EP1619752B1 - Antennenmodul - Google Patents

Antennenmodul Download PDF

Info

Publication number
EP1619752B1
EP1619752B1 EP05015079.6A EP05015079A EP1619752B1 EP 1619752 B1 EP1619752 B1 EP 1619752B1 EP 05015079 A EP05015079 A EP 05015079A EP 1619752 B1 EP1619752 B1 EP 1619752B1
Authority
EP
European Patent Office
Prior art keywords
antenna
module according
patch
antenna module
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
EP05015079.6A
Other languages
English (en)
French (fr)
Other versions
EP1619752A1 (de
Inventor
Mehran Aminzadeh
Florian Scherbel
Meinolf Schafmeister
Keno Mennenga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Molex CVS Hildesheim GmbH
Original Assignee
Laird Technologies GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Laird Technologies GmbH filed Critical Laird Technologies GmbH
Publication of EP1619752A1 publication Critical patent/EP1619752A1/de
Application granted granted Critical
Publication of EP1619752B1 publication Critical patent/EP1619752B1/de
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/32Adaptation for use in or on road or rail vehicles
    • H01Q1/325Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle
    • H01Q1/3275Adaptation for use in or on road or rail vehicles characterised by the location of the antenna on the vehicle mounted on a horizontal surface of the vehicle, e.g. on roof, hood, trunk
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/28Combinations of substantially independent non-interacting antenna units or systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q5/00Arrangements for simultaneous operation of antennas on two or more different wavebands, e.g. dual-band or multi-band arrangements
    • H01Q5/40Imbricated or interleaved structures; Combined or electromagnetically coupled arrangements, e.g. comprising two or more non-connected fed radiating elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna
    • H01Q9/0414Substantially flat resonant element parallel to ground plane, e.g. patch antenna in a stacked or folded configuration

Definitions

  • the invention relates to an antenna module for frequencies in the GHz range, which can be attached to a motor vehicle.
  • Such an antenna module integrates various functions of roof antennas for motor vehicles.
  • microstrip patch antennas are known, which have a substrate which is metallized over its entire surface and has on its upper side a suitable metal structure or antenna structure.
  • Such antennas generally have a narrow frequency bandwidth, e.g. 1% to 2% relative bandwidth if no additional measures are foreseen.
  • parasitic elements By employing parasitic elements, greater bandwidth or the ability to cover multiple frequency bands can be achieved.
  • These parasitic elements are line structures which are formed on the same or a higher level than the antenna structure. When forming the parasitic elements on a higher antenna structure, these are coupled to the lower antenna structure, wherein a common RF tap on the lower antenna structure to an amplifier device takes place. In the parasitic elements high-frequency currents are induced, which adapt to the shape and dimension of the parasitic elements and thus in turn generate fields. This gives the entire structure the opportunity to radiate and receive at neighboring frequencies or even at slightly more distant frequencies
  • antenna modules with separate side-by-side antenna elements are typically used. However, this requires a lot of space. Furthermore, sufficient decoupling is necessary for proper functioning of the individual antenna elements.
  • the EP 0 521 384 A1 shows an antenna module with an upper and a lower substrate, wherein on the upper substrate, an upper ⁇ / 2 antenna structure and on the lower substrate, a lower ⁇ / 2 antenna structure is applied. Both antenna structures serve a metal layer provided below the lower substrate as a reference surface, so that a parallel connection of the two antenna resonant circuits results.
  • the US 2004/0051661 A1 shows an antenna module for GPS signals and telematic Dedicated Short Range Communications for Road Transport Telematics (DSRC) signals.
  • a metallic ground plane is provided on a printed circuit board.
  • a first antenna is formed by the metallic ground plane, a dielectric placed thereon and an antenna structure formed thereon.
  • a second antenna is formed by the metallic ground plane, the dielectric of the first antenna and another dielectric provided above, and an upper second antenna structure for terrestrial reception.
  • the DE 101 33 295 A1 shows an antenna assembly for motor vehicles for mounting on a substantially horizontal metallic body surface having radiators for a plurality of gap-separated frequency bands of the GHz range.
  • the US-A-4,827,271 shows a patch antenna with vias between the antenna structure and the metallization for potential matching.
  • the invention has for its object to provide an antenna module, which ensures a compact design and a versatile functionality with high security and easy accessibility of Einkoppell the vias.
  • the lower patch antenna is designed to be larger than the upper patch antenna for an effective radiation property.
  • the patch antennas have substrate materials on whose upper side corresponding ⁇ / 2 antenna structures are formed.
  • a lower metallization is provided on the underside of the lower substrate.
  • the underside of the upper substrate has a metallization or it is at a MetaIltechnik on. Both substrates can basically be metallised on their underside.
  • z. B an additional dielectric between the lower metallization of the upper patch antenna and the antenna structure of the lower patch antenna are. The coupling point of the lower antenna tap to the lower antenna structure is not covered by the upper substrate.
  • the stacked patch antennas are decoupled.
  • the two metallizations of the patch antennas - ie the lower metallization of the lower patch antenna and the metallization of the upper patch antenna or acting as this antenna structure of the lower patch antenna separately formed.
  • the EP 0 521 384 A1 According to the invention less is a broadband system, but an arrangement of two decoupled antennas are created.
  • ⁇ / 2 antenna elements or antenna structures are provided according to the invention. They are designed here for satellite reception, ie signals with circular polarization at an elevation angle of substantially 30 ° to 90 ° relative to the horizontal.
  • parasitic elements are optionally provided above the antenna base structure and coupled directly to the lower antenna structure, a separate tap for the separate upper ⁇ / 2 antenna structure is provided according to the invention.
  • the signals are advantageously tapped coaxially.
  • the preferably coaxial tap can in this case take place on the lower metallization of the lower patch antenna or a printed circuit board provided here.
  • a via can be provided by the lower patch antenna, which serves the two metallizations or the antenna structure of the lower patch antenna serving as metallization of the upper patch antenna and the metallization the lower patch antenna connects galvanically.
  • This through-connection advantageously takes place in the middle of the ⁇ / 2 antenna structure, since here there is a maximum of the current distribution and correspondingly a minimum of the magnitude of the voltage.
  • the laterally central region of the antenna structure can be short-circuited without causing any adverse effects on the current and field distribution.
  • the antenna module according to the invention can eg for the reception of GPS signals in L-band, ie at 1575 MHz, and the satellite-based digital radio services DAB worldStar (WorldSpace) in Africa and Asia at 1467 MHz to 1492 MHz and DMB (Digital Multimedia Broadcasting) Far East Asia at 2630 MHz to 2655 MHz and SDARS (Satellite Digital Audio Reception System) at 2320 MHz to 2345 MHz in the US.
  • the selection of the frequency bands for the upper and lower patch antenna is done on the one hand by the dimensioning of the antenna structures.
  • the dielectric material of the substrates can be chosen such that the appropriate frequency bands are achieved.
  • the upper, smaller patch antenna can cover a service of lower frequency by the upper substrate has a correspondingly higher dielectric constant than the lower substrate.
  • the patch antennas may also receive terrestrial signals in addition to satellite reception; such as e.g. the lower patch antenna for SDARS received supplementary terrestrial.
  • the upper patch antenna is advantageously provided for GPS reception.
  • active patch receiving antennas are advantageously formed, with a low-noise amplifier (LNA) being integrated at the base of the antenna.
  • the low-noise amplifiers are mounted on the underside of a printed circuit board, on the upper side of which the lower patch antenna is provided.
  • one of the low-noise amplifiers may be provided on one printed circuit board and the other on a separate printed circuit board.
  • only parts of a low-noise amplifier can be constructed on a separate circuit board, this separate part preferably includes the DC voltage supply or regulation, so that the connection of the two circuit boards by a simple wire connection, e.g. a wire pin can be realized.
  • the antenna module according to the invention can additionally also have a terrestrial antenna, e.g. a (multi-band) monopole or a (multi-band) rod antenna such as e.g. for telephone services, AM / FM or terrestrial DAB in the L band (1452 MHz to 1492 MHz) and Band III (170 MHz to 230 MHz).
  • a terrestrial antenna e.g. a (multi-band) monopole or a (multi-band) rod antenna such as e.g. for telephone services, AM / FM or terrestrial DAB in the L band (1452 MHz to 1492 MHz) and Band III (170 MHz to 230 MHz).
  • the terrestrial antenna can be arranged in front of, behind or on the stack of patch antennas, advantageously in the direction of travel behind it.
  • the two patch antennas are combined with a telephone antenna, advantageously a suitable filter technique is provided in the amplifiers, which already has the relatively strong transmission signal of the telephone antenna at the input of the amplifier suppressed. This can protect the amplifier or the separate amplifier against saturation effects.
  • the antenna module can be designed as a group antenna with a plurality of elements each consisting of an upper patch antenna and a lower patch antenna.
  • the elements in the group can serve as transmitting and / or receiving antenna.
  • the antenna module can serve as a transmitting and receiving antenna, wherein one of the two patch antennas serves as a transmitting and the other as a receiving antenna; This is particularly useful in a group antenna, in each case one of the two antennas of each stack serves as a transmitting and the other as a receiving antenna.
  • An in Fig. 1 shown antenna module 1 has according to Fig. 1 a base plate 2, which may be formed, for example, as a metal plate, a base plate 2 attached to the lower circuit board 3 and a parallel and above this running upper circuit board 4.
  • a base plate 2 which may be formed, for example, as a metal plate
  • a base plate 2 attached to the lower circuit board 3 and a parallel and above this running upper circuit board 4.
  • two separate and electromagnetically shielded amplifier chambers 7 and 8 are provided in the lateral direction by a metallic wall 6.
  • they can be parts of a common amplifier chamber, which is subdivided by the metallic wall 6.
  • a lower patch antenna 10 which comprises a lower substrate 11 made of a dielectric, e.g. Ceramics, a formed on the upper side of the lower substrate 11 lower ⁇ / 2 antenna structure 12 and formed on the underside of the lower substrate 11 lower full-surface metallization 13 has.
  • the lower ⁇ / 2 antenna structure 12 is contacted via a via 14 passing through the lower substrate 11 to a first low noise amplifier (LNA) 16 received in the left amplifier chamber 7 and attached to the underside of the upper circuit board 4, which detects the received RF signals. Amplified signals and via a first (left) coaxial tap 18 forwards.
  • the via 14 may in this case be contacted with the amplifier 16 directly or advantageously indirectly via a conductor track of the upper printed circuit board 4.
  • Fig. 1 In this case, the coupling point of the via 14 at the lower antenna structure 12 from the upper antenna structure 22 not covered; In this case, this coupling-in point is not covered by the upper substrate 21, so that this coupling-in point can be soldered as a soldering point, without it colliding with the upper substrate 21 and z. B. is to form a corresponding recess in the upper substrate.
  • an upper patch antenna 20 comprising an upper substrate 21, an upper ⁇ / 2 antenna structure 22 formed on the upper surface of the upper substrate 21, and a full-surface upper formed on the lower surface of the upper substrate 21 Metallization 23 has.
  • the upper ⁇ / 2 antenna structure 22 is contacted via an upper through-hole 24 directly or via the upper printed circuit board 4 with a second low-noise amplifier (LNA) 26 mounted on the underside of the upper printed circuit board 4 and received in the right-hand amplifier chamber 8 Amplified RF signals and passes on a second (right) coaxial tap 28.
  • LNA low-noise amplifier
  • a through hole 19 extending through the lower substrate 11 galvanically connects the lower ⁇ / 2 antenna structure 12 to the lower metallization 13, thus laying them at an equal potential.
  • the plated-through hole 19 advantageously takes place in the center of the lower ⁇ / 2 antenna structure 12, since in this region no significant voltages, but a current maximum of the induced RF currents occurs.
  • Parts of the low-noise amplifiers 7, 8 can also be constructed on the separate printed circuit board 3.
  • the pitch of the amplifiers 7, 8 may only relate to the DC power supply or even be designed for a whole or several RF amplifier stages. Alternatively, both amplifiers 7, 8 may be accommodated on a separate circuit board. If a DC voltage separation is provided, a simple wire connection 32 between the two circuit boards 3 and 4 may be provided as an electrical connection.
  • the upper patch antenna 20 with the upper ⁇ / 2 antenna structure 22 is smaller than the lower patch antenna 10 with the lower ⁇ / 2 antenna structure 12, whereby good radiation properties of the ⁇ / 2 antennas 10, 20 are achieved.
  • the lower patch antenna 10 can also be provided for terrestrial reception, for example in SDARS.
  • the upper, smaller patch antenna 20 is designed for lower frequency bands and the lower patch antenna 10 for higher frequency bands; by appropriate choice of the dielectric constant ⁇ r , however, the frequency bands can basically be set freely; Accordingly, the upper patch antenna 20 may also be provided for a lower frequency band, in which the upper substrate 21 has a correspondingly higher dielectric constant ⁇ r .
  • the metallization 23 of the upper patch antenna 20 can be omitted so that the upper substrate 21 sees the lower antenna structure 12 arranged below it as a metallization.
  • the antenna module 41 of Fig. 2 is basically the same as the one of Fig. 1 constructed and correspondingly provided with the same reference numerals.
  • the first (left) amplifier 16 is constructed on the lower circuit board 3.
  • the RF portion of the first amplifier 16 may be on the separate one; be constructed lower board 3.
  • an HF connection formed, for example, by a coaxial line 43 is provided between the printed circuit boards 3 and 4.
  • Fig. 3 shows an antenna module 51, in which on the base plate 2 in addition to the in Fig. 1 2 or later, an antenna 53 is provided, which is designed as a monopole or is oriented mainly vertically.
  • the antenna 53 may be implemented, for example, as a dual or multi-band radio antenna or AM / FM radio receiving antenna, as a terrestrial DAB antenna (L-band or band III), or as a combination of these antennas.
  • a third amplifier 55 is e.g. provided below the antenna 53 in a separate chamber; the amplifiers 16, 26 and 55 can also share functions.
  • Fig. 4a to c show embodiments for band-lock filter 60. These filters are designed so that the transmission band of the radio antenna 53 is sufficiently suppressed, so that no interference is caused in a simultaneous operation of radio and digital radio or GPS.
  • a line piece 62 is provided as an inductance, which with a capacitor C according to Fig. 4a a row closure and according to Fig. 4c forms a parallel connection.
  • a line 64 is provided as a ⁇ / 4 line, which causes an open-circuit short-circuit transformation.
  • the dummy element Z is each provided for the purpose of adaptation and may be a capacitor, a coil or a combination of such elements in a corresponding circuit.
  • the band-lock filters 60 are each connected with their input 66 to the respective antenna base point and with its output 67 to the input of the respective amplifier.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Remote Sensing (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Details Of Aerials (AREA)

Description

  • Die Erfindung betrifft ein Antennenmodul für Frequenzen im GHz-Bereich, das an einem Kraftfahrzeug befestigt werden kann.
  • Ein derartiges Antennenmodul integriert verschiedene Funktionen von Dachantennen für Kraftfahrzeuge. Hierbei sind Mikrostreifen-Patch-Antennen bekannt, die ein Substrat aufweisen, das auf seiner Unterseite vollflächig metallisiert ist und auf seiner Oberseite eine geeignete Metallstruktur bzw. Antennenstruktur aufweist. Derartige Antennen haben im Allgemeinen eine schmale Frequenzbandbreite, z.B. 1 % bis 2 % relative Bandbreite, falls keine zusätzlichen Maßnahmen vorgesehen sind. Durch das Einsetzen parasitärer Elemente kann eine größere Bandbreite oder die Fähigkeit, mehrere Frequenzbänder abzudecken, erreicht werden. Diese parasitären Elemente sind Leitungs- oder Flächenstrukturen, welche auf derselben oder einer höheren Ebene als die Antennenstruktur ausgebildet sind. Bei Ausbildung der parasitären Elemente auf einer höheren Antennenstruktur sind diese mit der unteren Antennenstruktur gekoppelt, wobei ein gemeinsamer HF-Abgriff an der unteren Antennenstruktur zu einer Verstärkereinrichtung erfolgt. In den parasitären Elementen werden Hochfrequenzströme induziert, welche sich an die Form und Dimension der parasitären Elemente anpassen und damit ihrerseits Felder erzeugen. Hierdurch gibt man dem gesamten Gebilde die Möglichkeit, auch bei Nachbarfrequenzen oder sogar bei etwas entfernteren Frequenzen zu strahlen und zu empfangen
  • Derartige Antennenaufbauten sind jedoch nur dann geeignet, wenn das ganze erweiterte Frequenzband für denselben Dienst zur Verfügung steht.
  • Falls mehrere unabhängige Dienste vorgesehen sind, werden in der Regel Antennenmodule mit separaten nebeneinander aufgebauten Antennenelementen verwendet. Hierfür ist jedoch ein hoher Platzbedarf erforderlich. Weiterhin ist für eine einwandfreie Funktion der einzelnen Antennenelemente eine ausreichende Entkopplung erforderlich.
  • Die EP 0 521 384 A1 zeigt ein Antennenmodul mit einem oberen und einem unteren Substrat, wobei auf dem oberen Substrat eine obere λ/2-Antennenstruktur und auf dem unteren Substrat eine untere λ/2-Antennenstruktur aufgebracht ist. Beiden Antennenstrukturen dient eine unterhalb des unteren Substrates vorgesehene Metallschicht als Referenzfläche, so dass sich eine Parallelschaltung der beiden Antennenschwingkreise ergibt.
  • Die US 2004/0051661 A1 zeigt ein Antennenmodul für GPS-Signale und telematische DSRC (Dedicated Short Range Communications for Road Transport Telematics)-Signale. Hierbei ist eine metallische Grundebene auf einer Leiterplatte vorgesehen. Eine erste Antenne wird durch die metallische Grundebene, ein darauf gesetztes Dielektrikum sowie eine darauf ausgebildete Antennenstruktur gebildet. Eine zweite Antenne wird durch die metallische Grundebene, das Dielektrikum der ersten Antenne sowie ein weiteres, darüber vorgesehenes Dielektrikum und eine obere zweite Antennenstruktur für terrestrischen Empfang ausgebildet.
  • Die DE 101 33 295 A1 zeigt eine Antennenanordnung für Kraftfahrzeuge zur Anbringung auf einer in Wesentlichen waagerechten metallischen Karosserieoberfläche, die Strahler für mehrere, durch Lücken getrennte Frequenzbänder des GHz-Bereichs aufweist.
  • Die US-A-4,827,271 zeigt eine Patch-Antenne mit Durchkontaktierungen zwischen der Antennenstruktur und der Metallisierung zum Potentialabgleich.
  • Der Erfindung liegt die Aufgabe zugrunde, ein Antennenmodul zu schaffen, das einen kompakten Aufbau und eine vielseitige Funktionalität bei hoher Sicherheit und eine leichte Zugänglichkeit der Einkoppelpunkte der Durchkontaktierungen gewährleistet.
  • Diese Aufgabe wird durch ein Antennenmodul nach Anspruch 1 gelöst. Die Unteransprüche beschreiben bevorzugte Weiterbildungen.
  • Erfindungsgemäß werden somit zwei unterschiedlich große λ/2-Patch-Antennen übereinander gesetzt und separat abgegriffen. Die untere Patch-Antenne ist hierbei für eine effektive Strahlungseigenschaft größer als die obere Patch-Antenne ausgebildet. Die Patch-Antennen weisen unabhängig voneinander Substratmaterialien auf, an deren Oberseiten entsprechende λ/2-Antennenstrukturen ausgebildet sind. Auf der Unterseite des unteren Substrates ist eine untere Metallisierung vorgesehen. Die Unterseite des oberen Substrates weist eine Metallisierung auf oder sie liegt an einer MetaIlisierung an. Beide Substrate können grundsätzlich auf ihrer Unterseite metallisiert sein. Bei einer derartigen Ausführungsform kann grundsätzlich auch z. B. ein zusätzliches Dielektrikum zwischen der unteren Metallisierung der oberen Patch-Antenne und der Antennenstruktur der unteren Patch-Antenne liegen. Der Einkoppelpunkt des unteren Antennenabgriffs an die untere Antennenstruktur ist von dem oberen Substrat nicht bedeckt.
  • Gemäß einer vorteilhaften Ausbildung wird jedoch auf der Unterseite des oberen Substrates keine Metallisierung ausgebildet, da dieses Element durch den gestapelten Aufbau direkt auf der metallischen Antennenstruktur der unteren Patch-Antenne sitzt bzw. angeordnet ist und diese direkt als eigene Metallisierung sieht; hierdurch ergeben sich keine funktionellen Nachteile, insbesondere liegt hier keine Kopplung dieser Antennen vor.
  • Erfindungsgemäß sind die übereinander angeordneten Patch-Antennen entkoppelt. Hierzu sind - anders als z. B. bei der eingangs genannten EP 0 521 384 A1 - die beiden Metallisierungen der Patch-Antennen - d.h. die untere Metallisierung der unteren Patch-Antenne und die Metallisierung der oberen Patch-Antenne bzw. die als diese wirkende Antennenstruktur der unteren Patch-Antenne separat ausgebildet. Anders als bei der EP 0 521 384 A1 soll erfindungsgemäß weniger ein breitbandiges System, sondern eine Anordnung von zwei entkoppelten Antennen geschaffen werden.
  • Weiterhin sind - anders als bei den meisten herkömmlichen, für terrestrischen Empfang vorgesehenen Antennenmodulen mit λ/4- Antennenelementen - erfindungsgemäß λ/2-Antennenelemente bzw. Antennenstrukturen vorgesehen. Sie sind hierbei für einen Satellitenempfang ausgebildet, d.h. Signale mit zirkularer Polarisation unter einem Elevationswinkel von im Wesentlichen 30° bis 90° gegenüber der Horizontalen. Anders als bei herkömmlichen Antennenstrukturen, bei denen oberhalb der Antennengrundstruktur gegebenenfalls parasitäre Elemente vorgesehen und direkt mit der unteren Antennenstruktur gekoppelt sind, ist erfindungsgemäß ein separater Abgriff für die separate obere λ/2-Antennenstruktur vorgesehen.
  • Die Signale werden vorteilhafterweise koaxial abgegriffen. Der vorzugsweise koaxiale Abgriff kann hierbei auf der unteren Metallisierung der unteren Patch-Antenne bzw. einer hier vorgesehenen Leiterplatte erfolgen. Um dasselbe Bezugspotential für die Metallisierungen der beiden Patch-Antennen zu realisieren, kann eine Durchkontaktierung durch die untere Patch-Antenne vorgesehen sein, die die beiden Metallisierungen bzw. die als Metallisierung der oberen Patch-Antenne dienende Antennenstruktur der unteren Patch-Antenne und die Metallisierung der unteren Patch-Antenne galvanisch verbindet. Diese Durchkontaktierung erfolgt hierbei vorteilhafterweise in der Mitte der λ/2-Antennenstruktur, da hier ein Maximum der Stromverteilung und entsprechend ein Minimum des Betrags der Spannung vorliegt. Somit kann der lateral mittlere Bereich der Antennenstruktur kurzgeschlossen werden, ohne dass Beeinträchtigungen in der Strom- und Feldverteilung entstehen.
  • Das erfindungsgemäße Antennenmodul kann z.B. für den Empfang von GPS-Signalen im L-Band, d.h. bei 1575 MHz, und der satellitengestützten digitalen Radiodienste DAB worldStar (WorldSpace) in Afrika und Asien bei 1467 MHz bis 1492 MHz sowie DMB (Digital Mulimedia Broadcasting) in Fernost-Asien bei 2630 MHz bis 2655 MHz und SDARS (Satellite Digital Audio Reception System) bei 2320 MHz bis 2345 MHz in den USA eingesetzt werden. Die Auswahl der Frequenzbänder für die obere und untere Patch-Antenne erfolgt zum einen durch die Dimensionierung der Antennenstrukturen. Zusätzlich kann entsprechend das dielektrische Material der Substrate derartig gewählt werden, dass die geeigneten Frequenzbänder erreicht werden. Somit kann grundsätzlich auch die obere, kleinere Patch-Antenne einen Dienst niedrigerer Frequenz decken, indem das obere Substrat eine entsprechend höhere Dielektrizitätskontante als das untere Substrat aufweist.
  • Die Patch-Antennen können zusätzlich zu dem Satellitenempfang auch terrestrische Signale empfangen; so kann z.B. die untere Patch-Antenne für SDARS ergänzend terrestrisch empfangen. Die obere Patch-Antenne ist vorteilhafterweise für GPS-Empfang vorgesehen.
  • Erfindungsgemäß sind vorteilhafterweise aktive Patch-Empfangsantennen ausgebildet, wobei ein rauscharmer Verstärker (low noise amplifier, LNA) am Antennenfußpunkt integriert ist. Vorteilhafterweise werden die rauscharmen Verstärker auf der Unterseite einer Leiterplatte angebracht, auf deren Oberseite die untere Patch-Antenne vorgesehen ist. Weiterhin kann einer der rauscharmen Verstärker auf einer Leiterplatte und der andere auf einer separaten Leiterplatte vorgesehen sein. Weiterhin können auch nur Teile eines Rauscharmen Verstärkers auf einer separaten Leiterplatte aufgebaut sein, wobei dieser separate Teil vorzugsweise die Gleichspannungsversorgung bzw. -regelung enthält, so dass die Verbindung der beiden Leiterplatten durch eine einfache Drahtverbindung, z.B. einen Drahtpin realisiert werden kann.
  • Das erfindungsgemäße Antennenmodul kann weiterhin ergänzend auch eine terrestrische Antenne aufweisen, z.B. einen (Mehrband-) Monopol oder eine (Mehrband-) Stabantenne wie z.B. für Telefondienste, AM/FM oder terrestrisches DAB im L-Band (1452 MHz bis 1492 MHz) sowie Band III (170 MHz bis 230 MHz). Die terrestrische Antenne kann vor, hinter oder auf dem Stapel aus Patch-Antennen, vorteilhafterweise in Fahrtrichtung hinter dieser, angeordnet sein.
  • Falls die beiden Patch Antennen mit einer Telefonantenne kombiniert sind, ist vorteilhafterweise eine geeignete Filtertechnik in den Verstärkern vorgesehen, die das relativ starke Sendesignal der Telefonantenne bereits am Eingang der Verstärker unterdrückt. Hierdurch kann man den Verstärker bzw. die separaten Verstärker gegen Sättigungseffekte schützen.
  • Weiterhin kann das Antennenmodul als Gruppenantenne mit mehreren Elementen aus jeweils einem oberen Patch-Antenne und einer unteren Patch-Antenne ausgebildet sein. Die Elemente in der Gruppe können als Sende- und/oder Empfangsantenne dienen.
  • Das Antennenmodul kann als Sende- und Empfangsantenne dienen, wobei eine der beiden Patchantennen als Sende- und die andere als Empfangsantenne dient; dies ist insbesondere in einer Gruppenantenne sinnvoll, bei der von jedem Stapel jeweils eine der beiden Antennen als Sende- und die andere als Empfangsantenne dient.
  • Die Erfindung wird im Folgenden anhand der beiliegenden Zeichnungen an einigen Ausführungsformen näher erläutert. Es zeigen:
  • Fig. 1
    den Aufbau eines Antennenmoduls gemäß einer ersten Ausführungsform mit zwei auf einer gemeinsamen Leiterplatte vorgesehenen Verstärkern;
    Fig. 2
    den Aufbau eines Antennenmoduls gemäß einer weiteren Ausführungsform mit auf unterschiedlichen Leiterplatten angeordneten Verstärkern der Antennenelemente;
    Fig. 3
    den Aufbau eines Antennenmoduls gemäß einer weite ren Ausführungsform mit einer zusätzlichen, im Wesentlichen vertikal ausgerichteten terrestrischen Antenne;
    Fig. 4 a bis c
    verschiedene Ausführungsformen für Band-Sperr-Filter für das Antennenmodul der Fig. 3 zur Unterdrückung des Sendebandes der terrestrischen Funkantenne.
  • Ein in Fig. 1 gezeigtes Antennenmodul 1 weist gemäß Fig. 1 eine Grundplatte 2, die z.B. als Metallplatte ausgebildet sein kann, eine auf der Grundplatte 2 befestigte untere Leiterplatte 3 und eine parallel und oberhalb von dieser verlaufende obere Leiterplatte 4 auf. Zwischen der oberen Leiterplatte 4 und der Grundplatte 2 sind zwei in lateraler Richtung durch eine metallische Wand 6 getrennte und elektromagnetisch abgeschirmte Verstärkerkammern 7 und 8 vorgesehen. Sie können insbesondere Teile einer gemeinsamen Verstärkerkammer sein, die durch die metallische Wand 6 unterteilt ist.
  • Auf der oberen Leiterplatte 4 ist eine untere Patch-Antenne 10 angebracht, die ein unteres Substrat 11 aus einem Dielektrikum, z.B. Keramik, eine auf der Oberseite des unteren Substrates 11 ausgebildete untere λ/2-Antennenstruktur 12 und eine auf der Unterseite des unteren Substrates 11 ausgebildete untere vollflächige Metallisierung 13 aufweist. Die untere λ/2-Antennenstruktur 12 ist über eine durch das untere Substrat 11 verlaufende Durchkontaktierung 14 mit einem in der linken Verstärkerkammer 7 aufgenommenen, an der Unterseite der oberen Leiterplatte 4 befestigten ersten rauscharmen Verstärker (LNA) 16 kontaktiert, der die aufgenommenen HF-Signale verstärkt und über einen ersten (linken) koaxialen Abgriff 18 weiterleitet. Die Durchkontaktierung 14 kann hierbei mit dem Verstärker 16 direkt oder vorteilhafterweise indirekt über eine Leiterbahn der oberen Leiterplatte 4 kontaktiert sein.
  • Gemäß Fig. 1 wird hierbei der Einkoppelpunkt der Durchkontaktierung 14 an der unteren Antennenstruktur 12 von der oberen Antennenstruktur 22 nicht überdeckt; hierbei wird dieser Einkoppelpunkt auch nicht von dem oberen Substrat 21 überdeckt, so dass dieser Einkoppelpunkt als Anlötpunkt gelötet werden kann, ohne dass er mit dem oberen Substrat 21 kollidiert und z. B. eine entsprechende Aussparung in dem oberen Substrat auszubilden ist.
  • Auf der unteren Patch-Antenne 10 ist eine obere Patch-Antenne 20 befestigt, die ein oberes Substrat 21, eine auf der Oberseite des oberen Substrates 21 ausgebildete obere λ/2-Antennenstruktur 22 und eine auf der Unterseite des oberen Substrates 21 ausgebildete vollflächige obere Metallisierung 23 aufweist. Die obere λ/2-Antennenstruktur 22 ist über eine obere Durchkontaktierung 24 direkt oder über die obere Leiterplatte 4 mit einem auf der Unterseite der oberen Leiterplatte 4 angebrachten, in der rechten Verstärkerkammer 8 aufgenommenen zweiten rauscharmen Verstärker (LNA) 26 kontaktiert, der die aufgenommenen HF-Signale verstärkt und über einen zweiten (rechten) koaxialen Abgriff 28 weitergibt.
  • Eine durch das untere Substrat 11 verlaufende Durchkontaktierung 19 verbindet die untere λ/2-Antennenstruktur 12 galvanisch mit der unteren Metallisierung 13 und diese somit auf ein gleiches Potential legt. Die Durchkontaktierung 19 erfolgt hierbei vorteilhafterweise mittig an der unteren λ/2-Antennenstruktur 12, da in diesem Bereich keine wesentlichen Spannungen, sondern ein Strommaximum der induzierten HF-Ströme auftritt.
  • Teile der rauscharmen Verstärker 7, 8 können auch auf der separaten Leiterplatte 3 aufgebaut sein. Die Teilung der Verstärker 7, 8 kann sich nur auf die Gleichspannungsversorgung beziehen oder sogar für eine ganze oder mehrere HF-Verstärker-Stufen ausgebildet sein. Alternativ hierzu können auch beide Verstärker 7, 8 auf einer separaten Leiterplatte aufgenommen sein. Falls eine Gleichspannungstrennung vorgesehen ist, kann eine einfache Drahtverbindung 32 zwischen den beiden Leiterplatten 3 und 4 als elektrische Verbindung vorgesehen sein.
  • Die obere Patch-Antenne 20 mit der oberen λ/2-Antennenstruktur 22 ist kleiner als die untere Patch-Antenne 10 mit der unteren λ/2-Antennenstruktur 12, wodurch gute Strahlungseigenschaften der λ/2-Antennen 10, 20 erreicht werden. Hierbei ist die obere Patch-Antenne 20 zum Empfang eines GPS-Signals und die untere Patch-Antenne 10 z. B. für SDARS oder DAB vorgesehen; ergänzend kann die untere Patch-Antenne 10 auch für terrestrischen Empfang, z.B. bei SDARS, vorgesehen sein. Vorteilhafterweise ist die obere, kleinere Patch-Antenne 20 für niedrigere Frequenzbänder und die untere Patch-Antenne 10 für höhere Frequenzbänder ausgelegt; durch entsprechende Wahl der Dielektrizitätskonstanten εr können die Frequenzbänder jedoch grundsätzlich frei festgelegt werden; entsprechend kann die obere Patch-Antenne 20 auch für ein niedrigeres Frequenzband vorgesehen sein, in dem das obere Substrat 21 eine entsprechend höhere Dielektrizitätkonstante εr aufweist.
  • Erfindungsgemäß kann die Metallisierung 23 der oberen Patch-Antenne 20 weggelassen werden, so dass das obere Substrat 21 die unter ihr angeordnete untere Antennenstruktur 12 als Metallisierung sieht.
  • Das Antennenmodul 41 der Fig. 2 ist grundsätzlich entsprechend demjenigen der Fig. 1 aufgebaut und entsprechend mit gleichen Bezugszeichen versehen. Hierbei ist jedoch der erste (linke) Verstärker 16 auf der unteren Leiterplatte 3 aufgebaut. Alternativ hierzu kann vorzugsweise auch lediglich der HF-Teil des ersten Verstärkers 16 auf der separaten; unteren Leiterplatte 3 aufgebaut sein. Hierbei ist eine z.B. durch eine Koaxialleitung 43 gebildete HF-Verbindung zwischen den Leiterplatten 3 und 4 vorgesehen.
  • Fig. 3 zeigt ein Antennenmodul 51, bei dem auf der Grundplatte 2 zusätzlich zu dem in Fig. 1 bzw. 2 gezeigten Antennenmodul 1 bzw. 41 lateral anschließend eine Antenne 53 vorgesehen ist, die als Monopol ausgebildet oder hauptsächlich vertikal ausgerichtet ist. Die Antenne 53 kann beispielsweise als Dual- oder Mehrbandfunkantenne oder AM/FM-Radio-Empfangsantenne sowie als terrestrische DAB-Antenne (L-Band oder Band III) oder als eine Kombination dieser Antennen ausgeführt sein.
  • Ein dritter Verstärker 55 ist z.B. unterhalb der Antenne 53 in einer separaten Kammer vorgesehen; die Verstärker 16, 26 und 55 können auch Funktionen teilen.
  • Fig. 4a bis c zeigen Ausführungsbeispiele für Band-Sperren-Filter 60. Diese Filter sind so ausgelegt, dass das Sendeband der Funkantenne 53 hinreichend unterdrückt wird, so dass bei einem gleichzeitigen Betrieb von Funk und digitalem Radio oder GPS keine Beeinträchtigung hervorgerufen wird. In den Band-Sperren-Filtem 60 ist als Induktivität ein Leitungsstück 62 vorgesehen, das mit einem Kondensator C gemäß Fig. 4a einen Reihenschluss und gemäß Fig. 4c einen Parallelschluss bildet. In Fig. 4b ist ein Leitungsstück 64 als λ/4-Leitung vorgesehen, die eine Leerlauf-Kurzschluss-Transformation bewirkt. Das Blindelement Z ist jeweils zwecks Anpassung vorgesehen und kann ein Kondensator, eine Spule oder eine Kombination derartiger Elemente in einer entsprechenden Schaltung sein. Die Band-Sperren-Filter 60 sind jeweils mit ihrem Eingang 66 an den jeweiligen Antennenfusspunkt und mit ihrem Ausgang 67 an den Eingang des jeweiligen Verstärkers anzuschließen.

Claims (19)

  1. Antennenmodul für Frequenzen im GHz-Bereich, zur Befestigung an einem Kraftfahrzeug, das mindestens aufweist:
    eine untere Patch-Antenne (10) mit
    einem unteren Substrat (11) aus einem dielektrischen Material,
    einer auf der Oberseite des unteren Substrates (11) ausgebildeten unteren Satellitenempfangs- λ/2-Antennenstruktur (12) für Frequenzen im GHz-Bereich und
    einer auf der Unterseite des unteren Substrates (11) vorgesehenen unteren Metallisierung (13),
    eine auf der unteren Patch-Antenne (10) angebrachte obere Patch-Antenne (20) mit
    einem oberen Substrat (21) aus einem dielektrischen Material
    dessen Unterseite eine Metallisierung (23) aufweist oder an einer Metallisierung (12) anliegt, und
    einer auf der Oberseite des oberen Substrates (21) ausgebildeten oberen Satellitenempfangs- λ/2-Antennenstruktur (22) für Frequenzen im GHz-Bereich,
    einen unteren Antennenabgriff (14) von der unteren Satellitenempfangs- λ/2- Antennenstruktur (12) durch das untere Substrat (11), und
    einen von dem unteren Antennenabgriff (14) separaten oberen Antennenabgriff (24) von der oberen Satellitenempfangs- λ/2- Antennenstruktur (22) durch das obere Substrat (21) und die untere Patch-Antenne (10),
    wobei die obere Patch-Antenne (20) gegenüber der unteren Patch-Antenne (10) kleiner dimensioniert ist, und
    wobei der Einkoppelpunkt des unteren Antennenabgriffs (14) an die untere Satellitenempfangs- λ/2-Antennenstruktur (12) nicht von dem oberen Substrat (21) bedeckt ist.
  2. Antennenmodul nach Anspruch 1, dadurch gekennzeichnet, dass unterhalb der unteren Patch-Antenne (10) mindestens eine Verstärkerkammer (7, 8) ausgebildet ist und die Antennenabgriffe (14, 24) mit einer in der mindestens einen Verstärkerkammer (7, 8) angeordneten Verstärkereinrichtung (16, 26) verbunden sind.
  3. Antennenmodul nach Anspruch 2, dadurch gekennzeichnet, dass mindestens zwei durch eine metallische Wand (6) elektromagnetisch abgeschirmte Verstärkerkammem (7, 8) ausgebildet sind, wobei in der ersten Verstärkerkammer (7) ein erster rauscharmer Verstärker (16) zur Aufnahme des HF-Signals der unteren Satellitenempfangs- λ/2-Antennenstruktur (12) über den unteren Antennenabgriff (14) und in der zweiten Verstärkerkammer (7) ein zweiter rauscharmer Verstärker (16) zur Aufnahme des HF-Signals der oberen Satellitenempfangs-λ/2-Antennenstruktur (22) über den oberen Antennenabgriff (24) vorgesehen ist.
  4. Antennenmodul nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass es eine Grundplatte (2) aufweist, auf der die mindestens eine Verstärkerkammer (7, 8) befestigt ist, wobei die untere Metallisierung (13) der unteren Patch-Antenne (10) galvanisch mit der Grundplatte (2) verbunden ist.
  5. Antennenmodul nach einem der Ansprüche 2 bis 4, dadurch gekennzeichnet, dass die untere Patch-Antenne (10) auf einer Leiterplatte (4) befestigt ist, auf deren Unterseite die Verstärker (16, 27) befestigt sind.
  6. Antennenmodul nach Anspruch 5, dadurch gekennzeichnet, dass Teile der Verstärkereinrichtung (16, 26), z.B. die Gleichspannungsversorgung, auf mindestens einer weiteren Leiterplatte (3) aufgebaut sind, wobei die Leiterplatten (3, 4) gleichstrommäßig mit einer Drahtverbindung (32) oder hochfrequenzmäßig mit einer HF-Verbindung (43) verbunden sind, wobei die mindestens eine weitere Leiterplatte (3) unterhalb der die Verstärkereinrichtung (16, 26) aufnehmenden Leiterplatte (4) angeordnet ist
  7. Antennenmodul nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass auf der Unterseite des oberen Substrates (21) eine obere Metallisierung (23) ausgebildet ist.
  8. Antennenmodul nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, dass die Unterseite des oberen Substrates (21) direkt auf der als untere Metallisierung wirkenden unteren Satellitenempfangs-λ/2-Antennenstruktur (12) der unteren Patch-Antenne (10) aufliegt.
  9. Antennenmodul nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die obere Patch-Antenne (20) für höhere Frequenzen als die untere Patch-Antenne (10) ausgelegt ist.
  10. Antennenmodul nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass das obere Substrat (21) eine höhere Dielektrizitätskonstante als das untere Substrat (11) aufweist und die obere Patch-Antenne (20) für niedrigere Frequenzen als die untere Patch-Antenne (10) ausgelegt ist.
  11. Antennenmodul nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass die Strahlungsdiagramme der Satellitenempfangs- λ/2-Antennenstrukturen (12, 22) einen Elevationswinkel von im wesentlichen 30° bis 90° decken.
  12. Antennenmodul nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass das Antennenmodul zusätzlich ein oder mehrere Antennen (53) für terrestrischen Empfang, z.B. Monopole oder überwiegend vertikale ausgerichtete Antennen, aufweist.
  13. Antennenmodul nach Anspruch 12, dadurch gekennzeichnet, dass die ein oder mehreren terrestrischen Antennen (53) für mindestens eine der folgenden Funktion vorgesehen sind: mobiles Telefon, AM/FM-Radio-Empfang, DAB-Band III und DAB terrestrisches L-Band.
  14. Antennenmodul nach Anspruch 12 oder 13, dadurch gekennzeichnet, dass ein oder mehreren terrestrischen Antennen (53) lateral neben oder auf den Patch-Antennen (10, 20) vorgesehen sind.
  15. Antennenmodul nach Anspruch 14, dadurch gekennzeichnet, dass die mindestens eine rauscharme Verstärkereinrichtung (16, 26, 55) einen Band-Sperren-Filter (60) für mindestens eines der Sendebänder der ein oder mehreren terrestrischen Antennen (53) aufweist.
  16. Antennenmodul nach Anspruch 15, dadurch gekennzeichnet, dass der mindestens eine Band-Sperren -Filter (60) mit ihrem Eingang (66) an dem jeweiligen Antennenfußpunkt und mit ihrem Ausgang (67) an dem Eingang des jeweiligen Verstärkers (16, 26, 55) angebracht ist.
  17. Antennenmodul nach Anspruch 15 oder 16, dadurch gekennzeichnet, dass der mindestens eine Band-Sperren -Filter (60) ein Leitungsstück (62, 64) als Induktivität aufweist.
  18. Antennenmodul nach Anspruch 17, dadurch gekennzeichnet, dass das Leitungsstück (64) als λ/4-Leitung für eine Leerlauf-Kurzschluss-Transformation ausgelegt ist.
  19. Antennenmodul nach einem der vorherigen Ansprüche, dadurch gekennzeichnet, dass eine der beiden Patch-Antennen (10, 20) als Sendeantenne und die andere Patch-Antenne (20, 10) als Empfangsantenne ausgelegt ist.
EP05015079.6A 2004-07-20 2005-07-12 Antennenmodul Active EP1619752B1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE102004035064A DE102004035064A1 (de) 2004-07-20 2004-07-20 Antennenmodul

Publications (2)

Publication Number Publication Date
EP1619752A1 EP1619752A1 (de) 2006-01-25
EP1619752B1 true EP1619752B1 (de) 2014-04-02

Family

ID=34937827

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05015079.6A Active EP1619752B1 (de) 2004-07-20 2005-07-12 Antennenmodul

Country Status (3)

Country Link
US (3) US20060220970A1 (de)
EP (1) EP1619752B1 (de)
DE (1) DE102004035064A1 (de)

Families Citing this family (46)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7446707B2 (en) * 2004-04-16 2008-11-04 Micro-Ant, Inc. Ultra-low profile vehicular antenna methods and systems
DE102004035064A1 (de) 2004-07-20 2006-02-16 Receptec Gmbh Antennenmodul
US7164385B2 (en) 2005-06-06 2007-01-16 Receptec Holdings, Llc Single-feed multi-frequency multi-polarization antenna
US7277056B1 (en) 2006-09-15 2007-10-02 Laird Technologies, Inc. Stacked patch antennas
US8111196B2 (en) 2006-09-15 2012-02-07 Laird Technologies, Inc. Stacked patch antennas
US7720434B2 (en) * 2006-10-12 2010-05-18 Delphi Technologies, Inc. Method and system for processing GPS and satellite digital radio signals using a shared LNA
US7586451B2 (en) * 2006-12-04 2009-09-08 Agc Automotive Americas R&D, Inc. Beam-tilted cross-dipole dielectric antenna
US7587183B2 (en) 2006-12-15 2009-09-08 Laird Technologies, Inc. Multi-frequency antenna assemblies with DC switching
KR100842071B1 (ko) * 2006-12-18 2008-06-30 삼성전자주식회사 컨커런트 모드 안테나 시스템
DE102007055323B4 (de) * 2007-11-20 2013-04-11 Continental Automotive Gmbh Finnenförmiges Multiband Antennenmodul für Fahrzeuge
US7830301B2 (en) * 2008-04-04 2010-11-09 Toyota Motor Engineering & Manufacturing North America, Inc. Dual-band antenna array and RF front-end for automotive radars
US8022861B2 (en) * 2008-04-04 2011-09-20 Toyota Motor Engineering & Manufacturing North America, Inc. Dual-band antenna array and RF front-end for mm-wave imager and radar
US7733265B2 (en) 2008-04-04 2010-06-08 Toyota Motor Engineering & Manufacturing North America, Inc. Three dimensional integrated automotive radars and methods of manufacturing the same
ITPD20080132A1 (it) * 2008-04-29 2009-10-30 Calearo Antenne Spa Modulo di antenna multifunzionale per il trattamento di una molteplicita' di segnali in radiofrequenza.
US7800542B2 (en) * 2008-05-23 2010-09-21 Agc Automotive Americas R&D, Inc. Multi-layer offset patch antenna
US8232924B2 (en) * 2008-05-23 2012-07-31 Alliant Techsystems Inc. Broadband patch antenna and antenna system
US8059060B2 (en) * 2008-09-08 2011-11-15 I-5 Wireless, LLC. Unitary solderless monopole antenna for in-duct use
DE102008048289B3 (de) 2008-09-22 2010-03-11 Kathrein-Werke Kg Mehrschichtige Antennenanordnung
US7936306B2 (en) 2008-09-23 2011-05-03 Kathrein-Werke Kg Multilayer antenna arrangement
US7990237B2 (en) * 2009-01-16 2011-08-02 Toyota Motor Engineering & Manufacturing North America, Inc. System and method for improving performance of coplanar waveguide bends at mm-wave frequencies
US8045592B2 (en) * 2009-03-04 2011-10-25 Laird Technologies, Inc. Multiple antenna multiplexers, demultiplexers and antenna assemblies
TWM369547U (en) * 2009-05-27 2009-11-21 Smartant Telecom Co Ltd High-gain omni-directional antenna module
TWI381585B (zh) * 2009-06-30 2013-01-01 Wistron Neweb Corp 雙頻天線裝置
US8786496B2 (en) 2010-07-28 2014-07-22 Toyota Motor Engineering & Manufacturing North America, Inc. Three-dimensional array antenna on a substrate with enhanced backlobe suppression for mm-wave automotive applications
US8537062B1 (en) 2010-09-30 2013-09-17 Laird Technologies, Inc. Low-profile antenna assemblies
US8519897B2 (en) 2010-09-30 2013-08-27 Laird Technologies, Inc. Low-profile antenna assembly
DE102012003460A1 (de) * 2011-03-15 2012-09-20 Heinz Lindenmeier Multiband-Empfangsantenne für den kombinierten Empfang von Satellitensignalen und terrestrisch ausgestrahlten Rundfunksignalen
TW201345050A (zh) * 2012-04-27 2013-11-01 Univ Nat Taiwan Science Tech 可雙頻操作之圓極化天線
DE102012009846B4 (de) 2012-05-16 2014-11-06 Kathrein-Werke Kg Patch-Antennen-Anordnung
TWM446984U (zh) * 2012-08-01 2013-02-11 Sj Antenna Design 多頻天線裝置
US9893427B2 (en) * 2013-03-14 2018-02-13 Ethertronics, Inc. Antenna-like matching component
US9093750B2 (en) 2013-09-12 2015-07-28 Laird Technologies, Inc. Multiband MIMO vehicular antenna assemblies with DSRC capabilities
US9716318B2 (en) 2014-10-22 2017-07-25 Laird Technologies, Inc. Patch antenna assemblies
EP3091610B1 (de) * 2015-05-08 2021-06-23 TE Connectivity Germany GmbH Antennensystem und antennenmodul mit verminderter interferenz zwischen strahlungsmustern
US10186775B2 (en) * 2015-08-11 2019-01-22 The United States Of America, As Represented By The Secretary Of The Army Patch antenna element with parasitic feed probe
US9755772B1 (en) * 2016-03-07 2017-09-05 GM Global Technology Operations LLC Vehicle communication system for receiving frequency modulation and digital audio broadcast radio frequency bands
US10454174B2 (en) * 2016-05-10 2019-10-22 Novatel Inc. Stacked patch antennas using dielectric substrates with patterned cavities
US10096893B2 (en) * 2016-12-02 2018-10-09 Laird Technologies, Inc. Patch antennas
JP6775544B2 (ja) * 2018-04-26 2020-10-28 株式会社ヨコオ パッチアンテナ及び車載用アンテナ装置
WO2020000250A1 (zh) * 2018-06-27 2020-01-02 华为技术有限公司 一种天线封装结构
US20220231410A1 (en) * 2018-07-15 2022-07-21 Shenzhen Merrytek Technology Co., Ltd. Anti-Interference Microwave Antenna
CN112751178A (zh) * 2019-10-29 2021-05-04 北京小米移动软件有限公司 天线单元、阵列天线及电子设备
US11525884B2 (en) * 2020-06-09 2022-12-13 Toyota Motor Engineering & Manufacturing North America, Inc. Multi-spectral vehicular radar system
KR20220006749A (ko) * 2020-07-09 2022-01-18 삼성전기주식회사 안테나 장치
US20230246326A1 (en) * 2020-07-22 2023-08-03 Lg Electronics Inc. Electronic device equipped with antenna module
DE102022203585A1 (de) 2022-04-08 2023-10-12 Continental Automotive Technologies GmbH Mehrschichtige Patchantennenvorrichtung, Antennenmodul und Fahrzeug mit einer mehrschichtige Patchantennenvorrichtung

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521384A1 (de) * 1991-07-01 1993-01-07 Ball Corporation Schichtartig aufgebaute Mehrfachfrequenz-Streifenleiterantenne
US6087990A (en) * 1999-02-02 2000-07-11 Antenna Plus, Llc Dual function communication antenna

Family Cites Families (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4089003A (en) * 1977-02-07 1978-05-09 Motorola, Inc. Multifrequency microstrip antenna
US4132995A (en) * 1977-10-31 1979-01-02 Raytheon Company Cavity backed slot antenna
US4218482A (en) * 1979-02-05 1980-08-19 Detyzco, Inc. Frozen, nutritious pet food
US4218682A (en) 1979-06-22 1980-08-19 Nasa Multiple band circularly polarized microstrip antenna
US4401988A (en) * 1981-08-28 1983-08-30 The United States Of America As Represented By The Secretary Of The Navy Coupled multilayer microstrip antenna
US4660048A (en) 1984-12-18 1987-04-21 Texas Instruments Incorporated Microstrip patch antenna system
JPS634723A (ja) 1986-06-24 1988-01-09 Sharp Corp マイクロ波受信機
US4827271A (en) * 1986-11-24 1989-05-02 Mcdonnell Douglas Corporation Dual frequency microstrip patch antenna with improved feed and increased bandwidth
US5003318A (en) * 1986-11-24 1991-03-26 Mcdonnell Douglas Corporation Dual frequency microstrip patch antenna with capacitively coupled feed pins
GB2213996A (en) 1987-12-22 1989-08-23 Philips Electronic Associated Coplanar patch antenna
US5121127A (en) * 1988-09-30 1992-06-09 Sony Corporation Microstrip antenna
US6008770A (en) * 1996-06-24 1999-12-28 Ricoh Company, Ltd. Planar antenna and antenna array
US6181281B1 (en) * 1998-11-25 2001-01-30 Nec Corporation Single- and dual-mode patch antennas
JP3344467B2 (ja) 1998-11-26 2002-11-11 日本電気株式会社 デュアルモードパッチアンテナ
US6118406A (en) * 1998-12-21 2000-09-12 The United States Of America As Represented By The Secretary Of The Navy Broadband direct fed phased array antenna comprising stacked patches
US6466768B1 (en) * 1999-06-11 2002-10-15 Conexant Systems, Inc. Multi-band filter system for wireless communication receiver
WO2000079648A1 (en) * 1999-06-17 2000-12-28 The Penn State Research Foundation Tunable dual-band ferroelectric antenna
IT1307463B1 (it) 1999-06-30 2001-11-06 Calearo S R L Antenna multifunzione per autoveicoli
US6538609B2 (en) * 1999-11-10 2003-03-25 Xm Satellite Radio Inc. Glass-mountable antenna system with DC and RF coupling
US6664932B2 (en) 2000-01-12 2003-12-16 Emag Technologies, Inc. Multifunction antenna for wireless and telematic applications
DE10037386A1 (de) 2000-08-01 2002-02-14 Bosch Gmbh Robert Kombiniertes Empfänger- und Transpondermodul
DE50103253D1 (de) * 2000-11-24 2004-09-16 Siemens Ag Pifa-antennenvorrichtung für mobile kommunikationsendgeräte
GB0030741D0 (en) 2000-12-16 2001-01-31 Koninkl Philips Electronics Nv Antenna arrangement
US20020149520A1 (en) * 2001-04-12 2002-10-17 Laubner Thomas S. Microstrip antenna with improved low angle performance
US7904110B2 (en) * 2001-05-17 2011-03-08 Sirf Technology Inc. System and method for receiving digital satellite radio and GPS
FR2826186B1 (fr) * 2001-06-18 2003-10-10 Centre Nat Rech Scient Antenne mulitfonctions integrant des ensembles fil-plaque
DE10133295B4 (de) 2001-07-12 2013-05-23 Delphi Technologies, Inc. Antennenanordnung
US6762729B2 (en) * 2001-09-03 2004-07-13 Houkou Electric Co., Ltd. Slotted bow tie antenna with parasitic element, and slotted bow tie array antenna with parasitic element
US6597316B2 (en) * 2001-09-17 2003-07-22 The Mitre Corporation Spatial null steering microstrip antenna array
WO2003034545A1 (en) * 2001-10-16 2003-04-24 Fractus, S.A. Multifrequency microstrip patch antenna with parasitic coupled elements
JP3420232B2 (ja) * 2001-11-16 2003-06-23 日本アンテナ株式会社 複合アンテナ
US6850191B1 (en) * 2001-12-11 2005-02-01 Antenna Plus, Llc Dual frequency band communication antenna
DE50213971D1 (de) * 2001-12-15 2009-12-10 Hirschmann Electronics Gmbh Hohlraumresonatorantenne mit breitbandschlitz
US6639558B2 (en) * 2002-02-06 2003-10-28 Tyco Electronics Corp. Multi frequency stacked patch antenna with improved frequency band isolation
AU2003228322A1 (en) * 2002-03-15 2003-09-29 The Board Of Trustees Of The Leland Stanford Junior University Dual-element microstrip patch antenna for mitigating radio frequency interference
JP2004007559A (ja) 2002-04-25 2004-01-08 Matsushita Electric Ind Co Ltd 多共振アンテナ、アンテナモジュールおよび多共振アンテナを用いた無線装置
US6806838B2 (en) * 2002-08-14 2004-10-19 Delphi-D Antenna Systems Combination satellite and terrestrial antenna
US6836247B2 (en) 2002-09-19 2004-12-28 Topcon Gps Llc Antenna structures for reducing the effects of multipath radio signals
US6812891B2 (en) * 2002-11-07 2004-11-02 Skycross, Inc. Tri-band multi-mode antenna
US7030824B1 (en) * 2003-05-29 2006-04-18 Lockheed Martin Corporation MEMS reflectarray antenna for satellite applications
US7116952B2 (en) * 2003-10-09 2006-10-03 Intel Corporation Method and apparatus to provide an area efficient antenna diversity receiver
WO2005086933A2 (en) * 2004-03-09 2005-09-22 Procon, Inc. Combination service request and satellite radio system
US7084815B2 (en) * 2004-03-22 2006-08-01 Motorola, Inc. Differential-fed stacked patch antenna
DE102004035064A1 (de) 2004-07-20 2006-02-16 Receptec Gmbh Antennenmodul
US7253770B2 (en) * 2004-11-10 2007-08-07 Delphi Technologies, Inc. Integrated GPS and SDARS antenna
US7385555B2 (en) * 2004-11-12 2008-06-10 The Mitre Corporation System for co-planar dual-band micro-strip patch antenna
US20060205369A1 (en) * 2005-03-06 2006-09-14 Hirschmann Car Communication Gmbh Multiple antenna receiver system in vehicles
US7164385B2 (en) * 2005-06-06 2007-01-16 Receptec Holdings, Llc Single-feed multi-frequency multi-polarization antenna
US7245261B2 (en) 2005-07-12 2007-07-17 Delphi Technologies, Inc. Satellite diversity antenna system
US7277056B1 (en) 2006-09-15 2007-10-02 Laird Technologies, Inc. Stacked patch antennas

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0521384A1 (de) * 1991-07-01 1993-01-07 Ball Corporation Schichtartig aufgebaute Mehrfachfrequenz-Streifenleiterantenne
US6087990A (en) * 1999-02-02 2000-07-11 Antenna Plus, Llc Dual function communication antenna

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAMES J R; HALL P S: "Handbook of microstrip antennas, PASSAGE", 1 January 1989 (1989-01-01), PETER PEREGRINUS LTD, LONDON, GB, pages 318 - 319, XP002266113 *

Also Published As

Publication number Publication date
US7295167B2 (en) 2007-11-13
US7489280B2 (en) 2009-02-10
DE102004035064A1 (de) 2006-02-16
US20060220970A1 (en) 2006-10-05
US20060273969A1 (en) 2006-12-07
US20070210967A1 (en) 2007-09-13
EP1619752A1 (de) 2006-01-25

Similar Documents

Publication Publication Date Title
EP1619752B1 (de) Antennenmodul
DE102007055323B4 (de) Finnenförmiges Multiband Antennenmodul für Fahrzeuge
DE69723093T2 (de) Funkkommunikationsgerät
EP2664025B1 (de) Multiband-empfangsantenne für den kombinierten empfang von satellitensignalen und terrestrisch ausgestrahlten rundfunksignalen
DE10150149A1 (de) Antennenmodul
DE102008039776A1 (de) Gestapelte Patchantenne mit Doppelband
EP1078424B1 (de) Mehr-bereichs-antenne
DE10304911A1 (de) Kombinationsantennenanordnung für mehrere Funkdienste für Fahrzeuge
DE69913962T2 (de) Mehrband-fahrzeugantenne
EP2424036A2 (de) Empfangsantenne für Zirkular Polarisierte Satellitenfunksignale
DE112008001688T5 (de) Antennensystem für die Fernsteuerung einer Anwendung im Automobilbereich
WO2023131375A1 (de) Mehrschichtige patchantennenvorrichtung und fahrzeug
EP3108535B1 (de) Mehrbereichsantenne für eine empfangs- und/oder sendeeinrichtung für den mobilen einsatz
DE102007055327A1 (de) Externes mehrbandiges Funkantennenmodul
DE102014016851B3 (de) MIMO Schlitzantenne für Kraftfahrzeuge
EP1517402A1 (de) Antennenanordnung, insbesondere für Kraftfahrzeuge
DE102022109407A1 (de) Antennenelement für drahtlose Kommunikation
DE102017010514A1 (de) Empfangsantenne für die Satellitennavigation auf einem Fahrzeug
DE102008043242A1 (de) Planare Multiband-Antennenstruktur
WO2004082072A1 (de) Multibandantenne mit endkapazität
DE202005011417U1 (de) Antennenmodul
DE102021203836B4 (de) Antennenmodul für ein Kraftfahrzeug
DE29903715U1 (de) DECT-Funkmodul
DE102004027839A1 (de) Antennenstruktur
DE20314442U1 (de) Antennenanordnung für ein Kraftfahrzeug

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR MK YU

17P Request for examination filed

Effective date: 20060203

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

TPAC Observations filed by third parties

Free format text: ORIGINAL CODE: EPIDOSNTIPA

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APAK Date of receipt of statement of grounds of an appeal modified

Free format text: ORIGINAL CODE: EPIDOSCNOA3E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LAIRD TECHNOLOGIES GMBH

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

REG Reference to a national code

Ref country code: DE

Ref legal event code: R079

Ref document number: 502005014270

Country of ref document: DE

Free format text: PREVIOUS MAIN CLASS: H01Q0009040000

Ipc: H01Q0001320000

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAJ Information related to disapproval of communication of intention to grant by the applicant or resumption of examination proceedings by the epo deleted

Free format text: ORIGINAL CODE: EPIDOSDIGR1

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20131107

RIC1 Information provided on ipc code assigned before grant

Ipc: H01Q 5/00 20060101ALI20131028BHEP

Ipc: H01Q 21/28 20060101ALI20131028BHEP

Ipc: H01Q 1/32 20060101AFI20131028BHEP

Ipc: H01Q 9/04 20060101ALI20131028BHEP

INTC Intention to grant announced (deleted)
INTG Intention to grant announced

Effective date: 20131115

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 660625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140415

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 502005014270

Country of ref document: DE

Effective date: 20140515

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20140402

REG Reference to a national code

Ref country code: LT

Ref legal event code: MG4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140702

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140703

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140802

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140804

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005014270

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140712

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

26N No opposition filed

Effective date: 20150106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 502005014270

Country of ref document: DE

Effective date: 20150106

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140731

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140712

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 660625

Country of ref document: AT

Kind code of ref document: T

Effective date: 20140712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140731

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20050712

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20140402

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20200710

Year of fee payment: 16

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20210713

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230528

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20240530

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20240611

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20240612

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20240604

Year of fee payment: 20