EP1613850B1 - Procede de synchronisation de l'injection avec la phase moteur dans un moteur a commande electronique des injecteurs - Google Patents

Procede de synchronisation de l'injection avec la phase moteur dans un moteur a commande electronique des injecteurs Download PDF

Info

Publication number
EP1613850B1
EP1613850B1 EP04725040A EP04725040A EP1613850B1 EP 1613850 B1 EP1613850 B1 EP 1613850B1 EP 04725040 A EP04725040 A EP 04725040A EP 04725040 A EP04725040 A EP 04725040A EP 1613850 B1 EP1613850 B1 EP 1613850B1
Authority
EP
European Patent Office
Prior art keywords
engine
injection
cylinders
injections
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP04725040A
Other languages
German (de)
English (en)
Other versions
EP1613850A1 (fr
Inventor
Laure Carbonne
Alain Gonzalez
Roger Rouphael
Robertus Vingerhoeds
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Continental Automotive France SAS
Original Assignee
Siemens VDO Automotive SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens VDO Automotive SAS filed Critical Siemens VDO Automotive SAS
Publication of EP1613850A1 publication Critical patent/EP1613850A1/fr
Application granted granted Critical
Publication of EP1613850B1 publication Critical patent/EP1613850B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/14Introducing closed-loop corrections
    • F02D41/1497With detection of the mechanical response of the engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/30Controlling fuel injection
    • F02D41/32Controlling fuel injection of the low pressure type
    • F02D41/34Controlling fuel injection of the low pressure type with means for controlling injection timing or duration
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/009Electrical control of supply of combustible mixture or its constituents using means for generating position or synchronisation signals
    • F02D2041/0092Synchronisation of the cylinders at engine start
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/06Introducing corrections for particular operating conditions for engine starting or warming up
    • F02D41/062Introducing corrections for particular operating conditions for engine starting or warming up for starting

Definitions

  • the present invention relates to a method of synchronization of the injection with the engine phase in a motor with electronic control of the injectors.
  • the information provided by the sensor placed on the camshaft is used only at the start of the engine to determine in which cylinders the first injections must be made. Subsequently, the injection order is done according to a pre-established cycle and only a synchronization with the crankshaft is necessary.
  • the purpose of the present invention is therefore to provide a synchronization method which, at start-up, makes it possible to dispense with the information received from the sensor placed on the camshaft. Also, even when this sensor is faulty, starting the engine remains possible. It is also possible to remove this sensor that is not used elsewhere.
  • the invention proposes a method for synchronizing the injection with the engine phase in an electronically controlled engine of injectors comprising n cylinders in which fuel is injected successively in a predetermined order, the fuel injection being synchronized with the position of the piston in the corresponding cylinder.
  • the measurement of the engine speed and / or its acceleration is performed after substantially one engine revolution. This limits the time during which the injection is not synchronized in cases where the first injections are not performed during a compression phase.
  • the engine in which the method according to the invention is implemented comprises an even number of cylinders
  • a second measurement of the engine speed and / or its acceleration is performed after p new injections p, being predetermined as a function of n and m, to verify that the synchronization is good.
  • the second measurement of the engine speed and / or its acceleration is advantageous for the second measurement of the engine speed and / or its acceleration to be performed after two engine revolutions, ie after n fuel injections.
  • the position of the pistons in the engine cylinders is determined by a position sensor measuring the angular position of the corresponding flywheel.
  • the invention proposes a variant embodiment in which the dose of fuel injected during the first m injections is less than that corresponding to the following injections.
  • the present invention is described below in a preferred embodiment applied to an engine comprising six V-shaped cylinders. These cylinders are divided into two rows referenced A and B (see FIG. 1). The cylinders themselves are numbered from 1 to 6, the cylinders 1 to 3 forming the row of cylinders referenced A and the cylinders 4 to 6 forming the row of cylinders referenced B.
  • An injector is provided for injecting fuel into each of the cylinders. These six injectors are electronically controlled.
  • Two sensors are generally provided to determine the moment when the fuel has to be injected into the cylinder. Firstly, there is a sensor, hereinafter referred to as a CRANK sensor, which makes it possible to know for each cylinder the exact position of the piston sliding in it. The fuel injection must be performed when the piston is substantially at a top dead center, with a slight offset from this top dead center.
  • the CRANK sensor is used to give the angular position of the crankshaft of the engine by measuring the rotation of the flywheel associated with this crankshaft.
  • the CRANK sensor therefore makes it possible to know the position of a piston in a cylinder but does not make it possible to identify in which phase of the combustion cycle is a cylinder.
  • the CRANK sensor can determine the top dead center for the six cylinders of the engine.
  • the sensor subsequently called CAM sensor makes it possible to give this information.
  • This CAM sensor is linked to the camshaft of the engine or to one of the camshafts when there are several.
  • the information provided by the CAM sensor is used when starting the engine.
  • fuel is injected into the first cylinder that arrives at the end of compression.
  • the position of the corresponding piston is given by the CRANK sensor and the CAM sensor and indicates that the corresponding valves are closed and that this piston has just compressed air.
  • the present invention proposes to carry out a motor start without the information provided by the CAM sensor. It is thus possible to overcome a failure of this sensor or to design a motor without this sensor which then allows to correspondingly reduce the cost of this engine.
  • the fuel injection order in the cylinders is in a predetermined order to obtain a good engine operation. This order is illustrated in Figure 1. If a fuel injection is made in the referenced cylinder 1, the next will be in the cylinder referenced 4, then 2, then 5, then 3, then 6, then again 1 and so on.
  • FIG. 2 is a flowchart illustrating the method according to the invention to the engine described above. It is assumed here that the starter has just been activated. Thanks to the CRANK sensor, it is then determined in which cylinder a piston reaches its top dead center. It is assumed here that it is the cylinder 1. Fuel is then injected into this cylinder 1 (with the normally expected offset from the top dead center). It is not known then whether the phase of the engine in this cylinder 1 corresponds to the end of a compression or an exhaust. Fuel in the cylinders 4 and 2 is then injected in the same manner when the CRANK sensor indicates that the corresponding pistons are correctly positioned.
  • the combustion test is thus carried out by measuring the engine speed. It is considered here that if the engine speed is greater than 300 rpm, the fuel has been burned and combustion has indeed taken place in the cylinders 1, 4 and 2. In this case, the cycle of the injections can be continued and the next injections are made in cylinders 5, 3 and 6.
  • the TEST 1 combustion test is negative, that is to say if the engine speed remains below 300 rpm, it is assumed that the fuel has been injected at the end of the exhaust phase, it is therefore necessary to shift the 360 ° injection. In the present case, this means that, instead of injecting into the cylinder 5, it is necessary to reinject it into the cylinder 1. Thus, a series of injections is repeated in the cylinders 1, 4 and 2. At the end of these injections the TEST 1 combustion test is again performed to determine if it has had a combustion providing a motor work. If this is the case, the cycle of the injections can be continued and the next injections are carried out in the cylinders 5, 3 and 6.
  • a second combustion test (referenced TEST 2 in Figure 2) is performed after these three new injections.
  • this second combustion test TEST 2 must confirm it. To do this, the engine speed is greater than 300 rpm.
  • Figure 3 summarizes the first injections in the engine of Figure 1 in three separate cases.
  • the engine equipped with a CRANK sensor and a CAM sensor, the two sensors being in operating condition.
  • the CAM sensor is faulty or absent.
  • the TEST 1 combustion test is positive.
  • the cycle of injections continues.
  • the TEST 2 combustion test is positive and the cycle of injections (1-4-2-5-3-6-1 ...) continues.
  • the first combustion test TEST 1 combustion is negative.
  • the injection then resumes in the cylinders 1, 4 and 2.
  • a new combustion test TEST 1 is then performed and is positive.
  • the injection therefore continues in the cylinders 5, 3 and 6 and the TEST 2 combustion test is positive.
  • the cycle of injections (5-3-6-1-4-2-5 ...) continues.
  • the first TEST 1 combustion test is performed after one engine revolution. It was noticed that this rotation of 360 ° was sufficient to observe and highlight the start of the engine.
  • the second TEST 2 combustion test is performed if the first combustion test is positive, ie two laps after the start of the actual start. A complete cycle has therefore taken place in each cylinder.
  • the method according to the invention is implemented when the signal of the sensor type sensor CAM is not available, either because this sensor is absent or by failure thereof.
  • the injection must be synchronized with the rotation of the crankshaft.
  • the vehicle is stopped.
  • the engine management system verifies that there is no error reported at the injection so that this start procedure is not inhibited.
  • the present invention thus makes it possible to dispense with a CAM type sensor for starting a diesel engine or any other engine whose injection is electronically controlled.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Output Control And Ontrol Of Special Type Engine (AREA)

Description

  • La présente invention concerne un procédé de synchronisation de l'injection avec la phase moteur dans un moteur à commande électronique des injecteurs.
  • Avec les nouvelles générations de moteurs, notamment les moteurs à injection directe, la commande électronique de l'injection de carburant dans les cylindres se généralise. Elle permet de parfaitement maîtriser l'instant où le carburant est injecté dans le cylindre. Ainsi, elle est capable d'injecter le carburant à 3° près, c'est-à-dire dans une fenêtre d'injection très précise.
  • Dans un moteur à quatre temps, il convient non seulement de connaître la position des pistons dans les cylindres, c'est-à-dire aussi la position du vilebrequin, mais aussi la phase du moteur. Ainsi, quand le piston dans un cylindre est au point mort haut, il convient de savoir s'il est en fin de compression ou en fin d'échappement. On utilise à cet effet deux capteurs de position. Un premier capteur sur le vilebrequin permet de connaître la position relative des pistons dans les cylindres et un second capteur sur l'arbre à cames permet de connaître la phase moteur (admission, compression, détente ou échappement).
  • Généralement, l'information fournie par le capteur placé sur l'arbre à cames n'est utilisée qu'au démarrage du moteur pour déterminer dans quels cylindres les premières injections doivent être réalisées. Par la suite, l'ordre d'injection se fait selon un cycle préétabli et seule une synchronisation avec le vilebrequin est nécessaire.
  • La présente invention a alors pour but de fournir un procédé de synchronisation qui, au démarrage, permette de s'affranchir de l'information reçue du capteur placé sur l'arbre à cames. Aussi, même lorsque ce capteur est défaillant, le démarrage du moteur reste possible. On peut également prévoir de supprimer ce capteur qui n'est pas utilisé par ailleurs.
  • A cet effet, l'invention propose un procédé de synchronisation de l'injection avec la phase moteur dans un moteur à commande électronique des injecteurs comportant n cylindres dans lesquels du carburant est injecté successivement selon un ordre prédéterminé, l'injection de carburant étant synchronisée avec la position du piston dans le cylindre correspondant.
  • Selon la présente invention, ce procédé comporte les étapes suivantes lors du démarrage du moteur :
    • injection de carburant dans m cylindres dans l'ordre prédéterminé d'injection lorsque les pistons correspondants entraînés en mouvement à l'aide d'un démarreur, sont en fin de phase de compression, m étant prédéterminé en fonction de n,
    • mesure du régime moteur et/ou de son accélération,
    • poursuite de l'injection dans l'ordre prédéterminé si le régime moteur et/ou son accélération dépasse(nt) un seuil prédéterminé, l'injection étant alors synchronisée avec la phase moteur,
    • poursuite de l'injection avec un décalage par rapport aux injections précédentes et à l'ordre prédéterminé, décalage qui est fonction de n et m, pour que l'injection soit alors synchronisée avec la phase moteur dans le cas contraire.
  • Dans ce procédé, on accepte que pour les m premières injections réalisées, l'injection ne soit pas synchronisée avec les phases de compression du moteur. Cette absence de synchronisation est alors détectée et corrigée.
  • De préférence, la mesure du régime moteur et/ou de son accélération est réalisée après sensiblement un tour moteur. Ceci permet de limiter le temps durant lequel l'injection n'est pas synchronisée dans les cas où les premières injections ne sont pas réalisées lors d'une phase de compression.
  • Dans le cas où le moteur dans lequel le procédé selon l'invention est mis en oeuvre comporte un nombre pair de cylindres, on injecte du carburant dans la moitié des cylindres avant de mesurer le régime moteur ou son accélération, c'est-à-dire m = n/2.
  • Pour confirmer que le choix opéré après la première mesure est bon, on prévoit qu'une seconde mesure de régime moteur et/ou de son accélération est réalisée après p nouvelles injections p, étant prédéterminé en fonction de n et m, pour vérifier que la synchronisation est bonne. Dans ce cas, il est avantageux que la seconde mesure de régime moteur et/ou de son accélération soit effectuée après deux tours moteur, soit après n injections de carburant.
  • Dans le procédé selon l'invention, la position des pistons dans les cylindres du moteur est déterminée par un capteur de position mesurant la position angulaire du volant moteur correspondant.
  • Pour éviter le rejet éventuel de trop de carburant imbrûlé dans l'atmosphère, l'invention propose une variante de réalisation dans laquelle la dose de carburant injectée lors des m premières injections est inférieure à celle correspondant aux injections suivantes.
  • Des détails et avantages de la présente invention ressortiront mieux de la description qui suit, faite en référence au dessin schématique annexé sur lequel :
    • La figure 1 illustre l'ordre d'injection de carburant dans les cylindres d'un moteur V6,
    • La figure 2 est un organigramme d'un procédé selon l'invention pour un moteur V6, et
    • La figure 3 illustre l'ordre des injections de carburant dans trois cas de figure.
  • La présente invention est décrite ci-après dans un mode de réalisation préféré appliqué à un moteur comportant six cylindres en V. Ces cylindres sont répartis en deux rangées référencées A et B (voir figure 1). Les cylindres eux-mêmes sont numérotés de 1 à 6, les cylindres 1 à 3 formant la rangée de cylindres référencée A et les cylindres 4 à 6 formant la rangée de cylindres référencée B.
  • II s'agit ici d'un moteur Diesel à quatre temps, bien que la présente invention soit applicable sur un moteur à essence à quatre temps. Un injecteur est prévu pour injecter du carburant dans chacun des cylindres. Ces six injecteurs sont commandés électroniquement. Deux capteurs sont en général prévus pour déterminer l'instant où le carburant doit être injecté dans le cylindre. II y a tout d'abord un capteur, appelé par la suite capteur CRANK, qui permet de connaître pour chaque cylindre, la position exacte du piston coulissant dans celui-ci. L'injection de carburant doit être réalisée lorsque le piston est sensiblement à un point mort haut, avec un léger décalage par rapport à ce point mort haut. Le capteur CRANK permet de donner la position angulaire du vilebrequin du moteur en mesurant la rotation du volant moteur associé à ce vilebrequin. Le capteur CRANK permet donc de connaître la position d'un piston dans un cylindre mais ne permet pas d'identifier dans quelle phase du cycle de combustion est un cylindre. Ainsi, le capteur CRANK peut déterminer le point mort haut pour les six cylindres du moteur. Toutefois, quand un piston est à son point mort haut, on ne sait alors pas s'il est en fin de phase de compression ou d'échappement. Le capteur appelé par la suite capteur CAM permet de donner cette information. Ce capteur CAM est lié à l'arbre à cames du moteur ou à l'un des arbres à cames quand il y en a plusieurs. On peut bien entendu prévoir un capteur CAM par arbre à cames. La position angulaire d'un arbre à cames, permet de manière connue d'identifier la phase du cycle quatre temps pour chaque cylindre.
  • L'information fournie par le capteur CAM est utilisée au démarrage du moteur. Lorsqu'un démarreur actionne le moteur, du carburant est injecté dans le premier cylindre qui arrive en fin de compression. La position du piston correspondant est donnée par le capteur CRANK et le capteur CAM et indique que les soupapes correspondantes sont fermées et que ce piston vient de comprimer de l'air.
  • La présente invention propose de réaliser un démarrage du moteur sans l'information fournie par le capteur CAM. II est ainsi possible de pallier une défaillance de ce capteur ou bien de concevoir un moteur sans ce capteur ce qui permet alors de diminuer de façon correspondante le coût de ce moteur.
  • Dans le moteur V6 présenté plus haut, l'ordre d'injection de carburant dans les cylindres se fait dans un ordre prédéterminé pour obtenir un bon fonctionnement du moteur. Cet ordre est illustré sur la figure 1. Si une injection de carburant est faite dans le cylindre référencé 1, la suivante se fera dans le cylindre référencé 4, puis 2, puis 5, puis 3, puis 6, puis à nouveau 1 et ainsi de suite.
  • La figure 2 est un organigramme illustrant le procédé selon l'invention au moteur décrit ci-dessus. On suppose ici que le démarreur vient d'être actionné. Grâce au capteur CRANK, on détermine alors dans quel cylindre un piston arrive à son point mort haut. On suppose ici qu'il s'agit du cylindre 1. Du carburant est alors injecté dans ce cylindre 1 (avec le décalage normalement prévu par rapport au point mort haut). On ne sait pas alors si la phase du moteur dans ce cylindre 1 correspond à la fin d'une compression ou d'un échappement. On injecte de la même manière ensuite, dans cet ordre, du carburant dans les cylindres 4 et 2 lorsque le capteur CRANK indique que les pistons correspondants sont bien positionnés.
  • Une fois ces trois injections réalisées dans les cylindres 1, 4 et 2, on vérifie si le carburant injecté a été brûlé (étape TEST 1 de la figure 2). Le cas échéant, cette combustion a alors fourni un travail moteur et le régime moteur augmente. Sinon rien ne s'est passé et le régime moteur correspond encore au régime induit par le démarreur.
  • Le test de combustion se réalise ainsi par une mesure de régime moteur. On considère ici que si le régime moteur est supérieur à 300 tr/min, le carburant a été brûlé et une combustion a bien eu lieu dans les cylindres 1, 4 et 2. Dans ce cas, le cycle des injections peut être poursuivi et les prochaines injections sont réalisées dans les cylindres 5, 3 et 6.
  • Si le test de combustion TEST 1 est négatif, c'est-à-dire si le régime moteur reste inférieur à 300 tr/min, on suppose que le carburant a été injecté en fin de phase d'échappement, il faut donc décaler l'injection de 360°. Dans le cas présent, cela signifie qu'au lieu d'injecter dans le cylindre 5, il faut réinjecter dans le cylindre 1. On reprend donc une série d'injections dans les cylindres 1, 4 puis 2. A la fin de ces injections le test de combustion TEST 1 est de nouveau effectué afin de déterminer si il a bien eu une combustion fournissant un travail moteur. Si tel est le cas, le cycle des injections peut être poursuivi et les prochaines injections sont réalisées dans les cylindres 5, 3 et 6.
  • Un second test de combustion (référencé TEST 2 sur la figure 2) est réalisé après ces trois nouvelles injections. Dans le cas où le premier test de combustion TEST 1 a été positif, ce second test de combustion TEST 2 doit le confirmer. Pour ce faire, le régime moteur être supérieur à 300 tr/min.
  • La figure 3 résume les premières injections dans le moteur de la figure 1 dans trois cas distincts. Dans le premier cas, on suppose le moteur équipé d'un capteur CRANK et d'un capteur CAM, les deux capteurs étant en état de fonctionnement. Dans les second et troisième cas, le capteur CAM est défaillant ou bien absent. Dans le second cas après trois premières injections (cylindres 1, 4 et 2), le test de combustion TEST 1 est positif. Le cycle des injections continue. Après les injections dans les cylindres 5, 3 et 6, le test de combustion TEST 2 est positif et le cycle d'injections (1-4-2-5-3-6-1...) continue. Dans le troisième cas, le premier test de combustion TEST 1 de combustion est négatif. L'injection reprend alors dans les cylindres 1, 4 et 2. Un nouveau test de combustion TEST 1 est alors effectué et est positif. L'injection se poursuit donc dans les cylindres 5, 3 et 6 et le test de combustion TEST 2 est positif. Le cycle des injections (5-3-6-1-4-2-5...) continue.
  • Le premier test de combustion TEST 1 est réalisé après un tour moteur. Il a été remarqué que cette rotation de 360° était suffisante pour constater et mettre en évidence la mise en marche du moteur. Le second test de combustion TEST 2 est réalisé si le premier test de combustion est positif, soit deux tours après le lancement du démarrage effectif. Un cycle complet s'est donc déroulé dans chaque cylindre.
  • Pour éviter de rejeter trop de carburant imbrûlé, on prévoit de limiter la quantité de carburant injectée lors des trois premières injections. II faut que ces quantités soient suffisantes pour pouvoir lancer le moteur si la synchronisation est bonne dès la première injection.
  • Le procédé selon l'invention est mis en oeuvre lorsque le signal du capteur de type capteur CAM n'est pas disponible, soit parce que ce capteur est absent, soit par défaillance de celui-ci. Il faut par contre que l'injection soit synchronisée avec la rotation du vilebrequin. De préférence, le véhicule est à l'arrêt. Avant de mettre ce procédé en oeuvre, le système de gestion du moteur vérifie qu'il n'y a pas d'erreur signalée au niveau de l'injection afin que cette procédure de démarrage ne soit pas inhibée.
  • La présente invention permet donc de se passer d'un capteur de type CAM pour démarrer un moteur Diesel ou tout autre moteur dont l'injection est commandée électroniquement.
  • Des tests réalisés sur des moteurs ont permis de vérifier son efficacité. Lorsque la vitesse de rotation induite par le démarreur est comprise entre 210 et 230 tr/min, le régime moteur mesuré après trois combustions dans un moteur avec six cylindres est d'environ 320 tr/min. On peut aussi choisir comme seuil pour les tests de combustion par exemple la vitesse de 300 tr/min. Cette mesure ne nécessite pas la mise en oeuvre d'un capteur particulier puisque dans chaque moteur il est prévu de mesurer le régime moteur pour la gestion du moteur.
  • En variante, il est possible de mesurer des variations dans le régime moteur plutôt que de mesurer la valeur de celui-ci. Si une accélération significative au niveau du régime moteur est détectée, on peut alors considérer que des combustions ont eu lieu et que donc l'injection est synchronisée avec les phases moteur.
  • La présente invention ne se limite pas au procédé et à ses variantes décrits ci-dessus à titre d'exemples non limitatifs. II concerne toutes les autres variantes de réalisation à la portée de l'homme du métier dans le cadre des revendications ci-après.

Claims (7)

  1. Procédé de synchronisation de l'injection avec la phase moteur dans un moteur à commande électronique des injecteurs comportant n cylindres dans lesquels du carburant est injecté directement dans chacun des cylindres successivement selon un ordre prédéterminé, l'injection de carburant étant synchronisée avec la position du piston dans le cylindre correspondant,
    caractérisé en ce qu'il comporte les étapes suivantes lors du démarrage du moteur :
    - injection de carburant dans m cylindres dans l'ordre prédéterminé d'injection lorsque les pistons correspondants entraînés en mouvement à l'aide d'un démarreur, sont en fin de phase de compression, m étant prédéterminé en fonction de n,
    - mesure du régime moteur et/ou de son accélération,
    - poursuite de l'injection dans l'ordre prédéterminé si le régime moteur et/ou son accélération dépasse(nt) un seuil prédéterminé, l'injection étant alors synchronisée avec la phase moteur,
    - poursuite de l'injection avec un décalage par rapport aux injections précédentes et à l'ordre prédéterminé, décalage qui est fonction de n et m, pour que l'injection soit alors synchronisée avec la phase moteur dans le cas contraire.
  2. Procédé de synchronisation selon la revendication 1, caractérisé en ce que la mesure du régime moteur et/ou de son accélération est réalisée après sensiblement un tour moteur.
  3. Procédé de synchronisation selon l'une des revendications 1 ou 2 pour un moteur présentant un nombre pair de cylindres, caractérisé en ce que m = n/2.
  4. Procédé de synchronisation selon l'une des revendications 1 à 3, caractérisé en ce qu'une seconde mesure du régime moteur et/ou de son accélération est réalisée après p nouvelles injections, p étant prédéterminé en fonction de n et m, pour vérifier que la synchronisation est bonne.
  5. Procédé de synchronisation selon la revendication 4, caractérisé en ce que la seconde mesure de régime moteur et/ou de son accélération est effectuée après deux tours moteur effectifs, soit après n injections de carburant.
  6. Procédé de synchronisation selon l'une des revendications 1 à 5, caractérisé en ce que la position des pistons dans les cylindres du moteur est déterminée par un capteur de position mesurant la position angulaire du volant moteur correspondant.
  7. Procédé de synchronisation selon l'une des revendications 1 à 6, caractérisé en ce que la dose de carburant injectée lors des m premières injections est inférieure à celle correspondant aux injections suivantes.
EP04725040A 2003-04-17 2004-04-01 Procede de synchronisation de l'injection avec la phase moteur dans un moteur a commande electronique des injecteurs Expired - Lifetime EP1613850B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0304836A FR2853935B1 (fr) 2003-04-17 2003-04-17 Procede de synchronisation de l'injection avec la phase moteur dans un moteur a commande electronique des injecteurs
PCT/EP2004/003443 WO2004092564A1 (fr) 2003-04-17 2004-04-01 Procede de synchronisation de l’injection avec la phase moteur dans un moteur a commande electronique des injecteurs

Publications (2)

Publication Number Publication Date
EP1613850A1 EP1613850A1 (fr) 2006-01-11
EP1613850B1 true EP1613850B1 (fr) 2006-11-22

Family

ID=33041951

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04725040A Expired - Lifetime EP1613850B1 (fr) 2003-04-17 2004-04-01 Procede de synchronisation de l'injection avec la phase moteur dans un moteur a commande electronique des injecteurs

Country Status (7)

Country Link
US (1) US8397692B2 (fr)
EP (1) EP1613850B1 (fr)
JP (1) JP4351699B2 (fr)
KR (1) KR20050118308A (fr)
DE (1) DE602004003358T2 (fr)
FR (1) FR2853935B1 (fr)
WO (1) WO2004092564A1 (fr)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602005013104D1 (de) * 2005-12-30 2009-04-16 Scania Cv Abp System und Verfahren zur Synchronisierung
DE102007027709A1 (de) 2006-12-27 2008-07-03 Robert Bosch Gmbh Verfahren zum Start einer Brennkraftmaschine
FR2932225B1 (fr) * 2008-06-06 2011-04-29 Peugeot Citroen Automobiles Sa Strategie et commande de demarrage d'un moteur a combustion
US9316195B2 (en) 2012-10-29 2016-04-19 Cummins Inc. Systems and methods for optimization and control of internal combustion engine starting
US9709014B2 (en) 2012-10-29 2017-07-18 Cummins Inc. Systems and methods for optimization and control of internal combustion engine starting
CN103047022B (zh) * 2012-12-30 2015-10-07 潍柴动力股份有限公司 一种电控柴油机无凸轮轴信号的启动方法及装置
FR3088378B1 (fr) * 2018-11-14 2020-10-30 Continental Automotive France Procede de synchronisation d’un moteur a combustion en v
CN113294255A (zh) * 2021-05-19 2021-08-24 奇瑞汽车股份有限公司 一种无相位传感器的判缸方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3719176A (en) * 1969-07-29 1973-03-06 Toyota Motor Co Ltd Electric fuel injection control system for internal combustion engines
EP0640762B1 (fr) * 1993-08-26 1996-10-23 Siemens Aktiengesellschaft Synchronisation de cylindre d'un moteur à combustion interne à plusieurs cylindres par détection d'un raté de combustion spécifique
US5613473A (en) * 1993-08-26 1997-03-25 Siemens Aktiengesellschaft Method of identifying the stroke positions in an internal combustion engine upon startup
FR2734322B1 (fr) * 1995-05-15 1997-07-25 Magneti Marelli France Procede de reconnaissance de la phase des cylindres d'un moteur multicylindres a combustion interne a cycle a quatre temps
ES2191734T3 (es) * 1996-12-03 2003-09-16 Fiat Ricerche Un metodo para sincronizar un motor de combustion interna sin un sensor de posicion de levas.
JPH1182134A (ja) * 1997-09-03 1999-03-26 Fuji Heavy Ind Ltd 筒内燃料噴射エンジンの高圧燃料系診断装置及び制御装置
DE19844910A1 (de) * 1998-09-30 2000-04-06 Bosch Gmbh Robert Einrichtung zur Phasenerkennung

Also Published As

Publication number Publication date
EP1613850A1 (fr) 2006-01-11
DE602004003358D1 (de) 2007-01-04
FR2853935A1 (fr) 2004-10-22
KR20050118308A (ko) 2005-12-16
WO2004092564A1 (fr) 2004-10-28
US8397692B2 (en) 2013-03-19
DE602004003358T2 (de) 2007-04-19
JP2006523796A (ja) 2006-10-19
JP4351699B2 (ja) 2009-10-28
FR2853935B1 (fr) 2007-03-02
US20070023004A1 (en) 2007-02-01

Similar Documents

Publication Publication Date Title
EP0987421B1 (fr) Procédé de reconnaissance de la phase des cylindres d'un moteur multicylindres à combustion interne à cycle à quatre temps
EP1613850B1 (fr) Procede de synchronisation de l'injection avec la phase moteur dans un moteur a commande electronique des injecteurs
FR2995939A1 (fr) Procede d'estimation du regime d'un moteur dans une position predeterminee
FR2925593A1 (fr) Procede pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne
WO2020245080A1 (fr) Validation d'un signal issu d'un capteur de vilebrequin
FR2720445A1 (fr) Dispositif pour la reconnaissance de la relation des phases dans un moteur à combustion internee.
FR3059717A1 (fr) Procede de synchronisation d'un moteur a combustion interne
FR3107930A1 (fr) Calculateur moteur et procédé de commande d’un moteur associé
FR3072125A1 (fr) Procede et systeme de validation de la phase d'un moteur de vehicule
US11840977B2 (en) Method of controlling fuel injection after cranking
WO2018104628A1 (fr) Procédé de gestion de l'injection dans un moteur de type diesel
FR3080890A1 (fr) Procede de gestion de l'injection et de l'allumage d'un moteur a combustion interne
WO2024083788A1 (fr) Procédé de gestion d'une phase de redémarrage d'un moteur à combustion interne en mode dégradé
EP1585894B1 (fr) Procede pour preserver le catalyseur d'un moteur a allumage commande en cas de rates de combustion
WO2008148485A1 (fr) Détermination et correction du phasage de la position angulaire d'un moteur quatre temps à combustion interne à injection indirecte et à coupure d'injection séquentielle/réinjection séquentielle contrôlée dans le temps
EP0614005B1 (fr) Procédé de commande d'injection pour moteur à injection multipoints à allumage commande
FR2950393A1 (fr) Procede de determination du cycle d'un moteur a cylindres impair
WO2009086871A1 (fr) Dispositif de controle de fonctionnement d'un moteur a combustion interne, a rephasage perfectionne d'evenements d'injection
FR2932225A1 (fr) Strategie et commande de demarrage d'un moteur a combustion
JP4375546B2 (ja) 筒内噴射型内燃機関の始動装置
FR3088377A1 (fr) Procede de synchronisation d'un moteur en v
FR3138096A1 (fr) Procédé de gestion d’une phase de calage d’un moteur à combustion interne associé à un moteur électrique
FR2874969A1 (fr) Procede de controle de demarrage d'un moteur a combustion interne a injection indirecte
FR3047275A1 (fr) Gestion des gouttes residuelles sur les injecteurs

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RTI1 Title (correction)

Free format text: METHOD FOR SYNCHRONIZING INJECTION WITH THE ENGINE PHASE IN AN ENGINE WITH ELECTRONIC CONTROLLED INJECTORS

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): DE GB IT SE

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB IT SE

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20061207

REF Corresponds to:

Ref document number: 602004003358

Country of ref document: DE

Date of ref document: 20070104

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070405

Year of fee payment: 4

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070621

Year of fee payment: 4

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070823

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080402

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20070430

Year of fee payment: 4