EP0968512B1 - Panneau a plasma bi-substrat - Google Patents

Panneau a plasma bi-substrat Download PDF

Info

Publication number
EP0968512B1
EP0968512B1 EP99900920A EP99900920A EP0968512B1 EP 0968512 B1 EP0968512 B1 EP 0968512B1 EP 99900920 A EP99900920 A EP 99900920A EP 99900920 A EP99900920 A EP 99900920A EP 0968512 B1 EP0968512 B1 EP 0968512B1
Authority
EP
European Patent Office
Prior art keywords
panel according
savings
recesses
phosphor
row electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99900920A
Other languages
German (de)
English (en)
Other versions
EP0968512A1 (fr
Inventor
Serge Thoms.-CSF Pr. Intell. Dépt. Brev SALAVIN
Henri Thomson-CSF Pr. Intell. Dépt. Brev DOYEUX
Jacques Thoms.-CSF Pr. Inte. Dépt. Br DESCHAMPS
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Thales Electron Devices SA
Original Assignee
Thomson Tubes Electroniques
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thomson Tubes Electroniques filed Critical Thomson Tubes Electroniques
Publication of EP0968512A1 publication Critical patent/EP0968512A1/fr
Application granted granted Critical
Publication of EP0968512B1 publication Critical patent/EP0968512B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/20Constructional details
    • H01J11/34Vessels, containers or parts thereof, e.g. substrates
    • H01J11/42Fluorescent layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J11/00Gas-filled discharge tubes with alternating current induction of the discharge, e.g. alternating current plasma display panels [AC-PDP]; Gas-filled discharge tubes without any main electrode inside the vessel; Gas-filled discharge tubes with at least one main electrode outside the vessel
    • H01J11/10AC-PDPs with at least one main electrode being out of contact with the plasma
    • H01J11/12AC-PDPs with at least one main electrode being out of contact with the plasma with main electrodes provided on both sides of the discharge space
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J2211/00Plasma display panels with alternate current induction of the discharge, e.g. AC-PDPs
    • H01J2211/20Constructional details
    • H01J2211/22Electrodes
    • H01J2211/32Disposition of the electrodes
    • H01J2211/323Mutual disposition of electrodes

Definitions

  • the present invention relates to display panels with color plasma, alternative bi-substrate type, with light output improved.
  • Plasma panels suffer from lack of performance electrooptical compared to cathode ray tubes and this what whatever the production technique used.
  • Dual-substrate alternative color plasma panels operate on the principle of an electrical discharge in gases and they use only two crossed electrodes, located on substrates different, to define and order a discharge.
  • Figure 1 shows such a plasma panel of the known art. he has two substrates or slabs 2, 3 of which one, called front slab 2 is located on the side of an observer (not shown). This slab 2 before door a first network of electrodes called line electrodes, two of which only Y1, Y2 are shown.
  • the line electrodes Y1, Y2 are substantially parallel and spaced apart by a py step.
  • Y1 line electrodes, Y2 are covered with a layer 5 of a dielectric material.
  • the second slab 3 or so-called back slab is opposite the observer; it carries a second network of electrodes called electrodes columns of which only five X1 to X5 are represented.
  • the electrodes columns X1 to X5 are substantially parallel and spaced one step px apart.
  • the no px is worth about a third of the py step and can be understood for example between 100 ⁇ m and 500 ⁇ m depending on the definition of the image.
  • the two tiles 2, 3 are generally made of glass. They are intended to be assembled together so that the electrodes lines Y1 to Y2 are substantially perpendicular to the electrodes columns X1 to X5.
  • the two slabs 2, 3 once assembled delimit a space 13 which is intended to be filled with gas.
  • the gas used is usually based on neon.
  • the thickness H0 of the space 13 between the front slab 2 and the slab rear 3 must be as precise as possible to obtain discharges homogeneous.
  • the column electrodes X1 to X5 are also covered with a layer 6 of dielectric material.
  • the dielectric layer 6 is itself covered with several groups of three bands B1, B2, B3 corresponding luminophore, for example respectively to the colors green, red, blue.
  • the phosphor bands B1, B2, B3 are substantially parallel to the column electrodes X1 to X5. They have much the same not px than the column electrodes X1 to X5.
  • a column electrode, X1 by example, is then under a strip of phosphor B1 substantially in the middle.
  • the rear panel 3 generally also comprises a network of barriers 11 substantially parallel to the column electrodes X1 to X5 and separated by the px step. They separate two bands of phosphor B1, B2 adjacent. Their height H1 is generally less than the thickness H0 of the space 13 between the front panel 2 and the rear panel 3.
  • Two electrodes X1, Y1 located on different slabs 2, 3 can induce a gas discharge if brought to appropriate potentials.
  • the discharge area has a section which corresponds substantially to the facing surface of the two electrodes X1, Y1 opposite.
  • the savings Ep1, Ep2, Ep3 of the same pixel P are therefore aligned along the same line electrode Y1 and they are separated by distance equal to the px step.
  • the front panel 2 is often fitted of a black network 4 in the form of black bands extending between two row electrodes Y1, Y2. These black bands 4 generally occupy a surface area worth approximately half the surface of the front slab 2.
  • the light output of such bi-substrate alternative panels varies in the same direction as the thickness H0 of the space 13 filled with gas.
  • the light output is the ratio of the luminance emitted by the panel on the electric power it consumes.
  • this yield can currently vary between 0.5 and 1 lumen / Watt for a value of the thickness H0 close to 100 micrometers.
  • the thickness H0 of space 13 cannot be increased thoughtlessly with respect to the px step without risking disturbing the panel operation.
  • a landfill ordered at a savings can trigger accidental discharges at the level neighboring savings that must remain at rest, especially in the panels whose barriers are not full height.
  • the efficiency light is not sensitive to the thickness of the gas-filled space.
  • the object of the present invention is to provide a panel for alternating plasma display, dual color substrate which has identical resolution, improved light output, this improved light output resulting in neither degradation of the operation of the panel, nor degradation of its intrinsic contrast. improvements proposed does not make the manufacturing of the different elements more complex plasma panel and can even make it easier to manufacture some of these.
  • the present invention is a panel of alternative plasma display, bi-susbtrat type, in color, comprising two tiles assembled facing each other delimiting a space intended to be filled with gas, one of the slabs having column electrodes substantially parallel, separated by a px step, each covered with at least at least one phosphor zone, the other panel comprising at least one line electrode.
  • the phosphor zones are provided with at least one savings disposed at the crossroads of a column electrode and an electrode line, this savings locating landfills likely to occur between two electrodes.
  • a colored pixel is formed by neighboring savings located at the same line electrode, in areas of adjacent phosphor.
  • the distance between two neighboring savings, located in adjacent phosphor areas of the same pixel is greater than the pitch, so as to allow a thickness of the space greater than that required when the two savings are separated noticeably not.
  • Savings of the same pixel can be arranged in triangle, which leads to the largest spacing between savings at identical resolution.
  • sub-electrodes are connected to each other by at least two short-circuits in order to allow self-repair in breakage of one of them.
  • a variant is that the line electrode has at least one change of direction to follow the savings of the same pixel. She can be in particular in zig-zag.
  • the panel may also have barriers which separate two adjacent phosphor zones of different colors, these barriers having a height less than the thickness of the space, which allows improve the colorimetry of the panel.
  • a phosphor zone ends in a rim which follows the mouth of a well.
  • the panel can also have a black network on the slab carrying the line electrode, in order to improve the intrinsic contrast, the black network can cover the slab with the exception of openings facing savings and wedged on the savings, these openings having an area significantly higher than that of savings.
  • a phosphor zone can be set on a black network opening, its surface area being substantially greater than that of the opening.
  • FIG. 2a Compared to Figure 1, we found on the rear slab 3, the column electrodes X1 to X5 covered dielectric layer 6, itself covered with zones B1, B2, B3 of phosphor.
  • the phosphor zones B1, B2, B3, here in the form of bands, are arranged substantially parallel to the column electrodes X1 to X5.
  • the rear panel 3 further comprises barriers 11 for separating the phosphor zones B1, B2, B3.
  • the phosphor zones B1, B2, B3 are equipped with savings Ep1, Ep2, Ep3 and a pixel P has at least two savings neighbors located at the same line electrode Y1, Y2 in adjacent areas of B1, B2, B3 phosphor.
  • a pixel P is trichrome and has three savings but we can consider that it only has two or more than three. Savings are represented circular but it is understood that other shapes are possible.
  • the same line electrode Y1 follows the savings Ep1, Ep2, Ep3 belonging to the same pixel P.
  • a configuration which allows it is to use line electrodes Y1, Y2 multiplied.
  • the line electrode Y1 is split in two sub-electrodes Y1a, Y1b so as to pass at the level of the three savings Ep1, Ep2, Ep3 in triangle of pixel P. With such line electrodes, multiplied, the line resistance is reduced, hence a better passage of discharge current.
  • the next pixel P 'traversed by the same line electrode Y1 is formed of savings Ep4, Ep5, Ep6 in a triangle and the triangle of pixel P is head to tail with respect to the triangle of pixel P '.
  • the two sub-electrodes Y1a and Y1b are interconnected by at least two short circuits 12. With such short circuits, a break 14 in a sub-electrode between these two short circuits 12 has no repercussion on the network.
  • FIG 2b there are three short circuits 12 represented between the sub-electrodes Y1a and Y1b, one upstream of the pixel P, one between the two pixels P, P 'and one downstream of the pixel P'.
  • a cut 14 on the sub-electrode Y1b is represented between the savings Ep4 and the savings Ep6, this cut 14 is self-repairing and discharges may occur at level of savings Ep6.
  • the power supply of the Y1b sub-electrode at the level of savings Ep6 is ensured by the sub-electrode Y1a and the short circuit 12 located downstream of pixel P '. Plus number of short circuits 12 the greater the capacity for self-repair.
  • This self-repair is advantageous because in high resolution panels the electrodes lines are very fine and fragile, cuts often appear. With this possibility of self-repair, the manufacturing yield of panels is greatly increased as the disposal rate decreases. Or well, at the same scrap rate, the width of the electrode can be significantly reduced, hence a gain in the light emitted at the level of a savings because there is less screening.
  • This split Y1 line electrode inevitably crosses column electrodes X1, X2, X3 outside the savings Ep1, Ep2, Ep3, but this crossing does not give rise to discharges because on the one hand the presence of the phosphor which covers the column electrodes X1, X2, X3 and on the other hand the voltage level to be applied to obtain a discharge at savings level.
  • This distance L is smaller than in the case of FIGS. 2 and the performance of the panel will not be quite as good.
  • the line electrodes are also multiplied but now it is a tripling.
  • Each of the savings Ep1, Ep2, Ep3 of a pixel P is traversed by a sub-electrode respectively Y1a, Y1b, Y1c.
  • the three sub-electrodes are interconnected by at least two short circuits 12.
  • this structure has an advantage which is that the savings Ep1, Ep4 located at the same line sub-electrode Y1a correspond to successive phosphor zones B1 of a same colour. Three savings are then aligned. This alignment leads to a better image in certain types of application, for example for computer images using horizontal lines of a color of based.
  • Figure 4 illustrates this variant with a pixel P whose savings Ep1, Ep2, Ep3 are in a triangle and a Y1 line electrode is in a zig-zag pattern to come across from all saves Ep1, Ep2, Ep3 from pixel P. Configurations other than the zig-zag are entirely possible.
  • FIGS. 2a, 2b of the barriers 11 for confining the savings-level discharges were represented. These barriers 11 whose height H1 is less than the thickness H0 of the space 13 filled with gases to promote circulation and therefore ionization, separate two zones B1, B2 of adjacent phosphors relating to the same pixel. In this example the zones B1, B2 of phosphor are rectilinear and the barriers 11 are parallel, distant substantially from the px step.
  • the barriers 11 change direction around the savings Ep1, Ep2 and are in form of broken lines. Changes of direction can be done with an angle substantially equal to 45 °.
  • the barriers 11 are in form of curved lines and notably substantially sinusoidal.
  • the spacing d1 between two neighboring barriers 11, at the level of a savings Ep8 is then greater than the pitch px between column electrodes X1, X2.
  • the spacing d2 between the two barriers 11 on either side of the savings Ep8 is then less than the pitch px between column electrodes X1, X2.
  • the width c of the barriers 11 can be of the order of 19.5 micrometers if the px pitch between column electrodes is 127 micrometers.
  • the barriers 11 are not straight and the phosphor zones B1, B2, B3 are adapted to the pattern of the barriers 11 since the barriers 11 separate two zones B1, B2, B3 of phosphor adjacent.
  • FIG. 6a, 6b A plasma display panel according to the invention without barrier is shown in Figures 6a, 6b.
  • the phosphor of the different zones B1, B2, B3 has been thickened and the savings have a depth which corresponds to the thickness of the phosphor.
  • This thickness makes it possible to form real wells of containment of landfills, these wells prevent the spread of landfills to neighboring savings where a landfill shouldn't happen. They then avoid a crosstalk effect between neighboring savings.
  • the section of the wells 16 is preferably greater than that of the savings to account for the phosphor.
  • the additional material of the underlay 13 is preferably chosen reflective and colored white.
  • the additional material may contain alumina and / or titanium oxide and / or yttrium oxide.
  • This sublayer 13 can be deposited for example by screen printing, photolithography.
  • the zones B1, B2, 83 of the phosphor occupy the entire surface of the slab 3 on which they are deposited. They form contiguous bands which follow the column electrodes X1, X2, X3 and each have multiple savings. Landfills are only likely to happen only at the savings level as described previously. With the use of sublayer 13 under the phosphor, it is possible to reduce the surface of areas B1, B2, B3 of phosphor compared to that of slab 3. The saving in material cost is appreciable because phosphors are expensive materials.
  • FIGs 8a, 8b illustrate this configuration.
  • a zone B1, B2, B3 phosphor lines the sides 15 of a well 16 in the underlay 13 and ends by forming a rim 18 which follows the mouth of the well 16.
  • Top view, the phosphor zones B1, B2, 83 are configured in disk.
  • a phosphor zone has only savings.
  • the underlay 13 is in contact, in certain places with the gas.
  • the underlay 13 then provides protection to prevent discharges can take place at the intersection of a line electrode and an electrode column but excluding savings.
  • FIG 8b we notice that there is no phosphor zone at the cross of the column electrode X2 and the electrode line Y1a.
  • the underlayer 13 prevents a discharge from taking place at this place.
  • the network black 40 now covers substantially all of the front panel 2 except openings Z1, Z2, « which are arranged opposite the savings Ep1, Ep2 and which are wedged on these.
  • Each opening Z1, Z2 is associated with savings Ep1, Ep2 and has an area slightly greater than that of the savings Ep1, Ep2 with which it is associated.
  • the openings Z1, Z2 of the black network 40 have a diameter of 180 micrometers, the rate of black network coverage 40 is worth around 60% whereas with openings Z1, Z2 with a diameter of approximately 150 micrometers, the rate of 40 black network coverage is worth about 80%.
  • a zone B1, B2, B3 of phosphor is circumscribed at an opening Z1, Z2 of the black network 40.
  • This variant is visible in Figure 8a.
  • a zone B1, B2, B3 of phosphor while being set on an opening Z1, Z2 will preferably have an area slightly greater than that of the opening Z1, Z2 so as to avoid any problem if a possible mismatch exists between the two tiles or their elements.
  • This type of display panel with alternating plasma and bi-substrate can also accommodate on its front side zones B'1, B'2, B'3 of phosphor.
  • a thin layer of phosphor transmits as much than in reflection. It is then easy to deposit the different zones B'1, B'2, B'3 phosphor with savings Ep'1, Ep'2, Ep'3 ...., on the front 2 by setting them on the savings Ep1, Ep2, Ep3 on the rear panel 3.
  • the phosphor zones according to their color can be either deposited one after the other by screen printing followed by a single operation sunstroke, skinning, either in a uniform layer over the entire surface followed by an exposure operation, counting by color.
  • the yield luminous is then multiplied by at least 1.5.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Gas-Filled Discharge Tubes (AREA)

Description

La présente invention est relative aux panneaux de visualisation à plasma, en couleurs, de type alternatif bi-substrat, à rendement lumineux amélioré.
Les panneaux à plasma souffrent d'un manque de performances électrooptiques par rapport aux tubes à rayons cathodiques et ceci quelle que soit la technique de réalisation employée.
Les panneaux à plasma en couleurs de type alternatif bi-substrat fonctionnent sur le principe d'une décharge électrique dans les gaz et ils utilisent seulement deux électrodes croisées, situées sur des substrats différents, pour définir et commander une décharge.
La figure 1 montre un tel panneau à plasma de l'art connu. Il comporte deux substrats ou dalles 2, 3 dont l'une, dite dalle avant 2 est située du côté d'un observateur (non représenté). Cette dalle 2 avant porte un premier réseau d'électrodes appelées électrodes lignes dont deux seulement Y1, Y2 sont représentées. Les électrodes lignes Y1, Y2 sont sensiblement parallèles et espacées d'un pas py. Les électrodes lignes Y1, Y2 sont recouvertes d'une couche 5 d'un matériau diélectrique.
La seconde dalle 3 ou dite dalle arrière est à l'opposé de l'observateur ; elle porte un second réseau d'électrodes appelées électrodes colonnes dont seulement cinq X1 à X5 sont représentées. Les électrodes colonnes X1 à X5 sont sensiblement parallèles et espacées d'un pas px. Le pas px vaut environ le tiers du pas py et peut être compris par exemple entre 100 µm et 500 µm suivant la définition de l'image.
Les deux dalles 2, 3 sont généralement en verre. Elles sont destinées à être assemblées l'une à l'autre de manière que les électrodes lignes Y1 à Y2 soient sensiblement perpendiculaires aux électrodes colonnes X1 à X5. Les deux dalles 2, 3 une fois assemblées délimitent un espace 13 qui est destiné à être rempli de gaz. Le gaz utilisé est généralement à base de néon.
L'épaisseur H0 de l'espace 13 entre la dalle avant 2 et la dalle arrière 3 doit être aussi précise que possible pour obtenir des décharges homogènes.
Sur la dalle arrière 3, les électrodes colonnes X1 à X5 sont aussi recouvertes d'une couche 6 de matériau diélectrique. La couche diélectrique 6 est elle-même recouverte de plusieurs groupes de trois bandes B1, B2, B3 de luminophore correspondant, par exemple respectivement aux couleurs vert, rouge, bleu. Les bandes de luminophore B1, B2, B3 sont sensiblement parallèles aux électrodes colonnes X1 à X5. Elles ont sensiblement le même pas px que les électrodes colonnes X1 à X5. Une électrode colonne, X1 par exemple, se trouve alors sous une bande de luminophore B1 sensiblement en son milieu.
La dalle arrière 3 comporte généralement en outre un réseau de barrières 11 sensiblement parallèles aux électrodes colonnes X1 à X5 et séparées par le pas px. Elles séparent deux bandes de luminophore B1, B2 adjacentes. Leur hauteur H1 est généralement inférieure à l'épaisseur H0 de l'espace 13 entre la dalle avant 2 et la dalle arrière 3.
Deux électrodes X1, Y1 situées sur des dalles différentes 2, 3 peuvent induire une décharge dans le gaz si elles sont portées à des potentiels appropriés. La zone de décharge possède une section qui correspond sensiblement à la surface en regard des deux électrodes X1, Y1 en vis-à-vis.
En vue de réduire les tensions à appliquer aux électrodes pour obtenir une décharge, on a été amené à creuser des trous ou épargnes Ep1, Ep2, Ep3, ... dans les bandes de luminophore B1, B2, B3, au niveau de la surface en regard entre une électrode ligne Y1 et une électrode colonne X1. Ces épargnes Ep1, Ep2 confinent la décharge.
De manière classique dans les panneaux couleurs, on utilise trois épargnes voisines Ep1, Ep2, Ep3, situées au niveau d'une même électrode ligne Y1 mais dans trois bandes de luminophore adjacentes B1, B2, B3 pour former un pixel P trichrome qui pourra prendre un grand nombre de couleurs.
Les épargnes Ep1, Ep2, Ep3 d'un même pixel P sont donc alignées selon une même électrode ligne Y1 et elles sont séparées d'une distance égale au pas px.
Pour améliorer le contraste, la dalle avant 2 est souvent équipée d'un réseau noir 4 sous la forme de bandes noires s'étendant entre deux électrodes lignes Y1, Y2. Ces bandes noires 4 occupent généralement une surface valant environ la moitié de la surface de la dalle avant 2.
Le rendement lumineux de tels panneaux alternatifs bi-substrats varie dans le même sens que l'épaisseur H0 de l'espace 13 rempli de gaz. On rappelle que le rendement lumineux est le rapport de la luminance émise par le panneau sur la puissance électrique qu'il consomme. Suivant la structure du panneau, ce rendement peut actuellement varier entre 0,5 et 1 lumen/Watt pour une valeur de l'épaisseur H0 voisine de 100 micromètres.
Or l'épaisseur H0 de l'espace 13 ne peut être augmentée inconsidérément par rapport au pas px sans risquer de perturber le fonctionnement du panneau. Une décharge commandée au niveau d'une épargne peut déclencher des décharges intempestives au niveau d'épargnes voisines devant rester au repos notamment dans les panneaux dont les barrières ne sont pas pleine hauteur.
Dans les panneaux dits coplanaires dans lesquels les décharges s'établissent entre deux électrodes portées par la même dalle, le rendement lumineux n'est pas sensible à l'épaisseur de l'espace rempli de gaz.
Il a déjà été proposé pour réduire la venue de ces décharges intempestives d'utiliser des barrières pleine hauteur. Ces barrières ont en plus de leur rôle de séparation entre bandes de luminophore de couleurs différentes, un rôle de confinement de la décharge se produisant au niveau dune épargne pour qu'elle n'induise pas une décharge au niveau d'une épargne voisine ne devant pas être activée. Ces barrières pleine hauteur servent également d'entretoise entre les deux dalles. Ces barrières autorisent une épaisseur de l'espace rempli de gaz plus importante que celle requise avec des barrières mi hauteur. Cependant, il a été observé que ces barrières pleine hauteur peuvent nuire au bon fonctionnement du panneau, particulièrement quand des vitesses élevées d'allumage des pixels sont nécessaires. Ces vitesses sont requises dans les applications de télévision. Le confinement total entre épargnes situées sur des bandes de luminophore adjacentes, appartenant à un même pixel, conduit à un manque de circulation de charges dans le plasma et/ou de photons ultraviolets susceptibles d'aider à l'amorçage des décharges.
Un autre inconvénient de ces barrières pleine hauteur est lié à leur difficulté de réalisation avec une grande précision. Elles sont souvent réalisées par des opérations de sérigraphie successives et il est difficile d'obtenir une épaisseur uniforme.
La présente invention a pour but de proposer un panneau de visualisation à plasma alternatif, bi-substrat en couleurs qui possède, à résolution identique, un rendement lumineux amélioré, cette amélioration du rendement lumineux n'entraínant ni dégradation du fonctionnement du panneau, ni dégradation de son contraste intrinsèque. L'amélioration proposée ne rend pas plus complexe la fabrication des différents éléments du panneau à plasma et peut même rendre plus aisée la fabrication de certains de ces éléments.
Pour y parvenir la présente invention est un panneau de visualisation à plasma alternatif, de type bi-susbtrat, en couleurs, comportant deux dalles assemblées en vis-à-vis délimitant un espace destiné à être rempli de gaz, l'une des dalles comportant des électrodes colonnes sensiblement parallèles, séparées d'un pas px, recouvertes chacune d'au moins une zone de luminophore, l'autre dalle comportant au moins une électrode ligne. Les zones de luminophore sont munies d'au moins une épargne disposée à la croisée d'une électrode colonne et d'une électrode ligne, cette épargne localisant des décharges susceptibles de se produire entre deux électrodes. Un pixel coloré est formé par des épargnes voisines situées au niveau de la même électrode ligne, dans des zones de luminophore adjacentes. Selon l'invention, pour obtenir un meilleur rendement lumineux, la distance séparant deux épargnes voisines, situées dans des zones de luminophore adjacentes et appartenant au même pixel est supérieure au pas, de manière à autoriser une épaisseur de l'espace supérieure à celle requise lorsque les deux épargnes sont séparées sensiblement du pas. Un panneau à plasma selon le préambule de la revendication 1 est décrit dans le document FR-A-2699717.
Les épargnes d'un même pixel peuvent être arrangées en triangle, ce qui conduit au plus grand espacement entre épargnes à résolution identique.
Si les épargnes d'un même pixel sont alignées, des épargnes situées dans des zones de luminophore distinctes correspondant à la même couleur mais sur des électrodes colonnes différentes sont aussi alignées ce qui permet qu'une ligne dans cette couleur formée par ces épargnes soit bien rectiligne.
Pour que l'électrode ligne suive les épargnes d'un même pixel, elle peut être démultipliée en plusieurs sous-électrodes.
Il est possible que les sous-électrodes soient reliées entre elles par au moins deux courts-circuits en vue de permettre une autoréparation en cas de coupure de l'une d'entre elles.
Une variante est que l'électrode ligne possède au moins un changement de direction pour suivre les épargnes d'un même pixel. Elle peut être notamment en zig-zag.
Le panneau peut aussi comporter des barrières qui séparent deux zones de luminophore adjacentes de couleurs différentes, ces barrières ayant une hauteur inférieure à l'épaisseur de l'espace, ce qui permet d'améliorer la colorimétrie du panneau.
Pour augmenter la surface d'émission autour des épargnes, les barrières successives peuvent être plus éloignées l'une de l'autre au niveau d'une épargne que de part et d'autre de cette épargne. Cela conduit par exemple à un motif de barrière en ligne brisée ou en ligne courbe.
Il est possible de prévoir que les épargnes soient suffisamment profondes pour confiner les décharges de manière à éviter l'utilisation des barrières. Leur suppression est avantageuse car elles sont difficiles et longues à réaliser et elles représentent environ la moitié du coût de réalisation de la dalle équipée des barrières.
Pour économiser du luminophore il est possible que les épargnes soient formées à partir de puits dans une sous-couche d'un matériau additionnel, ces puits étant tapissés de luminophore sans être bouchés.
Pour réduire encore la quantité de luminophore, il est avantageux qu'une zone de luminophore se termine en formant un rebord qui suit l'embouchure d'un puits.
Le panneau peut aussi comporter un réseau noir sur la dalle portant l'électrode ligne, en vue d'améliorer le contraste intrinsèque, le réseau noir peut recouvrir la dalle à l'exception d'ouvertures faisant face aux épargnes et calées sur les épargnes, ces ouvertures ayant une superficie sensiblement supérieure à celle des épargnes.
Dans cette configuration une zone de luminophore peut être calée sur une ouverture de réseau noir, sa superficie étant sensiblement supérieure à celle de l'ouverture.
Pour gagner encore en rendement lumineux il est envisageable de recouvrir l'électrode ligne de zones de luminophore avec épargnes.
D'autres caractéristiques et avantages de l'invention apparaítront à la lecture de la description suivante illustrée par les figures annexées qui représentent :
  • la figure 1 déjà décrite, une vue en éclaté d'un panneau de visualisation à plasma de l'art antérieur ;
  • les figures 2a, 2b respectivement une vue en éclaté et de face d'un exemple d'un panneau de visualisation à plasma selon l'invention ;
  • la figure 3 une vue de face d'une variante d'un panneau de visualisation à plasma selon l'invention ;
  • la figure 4 une vue de face d'une autre variante d'un panneau de visualisation à plasma selon l'invention avec des électrodes lignes en zig-zag ;
  • les figures 5a, 5b deux autres variantes d'un panneau de visualisation à plasma avec différents motifs de barrières,
  • les figures 6a, 6b deux coupes respectivement selon une électrode colonne et selon une électrode ligne d'un panneau de visualisation à plasma selon l'invention sans barrière,
  • les figures 7a, 7b deux coupes respectivement selon une électrode colonne et selon une électrode ligne d'un panneau de visualisation à plasma selon l'invention avec puits dans une sous-couche en matériau additionnel,
  • les figures 8a, 8 b deux coupes respectivement selon une électrode colonne et selon une électrode ligne d'un panneau de visualisation à plasma selon l'invention avec zones de luminophore qui se terminent en formant un rebord autour des puits.
Sur ces figures les échelles ne sont pas respectées dans un souci de clarté.
On se réfère aux figures 2a, 2b. Par rapport à la figure 1, on retrouve sur la dalle arrière 3, les électrodes colonnes X1 à X5 recouvertes de la couche diélectrique 6, elle-même recouverte de zones B1, B2, B3 de luminophore. Les zones B1, B2, B3 de luminophore, ici en forme de bandes, sont disposées sensiblement parallèlement aux électrodes colonnes X1 à X5. La dalle arrière 3 comporte en outre des barrières 11 de séparation des zones B1, B2, B3 de luminophore.
Les zones B1, B2, B3 de luminophore sont équipées des épargnes Ep1, Ep2, Ep3 et un pixel P possède au moins deux épargnes voisines situées au niveau d'une même électrode ligne Y1, Y2 dans des zones de B1, B2, B3 luminophore adjacentes. Dans l'exemple traité, un pixel P est trichrome et comporte trois épargnes mais on peut envisager qu'il en possède seulement deux ou plus de trois. Les épargnes sont représentées circulaires mais il est bien entendu que d'autres formes sont possibles.
Au lieu que deux épargnes voisines Ep1, Ep2 faisant partie d'un même pixel P et situées dans des zones B1, B2 de luminophore adjacentes soient séparées par le pas px des électrodes colonnes X1, X2, selon l'invention, ces deux épargnes voisines Ep1, Ep2 sont séparées par une distance L qui est maintenant supérieure au pas px.
Sur les figures 2a, 2b les épargnes Ep1, Ep2, Ep3 d'un même pixel P sont disposées en triangle. Si le panneau conserve les mêmes pas py et px que sur la figure 1, la distance L est par exemple telle que :
   L = 1,8 px
En augmentant la distance L entre épargnes Ep1, Ep2 voisines d'un même pixel P, situées dans des zones de luminophore adjacentes, on peut augmenter l'épaisseur H0 de l'espace 13 entre les deux dalles, par rapport à celle requise lorsque les épargnes sont distantes sensiblement du pas px. Dans l'exemple décrit, un facteur 1,8 existe entre le pas px et la distance L et l'augmentation de l'épaisseur H0 peut se faire avec sensiblement le même facteur.
Cette augmentation de la distance L et celle de l'épaisseur H0 qui en découle améliorent fortement le rendement lumineux du panneau sans dégrader son contraste. La nouvelle répartition des épargnes Ep1, Ep2, Ep3,.... ne conduit pas à une augmentation des difficultés de réalisation de la dalle arrière 3.
En ce qui concerne la dalle avant 2, une même électrode ligne Y1 suit les épargnes Ep1, Ep2, Ep3 appartenant à un même pixel P. Une configuration qui le permet est d'utiliser des électrodes lignes Y1, Y2 démultipliées. Sur la figure 2, l'électrode ligne Y1 est dédoublée en deux sous-électrodes Y1a, Y1b de manière à passer au niveau des trois épargnes Ep1, Ep2, Ep3 en triangle du pixel P. Avec de telles électrodes lignes, démultipliées, on diminue la résistance de ligne d'où un meilleur passage de courant de décharge.
Le pixel suivant P' parcouru par la même électrode ligne Y1 est formé des épargnes Ep4, Ep5, Ep6 en triangle et le triangle du pixel P est tête-bêche par rapport au triangle du pixel P'.
Les deux sous-électrodes Y1a et Y1b sont reliées entre elles par au moins deux courts-circuits 12. Avec de tels courts-circuits, une coupure 14 dans une sous-électrode entre ces deux courts-circuits 12 n'a pas de répercussion sur le réseau. Sur la figure 2b, il y a trois courts-circuits 12 représentés entre les sous-électrodes Y1a et Y1b, un en amont du pixel P, un entre les deux pixels P, P' et un en aval du pixel P'. Une coupure 14 sur la sous-électrode Y1b est représentée entre l'épargne Ep4 et l'épargne Ep6, cette coupure 14 est auto-réparée et des décharges pourront se produire au niveau de l'épargne Ep6. L'alimentation électrique de la sous-électrode Y1b au niveau de l'épargne Ep6 est assurée par la sous-électrode Y1a et le court-circuit 12 situé en aval du pixel P'. Plus le nombre de court-circuits 12 est grand plus la capacité d'autoréparation est grande. Cette autoréparation est avantageuse car dans les panneaux à haute résolution les électrodes lignes sont très fines et fragiles, des coupures apparaissent fréquemment. Avec cette possibilité d'autoréparation, le rendement de fabrication des panneaux est fortement augmenté car le taux de mise au rebut diminue. Ou bien, à taux de rebut identique, la largeur de l'électrode peut être notablement diminuée d'où un gain dans la lumière émise au niveau d'une épargne car il y a moins d'écrantage.
Cette électrode ligne Y1 dédoublée croise inévitablement des électrodes colonnes X1, X2, X3 en dehors des épargnes Ep1, Ep2, Ep3, mais ce croisement ne donne pas lieu à des décharges à cause d'une part de la présence du luminophore qui recouvre les électrodes colonnes X1, X2, X3 et d'autre part du niveau de tension à appliquer pour obtenir une décharge au niveau d'une épargne.
Dans la variante représentée à la figure 3, les épargnes Ep1, Ep2, Ep3 d'un même pixel P sont alignées au lieu d'être en triangle. Si le panneau conserve toujours les mêmes pas py et px, la distance L entre deux épargnes voisines Ep1, Ep2 d'un même pixel P devient alors égale à:
   L = 1,4 px
Cette distance L est plus petite que dans le cas des figures 2 et le rendement du panneau ne sera pas tout à fait aussi bon. Dans cette variante, les électrodes lignes sont également démultipliées mais maintenant il s'agit d'un triplement. Chacune des épargnes Ep1, Ep2, Ep3 d'un pixel P est parcouru par une sous-électrode respectivement Y1a, Y1b, Y1c. Les trois sous-électrodes sont reliées entre elles par au moins deux courts-circuits 12. Toutefois cette structure présente un avantage qui est que les épargnes Ep1, Ep4 situées au niveau d'une même sous-électrode ligne Y1a correspondent à des zones B1 de luminophore successives d'une même couleur. Trois épargnes sont alors alignées. Cet alignement conduit à une meilleure image dans certains types d'application, par exemple pour des images informatiques où l'on utilise des lignes horizontales d'une couleur de base.
Au lieu que les électrodes lignes Y1, Y2 soient démultipliées et comportent chacune des sous-électrodes de manière à passer en vis-à-vis de toutes les épargnes d'un pixel P, on peut envisager qu'elles comportent au moins un changement de direction. La figure 4 illustre cette variante avec un pixel P dont les épargnes Ep1, Ep2, Ep3 sont en triangle et une électrode ligne Y1 est en zig-zag pour venir en vis-à-vis de toutes les épargnes Ep1, Ep2, Ep3 du pixel P. Des configurations autres que le zig-zag sont tout à fait possibles.
Sur les figures 2a, 2b des barrières 11 de confinement des décharges au niveau des épargnes étaient représentées. Ces barrières 11 dont la hauteur H1 est inférieure à l'épaisseur H0 de l'espace 13 rempli de gaz pour favoriser la circulation et donc l'ionisation, séparent deux zones B1, B2 de luminophore adjacentes relatives à un même pixel. Dans cet exemple les zones B1, B2 de luminophore sont rectilignes et les barrières 11 sont parallèles, distantes sensiblement du pas px.
On peut envisager, pour augmenter la surface d'émission de la décharge autour des épargnes Ep1, Ep2 que les deux barrières 11 qui passent de part et d'autre d'une épargne Ep2 soient plus éloignées au niveau de cette épargne Ep2 qu'entre cette épargne Ep2 et sa voisine Ep8 située sur la même bande B2 de luminophore. Deux barrières voisines s'éloignent l'une de l'autre au niveau d'une épargne et se rapprochent l'une de l'autre entre deux épargnes.
Dans cette variante représentée à la figure 5a, sur laquelle les électrodes lignes ne sont pas représentées dans un souci de clarté, les barrières 11 changent de direction autour des épargnes Ep1, Ep2 et sont en forme de lignes brisées. Les changements de direction peuvent se faire avec un angle sensiblement égal à 45°. Sur la figure 5b, les barrières 11 sont en forme de lignes courbes et notamment sensiblement sinusoïdales.
Un avantage apporté par de telles barrières est que, la surface émissive de la décharge étant agrandie, les contraintes sur l'appairage des barrières et des épargnes sont relâchées. La précision des positionnements des barrières par rapport aux épargnes peut être diminuée à cause du décalage qui laisse un certain jeu possible dans le positionnement des masques.
L'espacement d1 entre deux barrières 11 voisines, au niveau d'une épargne Ep8 est alors supérieur au pas px entre électrodes colonnes X1, X2. L'espacement d2 entre les deux barrières 11 de part et d'autre de l'épargne Ep8 est alors inférieur au pas px entre électrodes colonnes X1, X2. La relation qui lie les espacements d1 et d2 peut être tel que :
   d1 = d2 + 2c avec c égal à l'épaisseur des barrières 11.
La largeur c des barrières 11 peut être de l'ordre de 19,5 micromètres si le pas px entre électrodes colonnes est de 127 micromètres.
Il est conseillé de conserver une dimension suffisante à l'espacement d2 pour ne pas empêcher la circulation de gaz.
Dans cette variante les barrières 11 ne sont pas rectilignes et les zones B1, B2, B3 de luminophore sont adaptées au motif des barrières 11 puisque les barrières 11 séparent deux zones B1, B2, B3 de luminophore adjacentes.
Le fait d'avoir éloigné deux épargnes voisines Ep1, Ep2 d'un même pixel P, situées dans des zones B1, B2 de luminophore adjacentes permet de se passer de barrières de confinement sans dégrader la qualité des décharges si les épargnes Ep1, Ep2 ont une profondeur suffisante pour confiner les décharges ainsi créées. Cette profondeur peut représenter environ la moitié de l'épaisseur H0 de l'espace 13. Par exemple cette profondeur peut atteindre 60 micromètres si H0 vaut environ 110 à 120 micromètres.
Un panneau de visualisation à plasma selon l'invention sans barrière est représenté aux figures 6a, 6b. Le luminophore des différentes zones B1, B2, B3 a été épaissi et les épargnes ont une profondeur qui correspond à l'épaisseur de luminophore.
Cette épaisseur permet de former de véritables puits de confinement des décharges, ces puits empêchent la propagation des décharges vers des épargnes voisines au niveau desquelles une décharge ne doit pas se produire. Ils évitent alors un effet de diaphonie entre épargnes voisines.
Ces puits évitent également que le rayonnement ultraviolet créé par une décharge dans une épargne donnée n'excite le matériau luminophore de zones voisines et n'engendre un manque de saturation des couleurs. Ce phénomène est connu en tant qu'effet de diaphotie. Une bonne localisation des décharges est possible.
Une autre façon de réaliser ces épargnes Ep1, Ep2, Ep3 profondes, illustrée aux figures 7a, 7b est de déposer au préalable, sur le matériau diélectrique 6, une sous-couche 13 d'un matériau additionnel d'y aménager des puits 16 et de recouvrir cette sous-couche 13 de luminophore en couche plus mince de manière à former les différentes zones B1, B2, B3. Le luminophore tapisse les flancs 15 des puits 16 il ne les bouche pas. Il peut éventuellement déborder sur le fond 17 des puits 16. On obtient alors des épargnes Ep1, Ep2, Ep3 de profondeur requise en limitant la quantité de luminophore utilisée.
La section des puits 16 est de préférence supérieure à celle des épargnes pour tenir compte du luminophore. Le matériau additionnel de la sous-couche 13 est choisi de préférence réfléchissant et de couleur blanche.
Le matériau additionnel peut contenir de l'alumine et/ou de l'oxyde de titane et/ou de l'oxyde d'yttrium. Cette sous-couche 13 peut être déposée par exemple par sérigraphie, photolithogravure.
La suppression des barrières apporte un gain notable sur le coût de fabrication puisque la réalisation des barrières représente environ la moitié du coût de fabrication de la dalle. Un gain en temps de cycle est ainsi réalisé. La structure obtenue, ouverte, favorise l'ionisation du gaz à bas niveau de luminance et donc améliore le fonctionnement du panneau.
Sur la figure 2a, les zones B1, B2, 83 de luminophore occupent toute la surface de la dalle 3 sur laquelle elles sont déposées. Elles forment des bandes contiguës qui suivent les électrodes colonnes X1, X2, X3 et comportent chacune plusieurs épargnes. Les décharges ne sont susceptibles de se produire qu'au niveau des épargnes comme on l'a décrit précédemment. Avec l'utilisation de la sous-couche 13 sous le luminophore, il est possible de réduire la surface des zones B1, B2, B3 de luminophore par rapport à celle de la dalle 3. Le gain en coût matière est appréciable car les luminophores sont des matériaux chers.
Les figures 8a, 8b illustrent cette configuration. Une zone B1, B2, B3 de luminophore tapisse les flancs 15 d'un puits 16 dans la sous-couche 13 et se termine en formant un rebord 18 qui suit l'embouchure du puits 16. Vue de dessus les zones B1, B2, 83 de luminophore sont configurées en disque. Une zone de luminophore ne possède qu'une épargne. La sous-couche 13 est en contact, à certains endroits avec le gaz. La sous-couche 13 réalise alors une protection visant à empêcher que des décharges puissent avoir lieu à la croisée d'une électrode ligne et d'une électrode colonne mais hors épargne. Sur la figure 8b, on remarque qu'il n'y a pas de zone de luminophore à la croisée de l'électrode colonne X2 et de l'électrode ligne Y1a. La sous-couche 13 empêche qu'une décharge puisse avoir lieu à cet endroit.
Avec des épargnes Ep1, Ep2, Ep3 plus éloignées que dans l'état de l'art, par exemple disposées comme représenté à la figure 2b, il est possible d'augmenter la surface du réseau noir 40 par rapport à la surface totale de la dalle avant 2.
Selon l'invention, telle qu'illustrée aux figures 2a, 2b le réseau noir 40 recouvre maintenant sensiblement toute la dalle avant 2 à l'exception d'ouvertures Z1, Z2,...... qui sont disposées face aux épargnes Ep1, Ep2 et qui sont calées sur ces dernières. Chaque ouverture Z1, Z2 est associée à une épargne Ep1, Ep2 et possède une superficie légèrement supérieure à celle de l'épargne Ep1, Ep2 avec laquelle elle est associée.
Par exemple, pour un panneau à plasma, dit à haute définition, avec un pas px éntre électrodes colonnes de 127 micromètres et dans lequel la distance L entre épargnes Ep1, Ep2 voisines situées dans des zones de luminophores adjacentes est de 229 micromètres, si les ouvertures Z1, Z2 du réseau noir 40 ont un diamètre de 180 micromètres, le taux de couverture du réseau noir 40 vaut environ 60 % alors qu'avec des ouvertures Z1, Z2 dont le diamètre vaut environ 150 micromètres, le taux de couverture du réseau noir 40 vaut environ 80 %. Un tel taux de couverture équivaut à un taux de réflexion diffus réel de la dalle avant 2 du panneau à plasma d'environ 10 %. Ce réseau noir 40 plus étendu que dans l'art antérieur permet donc une augmentation avantageuse du contraste intrinsèque du panneau.
Dans la configuration avec sous-couche 13 réfléchissante en contact avec le gaz, il est possible qu'une zone B1, B2, B3 de luminophore soit circonscrite à une ouverture Z1, Z2 du réseau noir 40. Cette variante est visible sur la figure 8a. Une zone B1, B2, B3 de luminophore en étant calée sur une ouverture Z1, Z2 aura de préférence une superficie légèrement supérieure à celle de l'ouverture Z1, Z2 de manière à éviter tout problème si un éventuel désappairage existe entre les deux dalles ou leurs éléments.
Ce type de panneau de visualisation à plasma alternatif et bi-substrat peut aussi accueillir sur sa face avant des zones B'1, B'2, B'3 de luminophore.
Une couche mince de luminophore émet en transmission autant qu'en réflexion. Il est alors aisé de déposer les différentes zones B'1, B'2, B'3 de luminophore avec épargnes Ep'1, Ep'2, Ep'3 ...., sur la face avant 2 en les calant sur les épargnes Ep1, Ep2, Ep3 de la face arrière 3.
Les zones de luminophore selon leur couleur peuvent être soit déposées l'une après l'autre par sérigraphie suivie d'une seule opération d'insolation, dépouillement, soit en couche uniforme sur toute la surface suivie d'une opération d'insolation, dépouillement par couleur. Le rendement lumineux est alors multiplié par au moins 1,5.

Claims (21)

  1. Panneau de visualisation à plasma alternatif de type bi-substrat en couleurs comportant deux dalles (2,3) assemblées en vis-à-vis délimitant un espace (13) destiné à être rempli de gaz, l'une des dalles (3) comportant des électrodes (X1, X2) colonnes sensiblement parallèles séparées d'un pas (px), recouvertes d'au moins une zone (B1, B2, B3) de luminophore, l'autre dalle (2) comportant au moins une électrode ligne (Y1, Y2), les zones (B1, B2, 83) de luminophore étant munies d'au moins une épargne (Ep1, Ep2, Ep3) disposée à la croisée d'une électrode ligne (Y1,Y2) et colonne (X1, X2), pour localiser des décharges susceptibles de se produire dans le gaz entre les deux électrodes, un pixel (P) coloré étant formé par des épargnes (Ep1, Ep2, Ep3) voisines, situées dans des zones (B1, B2, B3) de luminophore adjacentes, au niveau de l'électrode ligne (Y1), caractérisé en ce que, pour obtenir un meilleur rendement lumineux, la distance (L) séparant deux épargnes voisines (Ep1, Ep2) d'un même pixel (P) est supérieure au pas (px) des électrodes colonnes (X1, X2) de manière à autoriser une épaisseur (H0) de l'espace (13), supérieure à celle requise lorsque les deux épargnes voisines (Ep1, Ep2) sont séparées d'une distance sensiblement égale au pas (px).
  2. Panneau selon la revendication 1, caractérisé en ce que les épargnes (Ep1, Ep2, Ep3) d'un même pixel (P) sont arrangées en triangle.
  3. Panneau selon la revendication 1, caractérisé en ce que les épargnes (Ep1, Ep2, Ep3) d'un même pixel (P) sont alignées.
  4. Panneau selon l'une des revendications 1 à 3, caractérisé en ce que l'électrode ligne (Y1) est démultipliée en plusieurs sous-électrodes (Y1a, Y1b).
  5. Panneau selon la revendication 4, caractérisé en ce que les sous-électrodes (Y1a, Y1b) sont reliées entre elles par au moins deux courts-circuits (12) en vue de permettre une autoréparation en cas de coupure (14) de l'une d'entre elles.
  6. Panneau selon l'une des revendications 1 à 3, caractérisé en ce que l'électrode ligne (Y1) possède au moins un changement de direction.
  7. Panneau selon la revendication 6, caractérisé en ce que l'électrode ligne (Y1) est en zig zag.
  8. Panneau selon l'une des revendications 1 à 7, caractérisé en ce qu'il comporte des barrières (11) qui séparent deux zones (B1,B2) de luminophore adjacentes, ces barrières (11) ayant une hauteur (H1) inférieure à l'épaisseur (H0) de l'espace (13).
  9. Panneau selon la revendication 8, caractérisé en ce que deux barrières successives (11) sont plus éloignées l'une de l'autre au niveau d'une épargne (Ep2) que de part et d'autre de cette épargne (Ep2).
  10. Panneau selon la revendication 9, caractérisé en ce qu'au moins une barrière (11) est en forme de ligne brisée.
  11. Panneau selon la revendication 9, caractérisé en ce qu'au moins une barrière (11) est en forme de ligne courbe.
  12. Panneau selon l'une des revendications 1 à 7, caractérisé en ce que les épargnes (Ep1, Ep2) sont suffisamment profondes pour confiner les décharges de manière à éviter l'utilisation de barrières séparant deux zones (B1, B2) de luminophore adjacentes.
  13. Panneau selon la revendication 12 caractérisé en ce que la profondeur des épargnes (Ep1) vaut environ la moitié de l'épaisseur (H0) de l'espace (13).
  14. Panneau selon l'une des revendications 12 ou 13, caractérisé en ce que les épargnes (Ep1, Ep2, Ep3) sont formées à partir de puits (16) dans une sous-couche (13) d'un matériau additionnel, ces puits (16) étant tapissés de luminophore sans être bouchés.
  15. Panneau selon la revendication 14, caractérisé en ce que le matériau additionnel est réfléchissant.
  16. Panneau selon l'une des revendications 14 ou 15, caractérisé en ce que le matériau additionnel est blanc.
  17. Panneau selon l'une des revendications 14 à 16, caractérisé en ce que le matériau additionnel contient de l'alumine et/ou de l'oxyde de titane et/ou de l'oxyde d'yttrium.
  18. Panneau selon l'une des revendications 14 à 17, caractérisé en ce qu'une zone de luminophore (B1, B2, B3) se termine en formant un rebord (18) qui suit l'embouchure d'un puits (16).
  19. Panneau selon l'une des revendications 1 à 18, comportant un réseau noir (40) sur la dalle (2) avec l'électrode ligne (Y1, Y2), caractérisé en ce que le réseau noir (40) recouvre la dalle (2) à l'exception d'ouvertures (Z1,Z2) faisant face aux épargnes (Ep1,Ep2) et calées sur les épargnes, ces ouvertures (Z1,Z2) ayant une superficie sensiblement supérieure à celle des épargnes (Ep1, Ep2).
  20. Panneau selon la revendication 19, caractérisé en ce qu'une zone de luminophore (B1, B2, B3) est calée sur une ouverture (Z1, Z2) du réseau noir (40), sa superficie étant sensiblement supérieure à celle de l'ouverture.
  21. Panneau selon l'une des revendications 1 à 20, caractérisé en ce que l'électrode ligne (Y1, Y2) est recouverte de zones (B'1, B'2, B'3) de luminophore avec épargnes.
EP99900920A 1998-01-20 1999-01-14 Panneau a plasma bi-substrat Expired - Lifetime EP0968512B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR9800558 1998-01-20
FR9800558A FR2773907B1 (fr) 1998-01-20 1998-01-20 Panneau a plasma bi-substrat a rendement lumineux ameliore
PCT/FR1999/000056 WO1999036934A1 (fr) 1998-01-20 1999-01-14 Panneau a plasma bi-substrat

Publications (2)

Publication Number Publication Date
EP0968512A1 EP0968512A1 (fr) 2000-01-05
EP0968512B1 true EP0968512B1 (fr) 2003-04-16

Family

ID=9521946

Family Applications (1)

Application Number Title Priority Date Filing Date
EP99900920A Expired - Lifetime EP0968512B1 (fr) 1998-01-20 1999-01-14 Panneau a plasma bi-substrat

Country Status (8)

Country Link
US (1) US6124676A (fr)
EP (1) EP0968512B1 (fr)
JP (1) JP2001516498A (fr)
KR (1) KR100540620B1 (fr)
CN (1) CN1133193C (fr)
DE (1) DE69906885T2 (fr)
FR (1) FR2773907B1 (fr)
WO (1) WO1999036934A1 (fr)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100327352B1 (ko) * 1998-11-18 2002-05-09 구자홍 플라즈마디스플레이패널
CA2360329A1 (fr) * 1999-01-11 2000-07-20 Schott Glas Lampe plane
JP3374807B2 (ja) * 1999-10-19 2003-02-10 松下電器産業株式会社 ディスプレイパネル及びその製造方法
KR20010065735A (ko) * 1999-12-30 2001-07-11 김영남 플라즈마 디스플레이 패널
FR2809863A1 (fr) * 2000-05-31 2001-12-07 Thomson Plasma Panneau matriciel de visualisation a plasma comportant des luminophores sur la dalle avant
JP2001351541A (ja) * 2000-06-01 2001-12-21 Hitachi Ltd カラー陰極線管
CN101303951B (zh) * 2000-08-18 2012-02-29 松下电器产业株式会社 气体放电屏
US6686897B2 (en) * 2000-09-21 2004-02-03 Au Optronics Corp. Plasma display panel and method of driving the same
US6545422B1 (en) * 2000-10-27 2003-04-08 Science Applications International Corporation Socket for use with a micro-component in a light-emitting panel
CN1639761A (zh) * 2002-03-06 2005-07-13 皇家飞利浦电子股份有限公司 具有能量回收系统的显示板
US6720732B2 (en) * 2002-03-27 2004-04-13 Chunghwa Picture Tubers, Ltd. Barrier rib structure for plasma display panel
GB0209513D0 (en) * 2002-04-25 2002-06-05 Cambridge Display Tech Ltd Display devices
KR100499573B1 (ko) * 2002-12-31 2005-07-05 엘지.필립스 엘시디 주식회사 평판형 형광램프
US7340312B2 (en) * 2003-06-26 2008-03-04 International Business Machines Corporation Method and system for monitoring and control of complex systems based on a programmable network processor
KR100612359B1 (ko) * 2004-05-31 2006-08-16 삼성에스디아이 주식회사 플라즈마 디스플레이 패널

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2252256A1 (de) * 1972-10-25 1974-05-09 Ibm Deutschland Gasentladungsanordnung zur mehrfarbigen darstellung von informationen
FR2331148A1 (fr) * 1975-11-04 1977-06-03 Thomson Csf Nouveau procede d'utilisation d'un tube memoire a lecture non destructive et systeme de visualisation comportant un tube ainsi utilise
FR2515402B1 (fr) * 1981-10-23 1987-12-24 Thomson Csf
FR2572805A1 (fr) * 1984-11-06 1986-05-09 Thomson Csf Procede de mesure du centrage d'un barreau cylindrique dans un revetement transparent cylindrique et dispositif de mise en oeuvre
FR2612326A1 (fr) * 1987-03-13 1988-09-16 Thomson Csf Procede de reglage des couleurs d'un panneau a plasma polychrome et panneau a plasma utilisant un tel procede
FR2635901B1 (fr) * 1988-08-26 1990-10-12 Thomson Csf Procede de commande ligne par ligne d'un panneau a plasma du type alternatif a entretien coplanaire
FR2635902B1 (fr) * 1988-08-26 1990-10-12 Thomson Csf Procede de commande tres rapide par adressage semi-selectif et adressage selectif d'un panneau a plasma alternatif a entretien coplanaire
FR2635900B1 (fr) * 1988-08-30 1990-10-12 Thomson Csf Panneau a plasma a adressabilite accrue
FR2648953A1 (fr) * 1989-06-23 1990-12-28 Thomson Tubes Electroniques Panneaux a plasma a zones de decharges delimitees
FR2662292B1 (fr) * 1990-05-15 1992-07-24 Thomson Tubes Electroniques Procede de reglage de la luminosite d'ecrans de visualisation.
EP0554172B1 (fr) * 1992-01-28 1998-04-29 Fujitsu Limited Dispositif d'affichage à plasma en couleurs du type à décharge de surface
US5519520A (en) * 1992-02-24 1996-05-21 Photonics Systems, Inc. AC plasma address liquid crystal display
FR2699717A1 (fr) * 1992-12-22 1994-06-24 Thomson Tubes Electroniques Panneau à plasma à luminance et contraste renforcés.
FR2741468B1 (fr) * 1995-11-17 1997-12-12 Thomson Tubes Electroniques Procede de commande d'un ecran de visualisation et dispositif de visualisation mettant en oeuvre ce procede
US5834891A (en) * 1996-06-18 1998-11-10 Ppg Industries, Inc. Spacers, spacer units, image display panels and methods for making and using the same

Also Published As

Publication number Publication date
US6124676A (en) 2000-09-26
DE69906885T2 (de) 2004-03-11
FR2773907B1 (fr) 2000-04-07
CN1133193C (zh) 2003-12-31
EP0968512A1 (fr) 2000-01-05
WO1999036934A1 (fr) 1999-07-22
JP2001516498A (ja) 2001-09-25
KR20000075901A (ko) 2000-12-26
FR2773907A1 (fr) 1999-07-23
KR100540620B1 (ko) 2006-01-10
CN1256009A (zh) 2000-06-07
DE69906885D1 (de) 2003-05-22

Similar Documents

Publication Publication Date Title
EP0968512B1 (fr) Panneau a plasma bi-substrat
EP1017081B1 (fr) Panneau d'affichage à plasma
EP1054428B1 (fr) Joint de scellement pour écrans d'affichage plats
FR2791808A1 (fr) Dispositif d'affichage a plasma et procede de fabrication d'une couche de dielectrique comportant une partie ou un champ electrique est concentre
EP0932181B1 (fr) Panneau d'affichage à plasma
KR19990088370A (ko) Dc플라즈마디스플레이패널및그제조방법
EP0988643B1 (fr) Panneau a plasma a effet de conditionnement de cellules
FR2818634A1 (fr) Substrat en verre pourvu d'elements en verre et en relief
EP1407443B1 (fr) Procede de pilotage d'un panneau a plasma a decharge de surface entre des electrodes en triades
FR2819097A1 (fr) Structure d'electrodes de maintien pour dalle avant de panneau de visualisation a plasma
EP1390940B1 (fr) Procede de pilotage d'un panneau de visualisation a plasma de type coplanaire a l'aide de trains d'impulsions a frequence suffisamment elevee pour obtenir la stabilisation des decharges
FR2791807A1 (fr) Panneau d'affichage a plasma et procede pour sa fabrication
FR2629265A1 (fr) Panneau a plasma a trois electrodes par pixel
EP0657914B1 (fr) Collecteur d'électrons comportant des bandes conductrices commandables indépendamment
EP1500121A1 (fr) Panneau de visualisation a plasma a excitation des decharges par rayonnement micro-onde
EP1627408B1 (fr) Panneau de visualisation a plasma a zone d'expansion de decharge de section reduite
FR2845199A1 (fr) Panneau de visualisation a plasma a electrodes coplanaires de largeur constante
EP1436824A1 (fr) Panneau de visualisation a plasma a electrodes coplanaires presentant des bords de decharge inclines
FR2797992A1 (fr) Composition pour la realisation d'un reseau noir procede de realisation d'un reseau noir et panneau d'affichage au plasma comprotant un tel reseau noir
FR2807566A1 (fr) Perfectionnement au panneau a plasma alternatif de type matriciel
FR2868200A1 (fr) Dalle et panneau a plasma dotes d'une couche de reflexion sous la couche de luminophores
WO2000075952A1 (fr) Panneaux a plasma de type matriciel
FR2797991A1 (fr) Panneau d'affichage au plasma a contraste et colorimetrie ameliorees et procede fabrication d'un tel panneau
FR2787631A1 (fr) Procede de fabrication d'un panneau a plasma
KR20090026935A (ko) 플라즈마 디스플레이 패널과, 이의 제조 방법

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19990818

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69906885

Country of ref document: DE

Date of ref document: 20030522

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071224

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20080103

Year of fee payment: 10

Ref country code: IT

Payment date: 20080129

Year of fee payment: 10

Ref country code: DE

Payment date: 20080125

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080124

Year of fee payment: 10

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090114

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20090801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090202

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090114