediate.
  • the electrons moving faster than the ions follow the lines of increasing potential to the second maintenance electrode Y serving as anode, and, as illustrated in FIG. Figure 2C , establish a current between the two maintenance electrodes, creating a long positive pseudo-column DE in which the excitation of the gas is very efficient in generally UV light emission. This significantly improves the luminous efficiency of the plasma panels.
  • the matrix discharge may be inefficient if the current density is too high. because, then, the electric field is important.
  • a further improvement in the luminous efficiency of the plasma panels is thus obtained, by enlarging the cells at the point of ignition of the discharges, that is to say in the trigger zones, and in narrowing the cells or subdividing them at the expansion zones.
  • the section of one or the other of the triggering zones has a surface greater than the sections of each expansion zone.
  • the invention thus proposes an optimization of the profile of the barriers of the panel so as to favor an ignition with low anodic capacity with a large cathode surface, while maintaining a high efficiency of pseudo-positive column.
  • the plasma panel according to the invention as defined in claim 1 comprises two slabs separated by a gaseous space partitioned by separation elements forming a network of barriers, and networks of coplanar electrodes maintenance and d addressing; each cell being subdivided into a trip zone at each of the crossings of an addressing electrode with a maintenance electrode, and at least one coplanar discharge expansion zone extending between the trip zones, the A barrier network is adapted so that, at each cell, each coplanar expansion zone has a width that is smaller, preferably at least 15%, than the width of all the trigger zones.
  • each cell comprises only one expansion zone between two adjacent tripping zones.
  • the separation elements that delimit trigger zones or expansion zones also delimit the cells: they are inter-cell separation elements, which are part of the barrier network and which separate, each , two adjacent columns of cells. According to the invention, each cell then has a narrowing only at its expansion zone and an enlargement at each trigger zone.
  • These narrowing and widening can be obtained in particular by an adaptation of the network of barriers: the separation elements between the columns are widened at the location of the narrowing and narrowed at the location of the enlargements.
  • the adaptation of the network of barriers then leads overall to an increase in the overall surface of the tops of the barriers, which advantageously increases the surface of the black contrast network that is generally applies to the top of the barriers, and thus increase the contrast of viewing images in ambient light.
  • the cells of the same column of the panel are shifted in the general direction of the columns relative to the cells of an adjacent column, so as to obtain better nesting of the cells, which allows to advantageously increase the density or the surface of the cells of the panel.
  • each cell comprises a plurality of expansion zones between two adjacent tripping zones.
  • each cell is subdivided by at least one intra-cell separation element which extends in the direction of the columns in said interval situated between the triggering zones and which delimits two adjacent expansion areas of this cell.
  • These intra-cell separation elements are also part of the barrier network. Their dimensions are adapted to obtain the plurality of expansion zones operating in parallel. These intra-cell separation elements are generally not carrying, that is to say that their height is generally less than that of inter-cell separation elements, also less than the distance between the slabs.
  • the intra-cell barrier elements according to the invention are interrupted at the level of the triggering matrix discharge zones, that is to say generally at the crossings of the addressing electrodes and the maintenance electrodes, so as to provide a larger space for trigger matrix discharges.
  • Each cell is preferably crossed only by a single addressing electrode; preferably, the intra-cell separation element is then positioned with respect to this addressing electrode, unlike the panel shown in FIG. US6376995 .
  • the coplanar electrodes are coated with a dielectric layer and a protective layer and secondary electron emission.
  • the dielectric layer thus provides the memory effect which makes it possible to control the panel by a succession of addressing and maintenance operations; the protective layer and secondary electron emission allows in particular to lower the operating voltages of the panel.
  • the distance separating the electrodes of the different coplanar networks is greater than the distance separating the slabs.
  • Such a panel structure is particularly advantageous in the case of the use of control means and electrode supply adapted so that each coplanar discharge is triggered by a matrix discharge.
  • the distance separating two maintenance electrodes corresponds to the coplanar gap; the distance between the slabs corresponds to the thickness of the gaseous space between the slabs; the invention therefore preferably applies to so-called “large gap” panels which are particularly suitable for control by matrix triggering; in practice, a "gap" of the order of 500 ⁇ m is commonly used.
  • the invention as defined in claim 1 also relates to an image display device comprising a plasma panel according to the invention characterized in that it comprises means for controlling and supplying the electrodes of this panel able to apply to these electrodes signals adapted to generate, at the level of each cell, coplanar discharges between the different coplanar electrodes passing through it and for these discharges to be triggered each by a matrix discharge between the addressing electrode passing through it and one of said coplanar electrodes.
  • the frames of the images to be displayed are generally subdivided into subframes capable of generating, by their succession, the gray levels necessary for viewing.
  • the visualization of a sub-frame generally comprises an addressing step and a maintenance step;
  • the addressing step which generally comprises a single voltage pulse, is intended to generate the surface charges necessary to trigger the first coplanar maintenance discharge of the next step, only and selectively in the cells of the panel which must be activated during the subframe considered;
  • the following maintenance step comprises as many voltage pulses as coplanar discharges to generate in the subframe; during this step and unlike the previous one, the same voltage pulses are applied between the coplanar electrodes of a set of cells, whether previously activated or not; during this step, the coplanar discharges will take place only in the previously activated cells; according to the invention, each of the coplanar discharges of this maintenance step is triggered by a matrix discharge between an addressing electrode carried by a slab and a coplanar electrode carried by the other slab.
  • Each coplanar discharge, ie a discharge between two electrodes carried by the same slab, is triggered by a matrix discharge, ie a discharge between two electrodes carried by two different slabs; this trip discharge is different from an addressing discharge, which also takes place between two electrodes carried by two different slabs but only in preparation for a maintenance phase.
  • the display device described in the document US2003 / 0080683 describes a plasma panel with an array of electrodes addressing and four coplanar electrode arrays; as indicated in ⁇ 30 of this document, the electrodes X ', Y' of the first two networks of coplanar electrodes are close (low "gap") so as to facilitate the creation of coplanar discharges; these low-gap coplanar discharges are used to trigger high-gap "main" coplanar discharges between X, Y electrodes of the other two coplanar networks that are much more distant.
  • the plasma panel according to the invention differs mainly from the panel previously described with reference to the Figures 1A and 1B in that the column separating elements 15 have a variable width, as illustrated in FIG. figure 3 : thus, the cell width L M measured in the zones Z M , Z ' M triggering matrix discharge, that is to say at the crossroads between the addressing electrode and one of the maintenance electrodes Y, Y 'is greater than or equal to the distribution pitch p of the electrodes X of the addressing network, whereas the cell width LE measured in the expansion zone Z E , ie between the electrodes of Y, Y 'maintenance is less than the same step p.
  • the avalanche gain is increased in the tripping matrix discharge zone, and the diffusion and the discharge efficiency are increased in the expansion zone of the positive pseudo-column. .
  • the cells of the panel are arranged in staggered relation to each other, so as to best distribute the parts of cells which are the widest, that is to say the areas of matrix discharge; as shown in figure 3 , each matrix discharge zone of a cell belonging to a column (not bordering) of the panel is located, either between the expansion zones of adjacent column cells (Z " M case in the figure), or between the zones separating two cells of different lines in these adjacent columns (in the case of Z M , Z ' M ), thus the cells of any one column of the panel are shifted in the general direction of the columns relative to the cells of an adjacent column .
  • This family of embodiments makes it possible, in addition, to increase the possible surface of black grating arranged for example at the top of the barriers and intended to improve the display contrast of the images, which makes it possible to limit the use of a neutral filter of low transmission, and further improves the final light output of the plasma panel.
  • the staggered arrangement of the cells leads, as shown in FIG. figure 3 , to maintenance electrodes which have a non-rectilinear sinuous profile.
  • the figure 4 illustrates a variant of the panel shown in figure 3 , where the cells are also arranged in staggered rows but where the maintenance electrodes nevertheless have a rectilinear path: the maintenance electrodes Y, Y 'are here provided with bypass 18 which extend towards the center of the zones of Z matrix discharges M , Z ' M.
  • These branches may be made of transparent conductive material such as ITO.
  • the plasma panel according to the invention differs mainly from the panel previously described with reference to the Figures 1A and 1B in that, as shown in figure 5 each cell is provided with an intra-cell separation element 19 which extends only between the maintenance electrodes Y, Y ', so as to obtain two expansion zones Z E1 , Z E2 in parallel.
  • the dimensions and the material of this separating element are adapted in a known manner in itself to obtain this separation in two of the positive pseudo-column, in order to strongly bring the plasma of wall elements of the cell, namely the separation elements 15, 19.
  • the internal separation elements -cellule 19 are integrated in the network of barriers and made at the same time and in the same material as the inter-cell separation elements 15.
  • the width of the intra-cell separation elements 19 is greater than or equal to 40 microns.
  • This second family of embodiments of the invention is also advantageous with respect to the first family because it makes it possible to increase the surface area available for the phosphors in each cell, in particular on the slope of the inter and intra separation elements. -cellules. Note that the phosphor layer is not shown in the figures. This increase in the surface area available for the luminophore contributes to the improvement of the luminous efficiency.
  • each maintenance electrode simultaneously serves two consecutive rows of cells.
  • this electrode In the case where there is only one X addressing electrode per cell, it is advantageous to arrange this electrode under the intra-cell separation elements 19 as shown in FIGS. Figures 5 and 6 , so as to increase the dielectric thickness on these electrodes and thus greatly reduce the anodic capacity, which makes it possible to increase the speed of electron spreading and the formation of the positive column.
  • the distance between the inter-cell separation elements delimiting these cells is reduced but not zero; this distance is less than the width of the expansion zones L E , L E1 , L E2 ; this distance is not zero to advantageously provide a recess which facilitates the deposition of phosphors in the columns, which limits the risk of phosphor deposition on the tops of the barriers.
  • plasma panels are advantageously integrated into display devices which comprise supply and control means which make it possible in particular to generate maintenance operations where each maintenance discharge is triggered by a matrix discharge; such supply and control means are known to those skilled in the art, have been briefly described above, are described in more detail for example in the document US6184848 already cited.

Description

  • En référence aux figures 1A et 1B, l'invention telle que définie dans la revendication 1 concerne un panneau de visualisation à plasma comprenant une première dalle 11 et une deuxième dalle 12 ménageant entre elles un espace rempli de gaz de décharge partitionné, notamment à l'aide d'un réseau de barrières, en une pluralité de cellules de décharge 17 disposées en lignes et en colonnes.
  • La première dalle 11 comprend au moins deux réseaux d'électrodes Y, Y' coplanaires dites d'entretien, qui sont orientées selon des directions générales parallèles entre elles et aux lignes de cellules, et qui sont revêtues d'une couche diélectrique 13 et d'une couche de protection et d'émission d'électrons secondaires 14 (en pointillés sur la figure).
  • La deuxième dalle 12 comprend au moins un réseau d'électrodes X dites d'adressage, qui sont orientées selon des directions générales parallèles entre elles et aux colonnes de cellules, et qui sont revêtues d'une couche diélectrique 16.
  • Les électrodes Y, Y', X des différents réseaux sont disposées de manière à ce que chaque cellule de décharge soit traversée par une électrode de chaque réseau.
  • Le réseau de barrières isolantes comprend des éléments de séparation inter-cellules 15 séparant, chacun, deux colonnes adjacentes de cellules.
  • Enfin, les versants des barrières et la deuxième dalle sont recouvertes d'une couche de luminophore (non représenté) susceptible d'émettre de la lumière visible sous l'excitation des décharges dans les cellules.
  • L'invention telle que définie dans la revendication 1 concerne un dispositif de visualisation d'images comprenant un tel panneau à plasma et des moyens de pilotage et d'alimentation des électrodes de ce panneau qui sont adaptés :
    • pour générer des opérations d'adressage pour activer sélectivement des cellules et pour générer des opérations d'entretien pour obtenir des décharges de plasma uniquement dans les cellules préalablement activées,
    • pour que, lors des phases d'entretien, les décharges coplanaires d'entretien soient déclenchées par des décharges matricielles.
  • A cet effet, ces moyens de pilotage et d'alimentation sont adaptés :
    • pour appliquer, entre l'électrode d'adressage X et l'une des électrodes d'entretien Y ou Y' qui traversent chaque cellule 17, un signal de tension d'adressage adapté pour déposer des charges électriques d'activation sur la couche diélectrique recouvrant ladite électrode d'entretien,
    • pour appliquer, entre les électrodes d'entretien Y, Y' qui traversent chaque ligne de cellules, une succession de signaux de tension d'entretien adaptés pour générer des décharges de plasma uniquement dans les cellules de cette ligne qui ont été préalablement activées, et pour générer, juste avant ou pendant chaque signal d'entretien, entre les électrodes d'adressage X et l'une ou l'autre des électrodes d'entretien Y ou Y' qui traversent les cellules de cette ligne, un signal de tension de déclenchement adapté pour déclencher lesdites décharges.
  • Les signaux de déclenchement peuvent être induits automatiquement ou appliqués volontairement à l'aide d'un générateur adapté ; ces signaux induisent des décharges matricielles dans l'épaisseur de l'espace gazeux séparant les dalles, dans le but de faciliter le démarrage des décharges d'entretien entre les électrodes coplanaires.
  • Le document US6184848 décrit un dispositif de visualisation d'images de ce type, adapté pour le pilotage des décharges coplanaires par déclenchement matriciel.
  • Un objectif poursuivi par l'invention est d'améliorer le rendement lumineux de ce type de panneau.
  • A cet effet, l'invention telle que définie dans la revendication 1 a pour objet un panneau de visualisation à plasma comprenant une première dalle et une deuxième dalle ménageant entre elles un espace rempli de gaz de décharge partitionné, à l'aide d'un réseau de barrières, en une pluralité de cellules de décharge disposées en lignes et en colonnes,
    ladite première dalle comprenant au moins deux réseaux d'électrodes coplanaires dites d'entretien, qui sont orientées selon des directions générales parallèles entre elles et auxdites lignes,
    ladite deuxième dalle comprenant au moins un réseau d'électrodes dites d'adressage, qui sont orientées selon des directions générales parallèles entre elles et auxdites colonnes,
    lesdites électrodes étant disposées de manière à ce que, au niveau de chaque cellule, une électrode d'adressage croise une électrode de chaque réseau d'entretien,
    ledit réseau de barrières comprenant des éléments de séparation inter-colonnes séparant, chacun, deux colonnes adjacentes de cellules,
    chaque cellule se subdivisant en une zone de déclenchement au niveau de chacun des croisements de l'électrode d'adressage avec une électrode d'entretien, et en au moins une zone d'expansion coplanaire de décharge s'étendant entre les zones de déclenchement, ledit réseau de barrières est adapté pour que, au niveau de chaque cellule, c'est à dire dans chaque cellule, chaque zone d'expansion coplanaire présente, dans un intervalle situé entre les zones de déclenchement qui le délimitent le long des colonnes, une largeur qui, lorsqu'elle est mesurée entre deux éléments de séparation adjacents qui la délimitent le long des lignes, est inférieure à la largeur de toutes les zones de déclenchement mesurée entre deux éléments de séparation adjacents délimitant ces zones également le long des lignes.
  • Toutes les largeurs sont évaluées le long des lignes.
  • Comme il y a au moins deux réseaux d'électrodes coplanaires et comme, au niveau de chaque cellule, une électrode d'adressage croise une électrode de chaque réseau d'entretien, il y a obligatoirement dans chaque cellule plusieurs croisements de l'électrode d'adressage avec une électrode d'entretien, et donc plusieurs zones de déclenchement, plus précisément au moins deux ; ainsi, chaque cellule comprend au moins deux zones de déclenchement, situées chacune au niveau d'un croisement de l'électrode d'adressage avec une électrode d'entretien.
  • Chaque zone d'expansion forme un canal destiné à contenir la pseudo-colonne positive de la décharge coplanaire de plasma. Selon l'invention, ce canal présente au moins une partie plus étroite de constriction de la pseudo-colonne positive ; cette partie plus étroite correspond audit intervalle situé entre les zones de déclenchement ; la zone d'expansion peut être étroite tout le long du canal, auquel cas ledit intervalle correspond à la distance entre les zones de déclenchement.
  • On remarquera que le panneau à plasma décrit dans le document WO03/060864 (non publié à la date de priorité du présent document, mais bénéficiant a priori d'une date de priorité antérieure) présente, au niveau de chaque cellule, une ou plusieurs cavités ; lorsque ces cavités sont courbes ou elliptiques comme sur les figures 10C et 10D de ce document, ces cavités ménagent des zones d'expansion coplanaire dont la largeur, mesurée le long des lignes, n'est pas constante ; néanmoins, rien n'indique dans ce document qu'il existe dans chaque cellule au moins deux zones de déclenchement au croisement d'une électrode d'adressage portée par une dalle et d'une électrode coplanaire portée par une autre dalle ; ni, a fortiori, qu'il existe un intervalle entre ces zones de déclenchement; ni, a fortiori, que la largeur de la zone d'expansion mesurée le long des lignes dans cet intevalle soit inférieure à la largeur des zones de déclenchement également mesurée le long des lignes.
  • On remarquera que le panneau à plasma décrit dans le document US2003/0080683 est doté d'un réseau d'électrodes d'adressage et de quatre (voire seulement trois) réseaux d'électrodes coplanaires ; comme dans l'invention, au niveau de chaque cellule, une électrode d'adressage croise une électrode de chaque réseau coplanaire ; comme indiqué au §30 de ce document (et plus en détail ci-après), c'est l'une des électrodes coplanaires X' ou Y' positionnée au centre de chaque cellule qui sert au déclenchement de chaque décharge coplanaire, et non l'électrode d'adressage comme dans l'invention ; au niveau de la zone déclenchement de chaque cellule, en l'occurrence ici au centre de cette cellule, la barrière séparant les colonnes ne s'étend qu'à mi-hauteur que sorte que les cellules semblent plus larges à cet endroit, du moins du côté de la dalle portant les électrodes coplanaires (voir figure 1 du document) ; cependant :
    • dans le cas où il n'existerait qu'une seule zone de déclenchement dans chaque cellule, la zone d'expansion coplanaire entre les électrodes X et Y ne présente pas, contrairement à l'invention, d'intervalle situé entre les zones de déclenchement ;
    • dans le cas où il existerait, comme dans l'invention, deux zones de déclenchement dans chaque cellule (au croisement de X' et A, et au croisement de Y' et A), alors, dans l'intervalle situé entre ces zones, la largeur de la zone d'expansion n'est, en aucun point de cet intervalle, inférieure à la largeur de l'une ou de l'autre zone de déclenchement, contrairement à l'invention ; en effet, dans cet intervalle comme au niveau de chaque zone de déclenchement, la barrière séparant les colonnes ne s'étend qu'à mi-hauteur, de sorte que la largeur est identique en tous points.
  • De préférence, le réseau de barrières est adapté pour que, au niveau de chaque cellule, la largeur de chaque zone d'expansion coplanaire mesurée dans la direction des lignes entre deux éléments de séparation adjacents la délimitant soit inférieure d'au moins 15% à la largeur de toutes les zones de déclenchement mesurée dans la direction des lignes entre deux éléments de séparation adjacents les délimitant.
  • De préférence, la première dalle comprend uniquement deux réseaux d'électrodes coplanaires d'entretien, contrairement au panneau décrit dans le document US2003/0080683 ; selon une variante, chaque électrode d'entretien dessert les cellules de deux lignes consécutives de cellules ; on simplifie ainsi la fabrication du panneau.
  • De préférence, lesdits éléments de séparation inter-colonnes s'étendent continuement sur approximativement toute la hauteur dudit espace entre les dalles, contrairement aux barrières décrites dans le document US2003/0080683 .
  • De préférence, la deuxième dalle comprend un seul réseau d'électrodes d'adressage, de sorte que chaque cellule n'est traversée que par une seule électrode d'adressage ; on simplifie ainsi la fabrication du panneau.
  • La tension d'allumage d'une décharge d'entretien entre deux électrodes d'entretien coplanaires dépend évidemment des charges électriques préalablement stockées sur la couche diélectrique couvrant ces électrodes au voisinage de la zone d'allumage ; ces charges peuvent avoir été préalablement stockées lors d'une décharge d'entretien précédente ou lors d'une opération d'adressage ; ainsi, avant une décharge d'entretien dans une cellule, des charges positives sont généralement stockées sur l'électrode d'entretien qui va servir d'anode et des charges négatives sur l'électrode d'entretien qui va servir de cathode ; ces charges stockées créent ce qu'on appelle une tension de mémoire ; la tension d'allumage correspond à la tension d'un signal d'entretien appliqué entre les électrodes, à laquelle s'ajoute la tension de mémoire.
  • Au moment de l'allumage d'une décharge d'entretien dans une cellule, l'avalanche électronique qui se produit dans le gaz de décharge entre les électrodes traversant cette cellule crée une charge d'espace positive qui se concentre vers la cathode pour former ce qu'on appelle une gaine cathodique ; la zone de plasma, dite pseudo-colonne positive, qui est située entre la gaine cathodique et l'extrémité anodique de la décharge, contient en proportion identique des charges positives et négatives ; cette zone est donc conductrice du courant et le champ électrique y est faible ; les électrons présents dans la zone de pseudo-colonne positive présentent une énergie relativement faible, ce qui favorise l'excitation du gaz de décharge et la production de photons ultraviolets avec un rendement énergétique élevé.
  • Pendant cette décharge, le long des lignes de champ électrique entre les électrodes traversant cette cellule, la partie la plus importante de chute de potentiel correspond à la zone de gaine cathodique ; l'impact des ions qui sont accélérés dans le champ intense de la gaine cathodique et qui sont pulvérisés sur la couche de protection et d'émission d'électrons secondaires, qui revêt la couche diélectrique et les électrodes d'entretien, entraîne une émission importante d'électrons secondaires au voisinage de la cathode ; sous l'effet de cette multiplication électronique intense, la densité du plasma conducteur augmente alors fortement entre les électrodes, tant en ions qu'en électrons, ce qui provoque une contraction de la gaine cathodique au voisinage de la cathode et le positionnement de cette gaine au niveau où les ions du plasma se déposent, sur la portion de surface diélectrique recouvrant l'électrode coplanaire servant de cathode ; du côté de l'anode ou des anodes, les électrons du plasma, qui sont beaucoup plus mobiles que les ions, se déposent sur la portion de surface diélectrique recouvrant l'électrode coplanaire servant d'anode, pour neutraliser progressivement, de l'avant vers l'arrière, la couche de charges positives « mémoire » préalablement stockées ; quand la totalité de cette charge positive stockée est neutralisée, le potentiel entre l'anode et la cathode commence alors à diminuer ; le champ électrique dans la gaine cathodique atteint alors un maximum, correspondant à la contraction maximum de la gaine, et le courant électrique entre les électrodes est alors lui aussi maximum.
  • Le rendement lumineux des panneaux à plasma est généralement faible car une grande quantité de l'énergie électrique d'alimentation et d'entretien du panneau est dissipée dans l'accélération des ions et dans le chauffage des parois sous l'effet de la pulvérisation des ions. Le document US6184848 décrit un mode de pilotage des décharges d'entretien qui permet une première amélioration du rendement lumineux des décharges. Comme illustré sur les figures 1A et 1B, on augmente sensiblement la distance, ou « gap », séparant les électrodes d'entretien Y, Y' de sorte que les décharges entre ces deux électrodes ne soient possibles que par le biais d'une décharge de déclenchement de faible intensité . Comme illustré sur la figure 2A, on obtient une telle décharge de déclenchement DM à la suite d'un signal de déclenchement, automatiquement induit ou volontairement appliqué, entre une Y' des électrodes d'entretien servant de cathode et l'électrode d'adressage X servant d'anode intermédiaire. Comme illustré sur la figure 2B, les électrons se déplaçant plus rapidement que les ions, ceux ci suivent les lignes de potentiel croissant jusqu'à la seconde électrode d'entretien Y servant d'anode, et, comme illustré sur la figure 2C, établissent un courant entre les deux électrodes d'entretien, en créant une longue pseudo-colonne positive DE dans laquelle l'excitation du gaz est très efficace en émission lumineuse généralement UV. On améliore ainsi très sensiblement le rendement lumineux des panneaux à plasma.
  • On constate que le rendement des décharges d'entretien est conditionné par:
    • le rendement des décharges de déclenchement dans les zones de déclenchement ou de décharge matricielle,
    • le rendement des pseudo-colonnes positives dans les zones d'expansion, entre les électrodes d'entretien.
  • Du fait de la faible distance entre l'électrode d'entretien et l'électrode d'adressage au sein de chaque zone de décharge matricielle ou zone de déclenchement, la décharge matricielle peut manquer d'efficacité si la densité de courant y est trop élevée, car, alors, le champ électrique y est important. Pour limiter la densité de courant de décharge matricielle et limiter ainsi le développement d'une gaine cathodique forte au sein de ces décharges, il est donc préférable de travailler avec une faible capacité entre les électrodes se croisant dans la zone de déclenchement, de manière à ce que l'étalement anodique soit très rapide et à ce que l'augmentation de la densité de courant ne se fasse que lorsque la décharge est transformée en décharge coplanaire et est complètement étendue dans la zone d'expansion de décharge coplanaire entre les électrodes d'entretien (figure 2C), et non pas lorsque la décharge est encore à l'état matriciel (figure 2A) et que la pseudo-colonne positive n'est pas encore formée (ce qui provoquerait l'équivalent d'un court-circuit). Mais si l'on diminue la capacité entre les électrodes au niveau des zones de déclenchement, on augmente les tensions de fonctionnement du panneau, ce qui est gênant. Pour réduire ces tensions, il convient d'augmenter le gain d'avalanche : on y parvient, selon une première caractéristique essentielle de l'invention, en éloignant les barrières au niveau des zones de déclenchement, de manière à élargir ces zones ou à augmenter la surface de leur section.
  • L'efficacité lumineuse de la pseudo-colonne positive de la décharge coplanaire est directement liée à la densité du courant qui la traverse. Si la densité de courant diminue, le rendement augmente. Pour diminuer la densité de courant, on propose, selon une deuxième caractéristique essentielle de l'invention, de réduire la section disponible pour la pseudo-colonne positive de la décharge coplanaire au niveau de la zone d'expansion, par des moyens de constriction adaptés, par exemple :
    • en rapprochant les barrières au niveau de la zone d'expansion entre les zones de déclenchement,
    • en subdivisant la zone située entre les zones de déclenchement en au moins deux zones d'expansion plus étroites en parallèle, à l'aide d'éléments de séparation intra-cellule.
  • On augmente ainsi la diffusion des électrons et on diminue la densité de courant pendant la phase d'expansion coplanaire des décharges.
  • Une amélioration supplémentaire du rendement lumineux des panneaux à plasma est ainsi obtenue, en élargissant les cellules à l'endroit de l'allumage des décharges, c'est à dire dans les zones de déclenchement, et en rétrécissant les cellules ou en les subdivisant au niveau des zones d'expansion. Ainsi, selon l'invention, pour chaque cellule, la section de l'une ou l'autre des zones de déclenchement présente une surface supérieure aux sections de chaque zone d'expansion. L'invention propose ainsi une optimisation du profil des barrières du panneau de manière à favoriser un allumage à faible capacité anodique avec une surface importante de cathode, tout en conservant un forte efficacité de pseudo-colonne positive.
  • En résumé, le panneau à plasma selon l'invention telle que définie dans la revendication 1 comprend deux dalles séparées par un espace gazeux partitionné par des éléments de séparation formant un réseau de barrières, et des réseaux d'électrodes coplanaires d'entretien et d'adressage ; chaque cellule se subdivisant en une zone de déclenchement au niveau de chacun des croisements d'une électrode d'adressage avec une électrode d'entretien, et au moins une zone d'expansion coplanaire de décharge s'étendant entre les zones de déclenchement, le réseau de barrières est adapté pour que, au niveau de chaque cellule, chaque zone d'expansion coplanaire présente une largeur qui est inférieure, de préférence d'au moins 15%, à la largeur de toutes les zones de déclenchement.
  • Selon un premier mode de réalisation, chaque cellule ne comprend qu'une seule zone d'expansion entre deux zones de déclenchement adjacentes.
  • Dans ce cas, les éléments de séparation qui délimitent des zones de déclenchement ou des zones d'expansion délimitent également les cellules : il s'agit d'éléments de séparation inter-cellules, qui font partie du réseau de barrières et qui séparent, chacun, deux colonnes adjacentes de cellules. Selon l'invention, chaque cellule présente alors un rétrécissement uniquement au niveau de sa zone d'expansion et un élargissement au niveau de chaque zone de déclenchement. Ces rétrécissement et élargissement peuvent être notamment obtenus par une adaptation du réseau de barrières : les éléments de séparation entre les colonnes sont élargis à l'endroit des rétrécissements et rétrécis à l'endroit des élargissements.
  • L'adaptation du réseau de barrières entraîne alors globalement une augmentation de la surface globale des sommets des barrières, ce qui permet d'augmenter avantageusement la surface du réseau noir de contraste que l'on applique généralement au sommet des barrières, et d'augmenter ainsi le contraste de visualisation d'images en lumière ambiante.
  • Selon une variante de ce mode de réalisation, les cellules d'une même colonne quelconque du panneau sont décalées dans la direction générale des colonnes par rapport aux cellules d'une colonne adjacente, de manière à obtenir une meilleure imbrication des cellules, ce qui permet d'augmenter avantageusement la densité ou la surface des cellules du panneau.
  • Selon un deuxième mode de réalisation, chaque cellule comprend une pluralité de zones d'expansion entre deux zones de déclenchement adjacentes.
  • Ces différentes zones d'expansion d'une même cellule sont donc disposées en parallèle entre deux mêmes zones de déclenchement ; cette subdivision des cellules dans le sens de la largeur, uniquement entre les zones de déclenchement et non pas au niveau des zones de déclenchement elles-mêmes, est un autre moyen avantageux de constriction des zones d'expansion. La démultiplication des zones d'expansion apporte une amélioration sensible du rendement lumineux du panneau.
  • De préférence, selon ce deuxième mode de réalisation de l'invention, chaque cellule est subdivisée par au moins un élément de séparation intra-cellule qui s'étend dans la direction des colonnes dans ledit intervalle situé entre les zones de déclenchement et qui délimite deux zones d'expansion adjacentes de cette cellule.
  • Ces éléments de séparation intra-cellule font également partie du réseau de barrières. Leurs dimensions sont adaptées pour obtenir la pluralité de zones d'expansion fonctionnant en parallèle. Ces éléments de séparation intra-cellules ne sont généralement pas porteurs, c'est à dire que leur hauteur est généralement inférieure à celle des éléments de séparation inter-cellules, inférieure aussi à la distance entre les dalles.
  • Grâce à cette subdivision des cellules apportée par des éléments de séparation intra-cellules qui ne s'étendent pas sur toute la longueur des cellules mais seulement sur un intervalle compris entre les électrodes coplanaires, on obtient, selon l'invention, des zones d'expansion plus étroites sans changer la largeur des zones de déclenchement.
  • Contrairement aux éléments de séparation intra-cellules décrits dans le document US6376995 , notamment à la figure 21 de ce document, les éléments de barrière intra-cellules selon l'invention sont interrompus au niveau des zones de décharge matricielle de déclenchement, c'est à dire généralement au niveau des croisements des électrodes d'adressage et des électrodes d'entretien, de manière à ménager un espace plus important pour les décharges matricielles de déclenchement.
  • Chaque cellule n'est de préférence traversée que par une seule électrode d'adressage ; de préférence, l'élément de séparation intra-cellule est alors positionné au regard de cette électrode d'adressage, contrairement au panneau représenté à la figure 21 du US6376995 .
  • De préférence, les électrodes coplanaires sont revêtues d'une couche diélectrique et d'une couche de protection et d'émission d'électrons secondaires. La couche diélectrique assure ainsi l'effet mémoire qui permet de piloter le panneau par une succession d'opérations d'adressage et d'entretien ; la couche de protection et d'émission d'électrons secondaires permet notamment d'abaisser les tensions de fonctionnement du panneau.
  • De préférence, au niveau de chaque cellule, la distance séparant les électrodes des différents réseaux coplanaires est supérieure à la distance séparant les dalles. Une telle structure de panneau est particulièrement avantageuse dans le cas de l'utilisations de moyens de pilotage et d'alimentation des électrodes adaptés pour que chaque décharge coplanaire soit déclenché par une décharge matricielle.
  • La distance séparant deux électrodes d'entretien correspond au « gap » coplanaires ; la distance entre les dalles correspond à l'épaisseur de l'espace gazeux entre les dalles ; l'invention s'applique donc de préférence aux panneaux dits « à grands gaps » qui sont particulièrement adaptés pour le pilotage par déclenchement matriciel ; en pratique, on utilise couramment un « gap » de l'ordre de 500 µm.
  • L'invention telle que définie dans la revendication 1 a également pour objet un dispositif de visualisation d'images comprenant un panneau à plasma selon l'invention caractérisé en ce qu'il comprend des moyens de pilotage et d'alimentation des électrodes de ce panneau aptes à appliquer à ces électrodes des signaux adaptés pour générer, au niveau de chaque cellule, des décharges coplanaires entre les différentes électrodes coplanaires la traversant et pour que ces décharges soient déclenchées chacune par une décharge matricielle entre l'électrode d'adressage la traversant et l'une desdites électrodes coplanaires.
  • D'une manière connue en elle-même, pour le pilotage du panneau, les trames des images à visualiser sont généralement subdivisées en sous-trames aptes à générer, par leur succession, les niveaux de gris nécessaires à la visualisation.
  • D'une manière connue en elle-même, pour le pilotage du panneau, la visualisation d'une sous-trame comprend généralement une étape d'adressage et une étape d'entretien ; l'étape d'adressage, qui comprend généralement une seule impulsion de tension, a pour but de générer les charges de surface nécessaires au déclenchement de la première décharge coplanaire d'entretien de l'étape suivante, uniquement et sélectivement dans les cellules du panneau qui doivent être activées durant la sous-trame considérée ; l'étape d'entretien qui suit comprend autant d'impulsions de tension que de décharges coplanaires à générer dans la sous-trame ; pendant cette étape et contrairement à la précédente, les mêmes impulsions de tension sont appliquées entre les électrodes coplanaires d'un ensemble de cellules, qu'elles aient été préalablement activées ou non ; pendant cette étape, les décharges coplanaires n'auront lieu que dans les cellules préalablement activées ; selon l'invention, chacune des décharges coplanaires de cette étape d'entretien est déclenchée par une décharge matricielle entre une électrode d'adressage portée par une dalle et une électrode coplanaire portée par l'autre dalle.
  • Chaque décharge coplanaire, c'est à dire une décharge entre deux électrodes portées par la même dalle, est donc déclenchée par une décharge matricielle, c'est à dire une décharge entre deux électrodes portées par deux dalles différentes ; cette décharge de déclenchement est donc différente d'une décharge d'adressage, qui, elle aussi, a lieu entre deux électrodes portées par deux dalles différentes mais uniquement en préparation d'une phase d'entretien.
  • On remarquera que le dispositif de visualisation décrit dans le document US2003/0080683 , décrit un panneau à plasma doté d'un réseau d'électrodes d'adressage et de quatre réseaux d'électrodes coplanaires ; comme indiqué au §30 de ce document, les électrodes X', Y' des deux premiers réseaux d'électrodes coplanaires sont proches (faible « gap ») de manière à faciliter la création de décharges coplanaires ; ces décharges coplanaires à faible « gap » servent à déclencher des décharges coplanaires « principales » à « gap » élevé entre des électrodes X, Y des deux autres réseaux coplanaires qui sont beaucoup plus distante.
  • Ainsi, contrairement à l'invention, dans le document US2003/0080683 , ce n'est pas une décharge matricielle entre une électrode d'adressage et une électrode coplanaire qui déclenche chaque décharge coplanaire principale, mais une décharge coplanaire à petit « gap » entre deux électrodes coplanaires à faible « gap ». Ainsi, contrairement à l'invention, dans le document US2003/0080683 , l'électrode de déclenchement, X' ou Y', ne croise pas une électrode de chaque réseau d'entretien au niveau de chaque cellule.
  • L'invention sera mieux comprise à la lecture de la description qui va suivre, donnée à titre d'exemple non limitatif, et en référence aux figures annexées sur lesquelles :
    • les figures 1A et 1B, déjà décrites, représentent respectivement une vue de dessus et une coupe d'une cellule d'un panneau à plasma selon l'art antérieur ;
    • les figures 2A, 2B, et 2C déjà décrites, représentent les différentes étapes de développement d'une décharge d'entretien déclenchées par une décharge matricielle dans la cellule de la figure 1, représentée schématiquement en coupe avec, seulement, les électrodes et les couches diélectriques les recouvrant ;
    • les figures 3 et 4 illustrent une première famille de modes de réalisation de l'invention où chaque cellule ne comprend qu'une zone d'expansion, et représentent, en vue de dessus, un ensemble de trois cellules d'un panneau selon l'invention où les cellules adjacentes d'une même ligne sont décalées les unes par rapport aux autres, et où, pour chaque cellule, la largeur des zones de déclenchement est supérieure à la largeur de l'unique zone d'expansion :
      • o figure 3 : les électrodes d'entretien ne sont pas rectilignes, desservent directement les cellules, et ne sont pas dotées de dérivations ;
      • o figure 4 : les électrodes d'entretien sont rectilignes, et sont dotées de dérivations pour desservir les cellules ;
    • les figures 5 et 6 illustrent une deuxième famille de modes de réalisation de l'invention où chaque cellule comprend deux zones d'expansion en parallèle, et représentent, en vue de dessus, un ensemble de trois cellules d'un panneau selon l'invention où chaque cellule est divisée par un élément de séparation intra-cellule s'étendant uniquement entre les électrodes d'entretien :
      • o figure 5 : chaque électrode coplanaire ne dessert qu'une seule ligne de cellules ;
      • o figure 6 : chaque électrode coplanaire dessert deux lignes adjacentes de cellules ;
  • Afin de simplifier la description et de faire apparaître les différences et avantages que présente l'invention par rapport à l'état antérieur de la technique, on utilise des références identiques pour les éléments qui assurent les mêmes fonctions.
  • Selon une première famille de modes de réalisation, le panneau à plasma selon l'invention se distingue principalement du panneau précédemment décrit en référence aux figures 1A et 1B en ce que les éléments de séparation de colonne 15 présentent une largeur variable, comme illustré sur la figure 3 : ainsi, la largeur de cellule LM mesurée dans les zones ZM, Z'M de décharge matricielle de déclenchement, c'est à dire au niveau des croisements entre l'électrode d'adressage et l'une des électrodes d'entretien Y, Y', est supérieure ou égale au pas p de répartition des électrodes X du réseau d'adressage, alors que la largeur de cellule LE mesurée dans la zone d'expansion ZE, c'est à dire entre les électrodes d'entretien Y, Y', est inférieure au même pas p.
  • Ainsi, en pilotage des décharges coplanaires par déclenchement matriciel, on augmente le gain d'avalanche dans la zone de décharge matricielle de déclenchement, et on augmente la diffusion et le rendement de la décharge dans la zone d'expansion de la pseudo-colonne positive.
  • Les cellules du panneau sont disposées en quinconce les unes par rapport aux autres, de manière à répartir au mieux les parties de cellules qui sont les plus larges, c'est à dire les zones de décharge matricielle ; ainsi, comme représenté à la figure 3, chaque zone de décharge matricielle d'une cellule appartenant à une colonne (non limitrophe) du panneau est située, soit entre les zones d'expansion de cellules de colonnes adjacentes (cas de Z"M sur la figure), soit entre les zones séparant deux cellules de lignes différentes dans ces colonnes adjacentes (cas de ZM, Z'M) ; ainsi, les cellules d'une même colonne quelconque du panneau sont décalées dans la direction générale des colonnes par rapport aux cellules d'une colonne adjacente.
  • Cette famille de modes de réalisation permet d'augmenter en outre la surface possible de réseau noir disposé par exemple au sommet des barrières et destiné à améliorer le contraste de visualisation des images, ce qui permet de limiter l'utilisation d'un filtre neutre de faible transmission, et permet encore d'améliorer le rendement lumineux final du panneau à plasma.
  • La disposition en quinconce des cellules conduit, comme représenté à la figure 3, à des électrodes d'entretien qui présentent un profil sinueux non rectiligne.
  • La figure 4 illustre une variante du panneau représenté à la figure 3, où les cellules sont également disposées en quinconce mais où les électrodes d'entretien ont pourtant un parcours rectiligne : les électrodes d'entretien Y, Y' sont ici dotées de dérivation 18 qui s'étendent vers le centre des zones de décharges matricielles ZM, Z'M. Ces dérivations peuvent être réalisées en matériau conducteur transparent comme l'ITO.
  • Selon un seconde famille de modes de réalisation de l'invention, le panneau à plasma selon l'invention se distingue principalement du panneau précédemment décrit en référence aux figures 1A et 1B en ce que, comme représenté à la figure 5, chaque cellule est dotée d'un élément de séparation intra-cellule 19 qui s'étend uniquement entre les électrodes d'entretien Y, Y', de manière à obtenir deux zones d'expansion ZE1, ZE2 en parallèle. On améliore ainsi encore davantage le rendement lumineux du panneau. Les dimensions et le matériau de cet élément de séparation sont adaptés d'une manière connue en elle-même pour obtenir cette séparation en deux de la pseudo-colonne positive, afin de rapprocher fortement le plasma d'éléments de paroi de la cellule, à savoir les élément de séparation 15, 19. En pratique, les éléments de séparation intra-cellule 19 sont intégrés au réseau de barrières et réalisés en même temps et dans le même matériau que les éléments de séparation inter-cellules 15. En pratique, la largeur des éléments de séparation intra-cellule 19 est supérieure ou égale à 40 µm.
  • Grâce à ces éléments de séparation intra-cellule disposés uniquement entre les électrodes d'entretien en dehors des zones de décharges matricielles, on obtient, alors même que la distance entre les élément de séparation inter-cellules 15 est constante sur quasiment toute la longueur des cellules, une diminution ou une constriction de la section des cellules au niveau des zones d'expansion : ainsi la largeur LM des cellules au niveau des zones ZM, Z'M de décharge matricielle est supérieure à la largeur LE1, LE2 de chaque zone d'expansion ZE1, ZE2.
  • Cette deuxième famille de modes de réalisation de l'invention est également avantageuse par rapport à la première famille parce qu'elle permet d'augmenter la surface disponible pour les luminophores dans chaque cellule, notamment sur le versant des éléments de séparation inter- ou intra-cellules. A noter que la couche de luminophore n'est pas représentée sur les figures. Cette augmentation de la surface disponible pour le luminophore concourt à l'amélioration du rendement lumineux.
  • Du fait des contraintes de fabrication, le pas p entre colonnes de cellules peut gêner le dépôt de luminophore dans les deux zones d'expansion ZE1, ZE2 ; il est alors préférable d'utiliser un arrangement des cellules dit en quinconce comme représenté à la figure 6. Dans cette variante du panneau de la figure 5, chaque électrode d'entretien dessert simultanément deux lignes consécutives de cellules.
  • Dans le cas où il n'y a qu'une seule électrode d'adressage X par cellule, il est avantageux de disposer cette électrode sous les éléments de séparation intra-cellule 19 comme représenté aux figures 5 et 6, de manière à augmenter l'épaisseur de diélectrique sur ces électrodes et à diminuer ainsi fortement la capacité anodique, ce qui permet d'augmenter la vitesse d'étalement des électrons et la formation de la colonne positive.
  • Dans les deux familles de modes de réalisation qui viennent d'être décrits, au niveau des zones séparant deux cellules de lignes différentes, la distance entre les éléments de séparation inter-cellules délimitant ces cellules est réduite mais pas nulle ; cette distance est inférieure à la largeur des zones d'expansion LE, LE1, LE2 ; cette distance n'est pas nulle pour ménager avantageusement une échancrure qui facilite le dépôt de luminophores dans les colonnes, qui permet de limiter les risques de dépôt de luminophores sur les sommets des barrières.
  • Les panneaux à plasma qui viennent d'être décrits peuvent être réalisés par des méthodes connues en elle-mêmes qui ne seront pas décrites ici.
  • La présente invention peut s'appliquer à d'autres types de panneaux à plasma sans sortir du cadre des revendications ci-après.
  • Ces panneaux à plasma sont avantageusement intégrés dans des dispositifs de visualisation qui comprennent des moyens d'alimentation et de pilotage qui permettent notamment de générer des opérations d'entretien où chaque décharge d'entretien est déclenchée par une décharge matricielle ; de tels moyens d'alimentation et de pilotage sont connus de l'homme du métier, ont été brièvement décrits précédemment, sont décrits plus en détail par exemple dans le document US6184848 déjà cité.

Claims (9)

  1. Dispositif de visualisation d'images comprenant un panneau à plasma comprenant lui-même une première dalle (11) et une deuxième dalle (12) ménageant entre elles un espace rempli de gaz de décharge partitionné, à l'aide d'un réseau de barrières, en une pluralité de cellules de décharge (17) disposées en lignes et en colonnes,
    ladite première dalle (11) comprenant au moins deux réseaux d'électrodes (Y, Y') coplanaires dites d'entretien, qui sont orientées selon des directions générales parallèles entre elles et auxdites lignes,
    ladite deuxième dalle (12) comprenant au moins un réseau d'électrodes (X) dites d'adressage, qui sont orientées selon des directions générales parallèles entre elles et auxdites colonnes,
    lesdites électrodes étant disposées de manière à ce que, au niveau de chaque cellule (17), une électrode d'adressage croise une électrode de chaque réseau d'entretien,
    chaque cellule (17) se subdivisant en au moins deux zones de déclenchement (ZM, ZM') situées chacune au niveau d'un croisement de l'électrode d'adressage avec une électrode d'entretien, et en au moins une zone d'expansion coplanaire de décharge (ZE ; ZE1, ZE2) s'étendant entre les zones de déclenchement (ZM, ZM').
    ledit réseau de barrières comprenant des éléments de séparation inter-colonnes (15) séparant, chacun, deux colonnes adjacentes de cellules, et étant adapté pour que, dans chaque cellule, chaque zone d'expansion coplanaire (ZE; ZE1, ZE2) présente, dans un intervalle situé entre les zones de déclenchement (ZM, ZM') qui le délimitent le long des colonnes, une largeur qui, lorsqu'elle est mesurée entre deux éléments de séparation adjacents (15 ; 15, 19) qui la délimitent le long des lignes, est inférieure à la largeur de toutes les zones de déclenchement (ZM, ZM') mesurée entre deux éléments de séparation adjacents (15) délimitant ces zones également le long des lignes,
    ledit dispositif de visualisation comprenant des moyens de pilotage et d'alimentation des électrodes de ce panneau aptes à appliquer à ces électrodes des signaux adaptés :
    - pour générer, au niveau de chaque cellule, des décharges coplanaires entre les différentes électrodes coplanaires la traversant
    - et pour que ces décharges soient déclenchées chacune par une décharge matricielle entre l'électrode d'adressage la traversant et l'une desdites électrodes coplanaires.
  2. Dispositif de visualisation selon la revendication 1 caractérisé en ce que, pour ledit panneau à plasma, la première dalle comprend uniquement deux réseaux d'électrodes coplanaires d'entretien.
  3. Dispositif de visualisation selon l'une quelconque des revendications précédentes caractérisé en ce que, pour ledit panneau à plasma, lesdits éléments de séparation inter-colonnes s'étendent continuement sur approximativement toute la hauteur dudit espace entre les dalles.
  4. Dispositif de visualisation selon l'une quelconque des revendications précédentes caractérisé en ce que, au niveau de chaque cellule (17) dudit panneau à plasma, la distance séparant les électrodes (Y, Y') des différents réseaux coplanaires est supérieure à la distance séparant les dalles (11, 12).
  5. Dispositif de visualisation selon l'une quelconque des revendications précédentes caractérisé en ce que ledit réseau de barrières dudit panneau à plasma est adapté pour que, au niveau de chaque cellule (17), la largeur de chaque zone d'expansion coplanaire mesurée dans la direction des lignes entre deux éléments de séparation adjacents la délimitant soit inférieure d'au moins 15% à la largeur de toutes les zones de déclenchement mesurée dans la direction des lignes entre deux éléments de séparation adjacents les délimitant.
  6. Dispositif de visualisation selon l'une quelconque des revendications 1 à 5, caractérisé en ce que chaque cellule (17) dudit panneau à plasma ne comprend qu'une seule zone d'expansion (ZE) entre deux zones de déclenchement adjacentes (ZM, ZM').
  7. Dispositif de visualisation selon l'une quelconque des revendications 1 à 5, caractérisé en ce que chaque cellule dudit panneau à plasma comprend une pluralité de zones d'expansion (ZE1, ZE2) entre deux zones de déclenchement adjacentes (ZM, ZM').
  8. Dispositif de visualisation selon la revendication 7 caractérisé en ce que chaque cellule dudit panneau à plasma est subdivisée par au moins un élément de séparation intra-cellule (19) qui s'étend dans la direction des colonnes dans ledit intervalle situé entre les zones de déclenchement et qui délimite deux zones d'expansion adjacentes (ZE1, ZE2) de cette cellule.
  9. Dispositif de visualisation selon l'une quelconque des revendications précédentes caractérisé en ce que lesdites électrodes coplanaires dudit panneau à plasma sont revêtues d'une couche diélectrique (13) et d'une couche de protection et d'émission d'électrons secondaires (14).
EP04742875A 2003-05-26 2004-05-26 Panneau de visualisation a plasma a zone d'expansion de decharge de section reduite Expired - Fee Related EP1627408B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0306305A FR2855646A1 (fr) 2003-05-26 2003-05-26 Panneau de visualisation a plasma a zone d'expansion de decharge de section reduite
PCT/FR2004/050207 WO2004107385A2 (fr) 2003-05-26 2004-05-26 Panneau de visualisation a plasma a zone d'expansion de decharge de section reduite

Publications (2)

Publication Number Publication Date
EP1627408A2 EP1627408A2 (fr) 2006-02-22
EP1627408B1 true EP1627408B1 (fr) 2008-09-03

Family

ID=33427417

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04742875A Expired - Fee Related EP1627408B1 (fr) 2003-05-26 2004-05-26 Panneau de visualisation a plasma a zone d'expansion de decharge de section reduite

Country Status (10)

Country Link
US (1) US7768199B2 (fr)
EP (1) EP1627408B1 (fr)
JP (1) JP4898443B2 (fr)
KR (1) KR101067842B1 (fr)
CN (1) CN100524591C (fr)
DE (1) DE602004016319D1 (fr)
FR (1) FR2855646A1 (fr)
MX (1) MXPA05012333A (fr)
TW (1) TWI329332B (fr)
WO (1) WO2004107385A2 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101707173B (zh) * 2009-11-06 2011-11-30 山东大学 三维立体全息等离子体显示器件

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2801893B2 (ja) * 1995-08-03 1998-09-21 富士通株式会社 プラズマディスプレイパネル駆動方法及びプラズマディスプレイ装置
JP3719743B2 (ja) * 1995-08-09 2005-11-24 株式会社日立製作所 プラズマディスプレイパネル
JP3479900B2 (ja) * 1997-11-13 2003-12-15 株式会社ティーティーティー Ac型pdpの駆動方法
DE19808268A1 (de) * 1998-02-27 1999-09-02 Philips Patentverwaltung Plasmabildschirm
JP4096466B2 (ja) * 1999-08-03 2008-06-04 松下電器産業株式会社 Ac型プラズマディスプレイパネルの駆動方法
US6853138B1 (en) * 1999-11-24 2005-02-08 Lg Electronics Inc. Plasma display panel having grooves in the dielectric layer
JP4158874B2 (ja) * 2000-04-07 2008-10-01 株式会社日立プラズマパテントライセンシング 画像表示方法および表示装置
JP2001325891A (ja) * 2000-05-19 2001-11-22 Nippon Hoso Kyokai <Nhk> 直流放電型プラズマディスプレイパネル
JP3659913B2 (ja) 2001-10-30 2005-06-15 富士通株式会社 プラズマディスプレイパネルおよびその製造方法
US6897564B2 (en) * 2002-01-14 2005-05-24 Plasmion Displays, Llc. Plasma display panel having trench discharge cells with one or more electrodes formed therein and extended to outside of the trench
US6737804B2 (en) * 2002-03-21 2004-05-18 Chungwa Picture Tubes Barrier rib structure for plasma display panel
FR2841378A1 (fr) * 2002-06-24 2003-12-26 Thomson Plasma Dalle de decharges coplanaires pour panneau de visualisation a plasma apportant une distribution de potentiel de surface adaptee
JP2004272199A (ja) * 2003-02-18 2004-09-30 Fuji Xerox Co Ltd 画像表示媒体用リブ及びその製造方法、並びに、それを用いた画像表示媒体
TWI247325B (en) * 2003-06-27 2006-01-11 Chunghwa Picture Tubes Ltd Barrier rib structure for plasma display panel
TWI222657B (en) * 2003-08-27 2004-10-21 Au Optronics Corp Plasma display panel
KR100749613B1 (ko) * 2005-06-14 2007-08-14 삼성에스디아이 주식회사 플라즈마 디스플레이 패널

Also Published As

Publication number Publication date
KR20060028764A (ko) 2006-04-03
FR2855646A1 (fr) 2004-12-03
JP2007500928A (ja) 2007-01-18
CN1795525A (zh) 2006-06-28
DE602004016319D1 (de) 2008-10-16
WO2004107385A3 (fr) 2005-01-27
WO2004107385A2 (fr) 2004-12-09
MXPA05012333A (es) 2006-05-31
US20070241996A1 (en) 2007-10-18
TWI329332B (en) 2010-08-21
EP1627408A2 (fr) 2006-02-22
KR101067842B1 (ko) 2011-09-27
US7768199B2 (en) 2010-08-03
JP4898443B2 (ja) 2012-03-14
CN100524591C (zh) 2009-08-05
TW200504781A (en) 2005-02-01

Similar Documents

Publication Publication Date Title
EP0356313B1 (fr) Procédé de commande très rapide par adressage semi-sélectif et adressage sélectif d&#39;un panneau à plasma alternatif à entretien coplanaire
FR2812449A1 (fr) Ecran a plasma et procede de fabrication d&#39;ecran a plasma
FR2791808A1 (fr) Dispositif d&#39;affichage a plasma et procede de fabrication d&#39;une couche de dielectrique comportant une partie ou un champ electrique est concentre
FR2730333A1 (fr) Dispositif d&#39;affichage par emission de rayonnement
FR2810787A1 (fr) Panneau afficheur a plasma
EP1516348B1 (fr) Dalle de decharges coplanaires pour panneau de visualisation a plasma apportant une distribution de potentiel de surface adaptee.
EP0404645A1 (fr) Panneaux à plasma à zones de décharges délimitées
EP0968512B1 (fr) Panneau a plasma bi-substrat
EP1407443B1 (fr) Procede de pilotage d&#39;un panneau a plasma a decharge de surface entre des electrodes en triades
EP1627408B1 (fr) Panneau de visualisation a plasma a zone d&#39;expansion de decharge de section reduite
FR2819097A1 (fr) Structure d&#39;electrodes de maintien pour dalle avant de panneau de visualisation a plasma
EP1390940B1 (fr) Procede de pilotage d&#39;un panneau de visualisation a plasma de type coplanaire a l&#39;aide de trains d&#39;impulsions a frequence suffisamment elevee pour obtenir la stabilisation des decharges
EP1456831B1 (fr) Panneau de visualisation d&#39;image en forme d&#39;une matrice de cellules electroluminescentes shuntees et avec effet memoire obtenu parmi un element photosensible
WO1998057347A1 (fr) Panneau a plasma a effet de conditionnement de cellules
FR2839198A1 (fr) Panneau de visualisation a plasma a excitation des decharges par rayonnement micro-onde
EP3413356B1 (fr) Panneau solaire comportant une structure, au moins deux cellules photovoltaïques et une barrière
EP3413355A1 (fr) Panneau solaire comportant notamment une structure et au moins deux cellules photovoltaïques
EP1543536A1 (fr) Panneau de visualisation a plasma a electrodes coplanaires de largeur constante
EP1436824A1 (fr) Panneau de visualisation a plasma a electrodes coplanaires presentant des bords de decharge inclines
EP0350348A1 (fr) Panneau à plasma à entretien alternatif coplanaire
EP0657914A1 (fr) Collecteur d&#39;électrons comportant des bandes conductrices commandables indépendamment
FR2786607A1 (fr) Perfectionnement aux panneaux a plasma de type coplanaire

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20051121

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20060918

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 602004016319

Country of ref document: DE

Date of ref document: 20081016

Kind code of ref document: P

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090604

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20140527

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140523

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140516

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602004016319

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20150526

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160129

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150526

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150601