EP0614005B1 - Procédé de commande d'injection pour moteur à injection multipoints à allumage commande - Google Patents

Procédé de commande d'injection pour moteur à injection multipoints à allumage commande Download PDF

Info

Publication number
EP0614005B1
EP0614005B1 EP19940400256 EP94400256A EP0614005B1 EP 0614005 B1 EP0614005 B1 EP 0614005B1 EP 19940400256 EP19940400256 EP 19940400256 EP 94400256 A EP94400256 A EP 94400256A EP 0614005 B1 EP0614005 B1 EP 0614005B1
Authority
EP
European Patent Office
Prior art keywords
engine
injectors
injection
pair
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP19940400256
Other languages
German (de)
English (en)
Other versions
EP0614005A2 (fr
EP0614005A3 (fr
Inventor
Henri Mazet
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Marelli France SAS
Original Assignee
Magneti Marelli France SAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Magneti Marelli France SAS filed Critical Magneti Marelli France SAS
Publication of EP0614005A2 publication Critical patent/EP0614005A2/fr
Publication of EP0614005A3 publication Critical patent/EP0614005A3/fr
Application granted granted Critical
Publication of EP0614005B1 publication Critical patent/EP0614005B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/008Controlling each cylinder individually
    • F02D41/0087Selective cylinder activation, i.e. partial cylinder operation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B75/00Other engines
    • F02B75/02Engines characterised by their cycles, e.g. six-stroke
    • F02B2075/022Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle
    • F02B2075/027Engines characterised by their cycles, e.g. six-stroke having less than six strokes per cycle four

Definitions

  • the invention relates to an injection control method for an internal combustion engine with positive ignition, equipped with a fuel injection installation by indirect injection of the so-called "multi-point” type, that is to say say comprising one injector per engine cylinder, and in particular for a four-cylinder engine operating according to a so-called "four-stroke" cycle.
  • the system includes means for detecting the Top Dead Center (TDC) as well as the angular position of the engine during each engine revolution.
  • TDC Top Dead Center
  • These means usually comprise a toothed wheel integral in rotation with the crankshaft or the flywheel of the engine, and carrying a target having a singularity, for example defined by the space corresponding to two consecutive missing teeth, and a sensor.
  • the sequential systems also include means for detecting the motor phase, comprising a sensor and a toothed wheel with target similar to those mentioned above, but whose toothed wheel is integral in rotation with the camshaft, which performs one revolution per engine cycle.
  • Sequential injection systems which have a significant performance potential, because they allow individualizing cylinder by cylinder the quantity of fuel injected as well as the injection phase compared to the engine cycle, have the disadvantage of being expensive, because they require four power stages, a crankshaft rotation sensor and an engine phase sensor.
  • the "Full group” injection systems only have one electrical power stage and do not include an engine phase sensor. The injection is controlled simultaneously on the four injectors, which are mounted in parallel on the same output of the single power stage.
  • a drawback attached to a single simultaneous injection per engine cycle is that a cylinder is supplied in the compression phase, depending on the value of the engine operating parameters which were acquired at the end of the previous engine U-turn. , for an intake phase of this cylinder which will only intervene at the fourth posterior half-turn, while the fuel intake requirements, in real time, recalculated and updated at each U-turn, could have changed considerably during transient engine operating phases.
  • Frull group systems are generally controlled so that their injectors are controlled at each engine revolution, that is to say twice per engine cycle, therefore at a frequency twice that of sequential systems.
  • first round half of the calculated quantity is injected, and during the second round of the engine cycle, the other half is injected, possibly updated according to the value, in the meantime acquired, of the considered operating parameters of the engine.
  • the electromechanical injectors have a flow dynamic which is limited by the ratio between the free or maximum flow, corresponding to a continuous injection throughout the duration of the engine cycle, that is to say an injector which is permanently open. (which maximum flow is taken into account to size the injector), and the minimum flow (corresponding to a reduction in the opening time, for example when the engine is idling), the flow corresponding to the product of the control frequency by the minimum injectable quantity, which is determined by the order time below which the characteristic of the flow law is no longer linear (order of magnitude of 1 ms, to take into account the establishment of the current in the solenoid coil and the inertia of the moving parts of the injector).
  • a semi-sequential system comprises a detector of the angular position of the crankshaft on each revolution of the engine, making it possible in particular to detect the High Dead Points and Low Dead Points (PMB) of the engine, four injectors grouped in two pairs of injectors, and two stages of electrical power, each of which controls a respective pair of injectors once per engine cycle, that is to say once every two engine revolutions.
  • PMB High Dead Points and Low Dead Points
  • each injector By indexing each injector in the same way as the cylinder of the engine which it supplies, it has been proposed to match either the injectors 1 and 2 in one pair and the injectors 3 and 4 in the other pair, or the injectors 1 and 3 in one pair and injectors 2 and 4 in the other pair, or finally injectors 1 and 4 in one pair and injectors 2 and 3 in the other pair. Likewise, it was proposed to carry out the sequencing of the control of the two pairs of injectors in several ways, provided that the control period is two engine revolutions.
  • FIG. 1 shows a diagrammatic diagram, for each of the four cylinders cyl 1 to cyl 4 of the engine, represented in superimposed lines, the succession during nine successive half-turns (in adjacent columns) of the four successive phases d intake, compression, expansion and exhaust which constitute an engine cycle, the intake phases being marked by dotted lines 1, for an engine whose four injectors are matched according to the third choice presented above (injectors 1 and 4 in a pair; injectors 2 and 3 in the other pair) with regular distribution of the injection commands, identified by elongated solid rectangles 2, and assuming that the first half-turn corresponds to an intake phase for the cylinder 1.
  • the delay or response time is called the delay, represented by a solid solid line 3, between the instant A of the last acquisition of the values of the parameters having been used for the calculation of the quantity A injected and the effective intake for the cylinder considered, it is found that this delay is small for cylinder 1, greater than a half-turn for cylinder 2, greater than three half-turns for cylinder 3 and greater than two half-turns for cylinder 4. Or a sum of delays greater than six half-turns for the four cylinders, therefore an average delay of 1.5 half-turns.
  • the problem underlying the invention is to favor respectively the good preparation of the mixture or the reduction of the response time or delay.
  • An object of the invention is either to reduce both the maximum value of the delay and its average value in such a semi-sequential control system, which allows the elimination of exceptional injections, which can be added to compensate for a deficiency supply in case of significant acceleration slots, for example, or to favor the preparation of the mixture.
  • Another object of the invention is to choose a pairing of the injectors as well as a sequencing in the control of the pairs of injectors which guarantee a functioning of the system insensitive to the uncertainty relating to the motor phase.
  • the invention provides a method of controlling the injection of an internal combustion engine, with spark ignition and multi-point injection, with four cylinders and operating according to a four-stroke cycle, which comprises one injector per cylinder, the method comprising the steps of grouping the injectors in pairs, controlling the opening of the injectors of each pair only once per engine cycle, and so that the sequencing of the control of the two pairs of injectors is insensitive to the phasing of the engine , and which is characterized in that it further comprises the steps consisting in indexing each injector with the same index as the cylinder of said engine which it supplies, in pairing the injectors 1 and 4 on the one hand and the injectors 2 and 3 on the other hand, to initiate the injection of each of the two pairs of injectors 1-4 and 2-3 during one respectively of two successive engine U-turns, and to make these two commands follow two half-to on successive engines without injector control, then to resume the sequence, as long as the engine is controlled in synchronous operation.
  • the choice of the pairing of the injectors as well as the choice of initiating the injection of the two pairs of injectors each during one respectively of two successive engine U-turns have the advantages of making operation insensitive to the uncertainty of the engine phase, or to minimize the delay between the acquisition of the parameters which are used for the calculation of the injection time and the effective admission of the fuel into the engine cylinders, which provides better behavior of the latter in richness monitoring, that is to promote the preparation of the mixture by avoiding injection with the intake valve open - it is known that the fact of letting the fuel stay in an intake prechamber, that is to say by injecting this fuel before the opening of the intake valve, is favorable for the preparation of the mixture -, depending on whether the injection starts are done respectively in intake and expansion phases or in compression and exhaust phases.
  • the injection control method according to the invention comprises the step consisting in determining the sequencing of the control of the two pairs of injectors (pair 1-4 then pair 2-3, followed by two half-turns motor without control, then again from control of pair 1-4 then from pair 2-3, or control of pair 2-3 then from pair 1-4, followed by two engine U-turns without control, then again the command of the pair 2-3 followed by the pair 1-4) depending on the situation of the motor with respect to its cycle, at the time of entering the synchronous operating phase of the motor, for example at following an engine start or on the occasion of a resumption of injection after a cut of the latter.
  • control method consists in choosing the control sequence of the pair of injectors 1-4 then of the pair 2-3, or the control sequence of the pair of injectors 2-3 then from pair 1-4, depending on whether the first Top Dead Center (TDC) or Bottom Dead Center (BDC) signal given by an engine rotation sensor after the engine has entered synchronous operating phase is a PMH or PMB signal for pair 1-4.
  • TDC Top Dead Center
  • BDC Bottom Dead Center
  • the method can also consist in introducing a time delay between the determination of the sequencing of the control of the pairs of injectors, for example as a function of the first TDC or BPM signal, and the actual sequence injection as a function of previous events, such as the engine starting or an injection cut, for example when decelerating.
  • the method may consist in initiating the injection during the intake phase of one of the two cylinders of each pair (corresponding to each pair of injectors) and during the expansion phase of the other cylinder, if small delays are sought, or, alternatively, during the exhaust phase of one of the two cylinders of each pair and during the compression phase of the other cylinder, if a good preparation of the mixture is sought.
  • it may consist in switching from the implementation of one of the two variants of the method to the other as a function of at least one operating parameter or thermal state of the engine or of associated equipment.
  • the last acquisitions A of the measured values of the operating parameters of the engine used for calculating the quantity of fuel to be injected, and which precede the injector commands, are those obtained respectively at the start of each of the first two engine U-turns. It can thus be seen that for cylinders 1 and 3, the delay is low, whereas it is slightly greater than two engine U-turns for cylinders 2 and 4. The maximum value of the delays is thus reduced, compared with an order according to FIG. 1, the sum of the delays no longer being of the order of four engine U-turns, which corresponds to an average of around one engine U-turn per cylinder.
  • Such sequencing can start with the command of pair 2-3, after passing through a PMB for pair 1-4, for example during the second half-turn in FIG. 2, for which the cylinder 3 is in phase of intake, or during the fourth engine U-turn in Figure 2, for which the cylinder 2 is in the intake phase.
  • FIG. 3 and FIG. 2 make it possible to understand that, when the engine enters the synchronous operating phase, either after it has started, or on the occasion of a resumption of injection, following an injection cut due to deceleration for example, the sequencing automatically adopted by the central control unit of the device, comprising a microprocessor suitably programmed for this purpose, will be that of the first line of FIG. 3 if the first TDC or PMB signal detected for the pair 1-4 by the engine rotation sensor is a TDC signal, and will be the sequencing of the second line of Figure 3 if this first detected signal is a PMB signal.
  • FIG. 2 shows that the opening of the injectors of cylinders 1 and 3 is controlled, i.e. the injection is initiated, while the latter are in the intake phase, while the injection is initiated during the expansion phase of the cylinders 4 and 2.
  • the injection by the pair of injectors 1-4 is initiated during the second half-turn, for which the cylinder 1 is in the compression phase and the cylinder 4 in the exhaust phase, and, in this example, that the injection takes place during this second half-turn.
  • the injection by the pair of injectors 2-3 is initiated during the immediately following engine U-turn, that is to say the third engine U-turn, for which the cylinder 2 is in the exhaust phase and the cylinder 3 in the compression phase, the injection also taking place during this third engine U-turn.
  • No injector command occurs during the next two engine U-turns, for which cylinder 2 and then cylinder 1 are successively in the intake phase.
  • the injectors of pair 1-4 are again controlled, then, at the immediately next engine turn, the pair is again ordered 2-3 injectors, after which two engine U-turns follow one another without injector control.
  • This sequencing follows the detection, at the start of the second half-turn, of a PMB for cylinders 1 and 4, but, as a variant, the PMB detected for these cylinders 1 and 4 could be at the start of the fourth half-turn engine of FIG. 4.
  • the sequencing of the injector commands would then begin with the command of the injections at the level of the injectors 1 and 4 during this fourth engine U-turn, followed, in the fifth engine U-turn, by the command of the injections by injectors 2 and 3, followed by two engine U-turns consecutive without injector control, then resumption of sequencing.
  • Such sequencing can begin with the command of the pair of injectors 2-3, after passage of the cylinders 1 and 4 by a TDC, for example during the third U-turn in FIG. 4, for which the cylinder 4 is in phase intake, [the pair of injectors 1-4 being controlled during the immediately following engine U-turn, that is to say the fourth in FIG. 4], or during the fifth engine U-turn of the FIG. 4 (corresponding to the first half-turn), for which the cylinder 1 is in the intake phase, the injectors 1 and 4 then being controlled during the immediately following engine half-turn, ie the sixth (corresponding to the second) on Figure 4.
  • FIGS. 4 and 5 make it possible to understand that the sequencing automatically adopted by the central control unit of the device will be that of the first line of FIG. 5, if the first TDC or PMB signal detected by the engine rotation sensor for cylinders 1 and 4 is a PMB signal, and will be the sequencing of the second line in Figure 5, if this first detected signal is a TDC signal for these same cylinders 1 and 4, when the engine enters the phase of synchronous operation.
  • the injection is initiated and takes place during a single particular engine half-turn for the two injectors of each pair respectively.
  • the injection can start just before the start of this engine U-turn, and possibly extend over several successive engine U-turns, or even over the entire engine cycle, if necessary, for example if the engine speed is and / or the fuel requirements of the engine are high.
  • the method of FIGS. 4 and 5 is adopted (start of injection in the exhaust phase for one and compression for the other of the two injectors of each pair), which promotes good preparation of the mixture.
  • the choice between the two variants of the process can be made definitively, or as a function of the operating conditions of the engine, by the electronic engine control and command unit. For example, when the catalyst receiving the exhaust gases from the engine is ineffective, because of its low temperature, which is the case for a certain time after starting the engine, it is first possible to implement the process favoring the preparation of the mixture ( Figures 4 and 5) then switch to the implementation of the process favoring low delays, therefore monitoring of transient richness ( Figures 2 and 3).
  • the changeover from one variant to another can be controlled by the electronic engine control and control unit as a function of engine operating parameters, such as its speed and the pressure at the air intake manifold, and / or depending on the thermal state of the engine or associated equipment.
  • a delay possibly adjustable, can be introduced between the determination of the order sequencing to be adopted. following the detection of a TDC or PMB, and the effective resumption of injection.
  • the device making it possible to implement the method described above can be rigorously identical to a semi-sequential device with symmetrical control, but that the microprocessor of the control unit will be programmed differently to provide the injector commands. asymmetrical according to the sequences described above.
  • the engine rotation sensor is the same as in the known devices, namely a gear wheel sensor with a singularity for the detection of TDC, this gear wheel being integral in rotation with the crankshaft or the flywheel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)

Description

  • L'invention concerne un procédé de commande d'injection, pour un moteur à combustion interne à allumage commandé, équipé d'une installation d'alimentation en combustible par injection indirecte du type dit "multi-points", c'est-à-dire comprenant un injecteur par cylindre du moteur, et en particulier pour un moteur à quatre cylindres fonctionnant selon un cycle dit "à quatre temps".
  • Pour commander l'injection dans de tels moteurs, il est connu d'utiliser un procédé et un système "séquentiels", mettant en oeuvre non seulement un injecteur par cylindre mais également un étage de puissance par cylindre, qui détermine, de manière connue à partir de la mesure de différents paramètres de fonctionnement du moteur, la durée d'injection, permettant de calculer la quantité de combustible à injecter, ainsi que l'instant d'injection, ou phase d'injection par rapport au cycle moteur.
  • Le système comporte des moyens de détection du Point Mort Haut (PMH) ainsi que de la position angulaire du moteur au cours de chaque tour moteur. Ces moyens comprennent, de manière usuelle, une roue dentée solidaire en rotation du vilebrequin ou du volant d'inertie du moteur, et portant une cible comportant une singularité, par exemple définie par l'espace correspondant à deux dents consécutives manquantes, et un capteur solidaire du moteur et sensible au défilement des dents et de la cible pour délivrer des signaux témoignant du passage par le PMH des pistons de deux cylindres indexés, qui sont en général les cylindres 1 et 4 sur un moteur à quatre cylindres en ligne dont le cylindre d'index 1 est en général le plus proche du volant moteur, lorsque la cible passe en regard du capteur, et de la rotation du moteur d'un angle par exemple de 6° lorsque deux dents successives de la roue passent en regard du capteur.
  • Comme le vilebrequin effectue deux tours de rotation pour un cycle moteur complet, ces moyens de détection de la rotation du vilebrequin ne permettent pas de discriminer si, pour un cylindre donné, le passage par le PMH est celui qui commence un temps d'admission ou un temps de détente. C'est pourquoi les systèmes séquentiels comprennent également des moyens de détection de la phase moteur, comportant un capteur et une roue dentée avec cible analogues à ceux précités, mais dont la roue dentée est solidaire en rotation de l'arbre à cames, qui effectue un tour de rotation par cycle moteur.
  • Les systèmes d'injection séquentiels, qui ont un potentiel de performances important, car ils permettent d'individualiser cylindre par cylindre la quantité de combustible injectée ainsi que la phase d'injection par rapport au cycle moteur, ont pour inconvénient d'être coûteux, car ils nécessitent quatre étages de puissance, un capteur de rotation du vilebrequin ainsi qu'un capteur de phase moteur.
  • Pour commander l'injection dans de tels moteurs, il est également connu d'utiliser un procédé et un système dits "Full group", qui n'offrent pas le potentiel de performances important des systèmes séquentiels, mais permettent un gain substantiel de coût du système. En effet, les systèmes d'injection "Full group" ne comportent qu'un seul étage de puissance électrique et ne comprennent pas de capteur de phase moteur. L'injection est commandée simultanément sur les quatre injecteurs, qui sont montés en parallèle sur une même sortie de l'unique étage de puissance.
  • Un inconvénient attaché à une seule injection simultanée par cycle moteur est qu'un cylindre est alimenté en phase de compression, en fonction de la valeur de paramètres de fonctionnement du moteur dont l'acquisition a été faite à la fin du demi-tour moteur précédent, pour une phase d'admission de ce cylindre qui n'interviendra qu'au quatrième demi-tour postérieur, alors que les besoins d'admission en combustible, en temps réel, recalculés et réactualisés à chaque demi-tour, auront pu fortement évoluer, lors de phases transitoires de fonctionnement du moteur.
  • Pour obtenir un fonctionnement relativement régulier avec un bon suivi de débit en transitoire, les systèmes "Full group" sont généralement pilotés de sorte que leurs injecteurs soient commandés à chaque tour du moteur, c'est-à-dire deux fois par cycle moteur, donc à une fréquence double de celle des systèmes séquentiels. Au cours du premier tour, on injecte la moitié de la quantité calculée, et au cours du second tour du cycle moteur, on injecte l'autre moitié, éventuellement réactualisée en fonction de la valeur, entre temps acquise, des paramètres considérés de fonctionnement du moteur.
  • Cette mesure n'est cependant pas satisfaisante : la dernière acquisition disponible des paramètres servant au calcul de l'instant et de la durée d'injection n'est pas prise en compte. Même si l'on procède à une extrapolation à partir des valeurs calculées pour les deux dernières mesures acquises des paramètres considérés, on ne peut obtenir une commande adaptée aux phases transitoires rapides de fonctionnement du moteur. De plus et surtout, ce mode de commande à fréquence double des systèmes "Full group" est critique vis-à-vis de la réponse dynamique en débit des injecteurs.
  • En effet, les injecteurs électromécaniques ont une dynamique de débit qui est limitée par le rapport entre le débit libre ou maximum, correspondant à une injection continue pendant toute la durée du cycle moteur, c'est-à-dire à un injecteur ouvert en permanence (lequel débit maximum est pris en compte pour dimensionner l'injecteur), et le débit minimum (correspondant à une réduction du temps d'ouverture, par exemple au ralenti du moteur), le débit correspondant au produit de la fréquence de commande par la quantité minimum injectable, laquelle est déterminée par le temps de commande en-dessous duquel la caractéristique de la loi de débit n'est plus linéaire (ordre de grandeur de 1 ms, pour tenir compte de l'établissement du courant dans la bobine du solénoïde et de l'inertie des pièces mobiles de l'injecteur).
  • Les systèmes "Full group", bien plus économiques que les systèmes séquentiels, ont donc l'inconvénient de présenter une dynamique de débit bien moins bonne que celle des systèmes séquentiels.
  • Afin de retrouver une dynamique de débit égale à celle des systèmes séquentiels, ou s'en rapprochant, pour un coût système intermédiaire entre ceux des systèmes séquentiels et des systèmes "Full group", il a déjà été proposé un procédé de commande d'injection dit "semi-séquentiel", consistant à grouper les injecteurs par paires, chaque paire d'injecteurs n'étant commandée qu'une seule fois par cycle moteur, c'est-à-dire tous les deux tours moteur, et de sorte que le séquencement des paires commandées ne tient pas compte du cycle moteur, c'est-à-dire ne nécessite pas d'informations d'un capteur de phase moteur, dont on peut faire l'économie.
  • Pour mettre en oeuvre un tel procédé, un système semi-séquentiel comprend un détecteur de la position angulaire du vilebrequin sur chaque tour du moteur, permettant notamment de détecter les Points Morts Hauts et Points Morts Bas (PMB) du moteur, quatre injecteurs groupés en deux paires d'injecteurs, et deux étages de puissance électrique, dont chacun commande une paire respective d'injecteurs une fois par cycle moteur, c'est-à-dire une fois tous les deux tours moteur.
  • En indexant chaque injecteur de la même façon que le cylindre du moteur qu'il alimente, il a été proposé d'apparier soit les injecteurs 1 et 2 dans une paire et les injecteurs 3 et 4 dans l'autre paire, soit les injecteurs 1 et 3 dans une paire et les injecteurs 2 et 4 dans l'autre paire, soit enfin les injecteurs 1 et 4 dans une paire et les injecteurs 2 et 3 dans l'autre paire. De même, il a été proposé de réaliser le séquencement de la commande des deux paires d'injecteurs de plusieurs façons, sous réserve que la période de commande soit de deux tours moteur.
  • Mais, dans tous les cas, on a proposé de commander les deux paires d'injecteurs de manière symétrique ou régulière sur la période de deux tours moteur, c'est-à-dire de commander deux injections équi-réparties sur la période, et pour chacune desquelles les deux injecteurs de la paire respective correspondante sont simultanément commandés. Chacune des deux injections est commandée pendant l'un de deux demi-tours séparés d'un demi-tour sans injection.
  • Sur la figure 1, on a représenté un diagramme schématisant, pour chacun des quatre cylindres cyl 1 à cyl 4 du moteur, représentés en lignes superposées, la succession au cours de neuf demi-tours successifs (en colonnes adjacentes) des quatre phases successives d'admission, de compression, de détente et d'échappement qui constituent un cycle moteur, les phases d'admission étant repérées par des pointillés 1, pour un moteur dont les quatre injecteurs sont appariés selon le troisième choix présenté ci-dessus (injecteurs 1 et 4 en une paire ; injecteurs 2 et 3 dans l'autre paire) avec répartition régulière des commandes d'injection, repérées par des rectangles pleins allongés 2, et en supposant que le premier demi-tour corresponde à une phase d'admission pour le cylindre 1. Si on appelle retard ou temps de réponse le délai, représenté par un trait plein continu 3, entre l'instant A de la dernière acquisition des valeurs des paramètres ayant servi au calcul de la quantité A injectée et l'admission effective pour le cylindre considéré, on constate que ce retard est faible pour le cylindre 1, supérieur à un demi-tour pour le cylindre 2, supérieur à trois demi-tours pour le cylindre 3 et supérieur à deux demi-tours pour le cylindre 4. Soit une somme de retards supérieure à six demi-tours pour les quatre cylindres, donc un retard moyen de 1,5 demi-tour.
  • Si l'admission au premier demi-tour est au cylindre 4 et non au cylindre 1, on trouve des retards supérieurs à deux demi-tours pour le cylindre 1, à trois demi-tours pour le cylindre 2, à un demi-tour pour le cylindre 3 et faible pour le cylindre 4, soit un même total et une même moyenne.
  • Il en est de même si l'on change le séquencement des paires commandées, c'est-à-dire si, au premier demi-tour, on commande l'injection dans les cylindres 2 et 3, et au troisième demi-tour dans les cylindres 1 et 4, que l'admission au premier demi-tour soit au cylindre 1 ou au cylindre 4.
  • L'insensibilité de cet appariement des injecteurs au phasage moteur est bien obtenue en terme de somme et de moyenne des retards, et on constate que les deux autres configurations d'appariements possibles sont moins performantes en terme de sensibilité au phasage du moteur ou de temps de retard.
  • La recherche d'une bonne régularité de fonctionnement du moteur conduit donc naturellement à privilégier l'appariement des injecteurs 1-4 et 2-3. Mais le retard reste trop important pour deux cylindres sur quatre. De plus, l'une des injections intervient en phase d'admission, ce qui est considéré comme défavorable à une bonne préparation du mélange dans le cylindre correspondant.
  • Suivant la sensibilité du moteur à la préparation du mélange, ou suivant les exigences de précision du suivi de richesse en transitoire, le problème à la base de l'invention est de privilégier respectivement la bonne préparation du mélange ou la réduction du temps de réponse ou retard.
  • Un but de l'invention est soit de réduire tout à la fois la valeur maximum du retard et sa valeur moyenne dans un tel système de commande semi-séquentielle, ce qui permet la suppression des injections exceptionnelles, qui peuvent être ajoutées pour compenser une insuffisance d'alimentation en cas de créneaux d'accélération importants, par exemple, soit de favoriser la préparation du mélange.
  • Un autre but de l'invention est de choisir un appariement des injecteurs ainsi qu'un séquencement dans la commande des paires d'injecteurs qui garantissent un fonctionnement du système insensible à l'incertitude relative à la phase moteur.
  • A cet effet, l'invention propose un procédé de commande d'injection d'un moteur à combustion interne, à allumage commandé et injection multipoints, à quatre cylindres et fonctionnant selon un cycle à quatre temps, qui comprend un injecteur par cylindre, le procédé comprenant les étapes consistant à grouper les injecteurs par paires, à commander l'ouverture des injecteurs de chaque paire une seule fois par cycle moteur, et de sorte que le séquencement de la commande des deux paires d'injecteur soit insensible au phasage du moteur, et qui se caractérise en ce qu'il comprend de plus les étapes consistant, à indexer chaque injecteur avec le même indice que le cylindre dudit moteur qu'il alimente, à apparier les injecteurs 1 et 4 d'une part et les injecteurs 2 et 3 d'autre part, à initier l'injection de chacune des deux paires d'injecteurs 1-4 et 2-3 au cours de l'un respectivement de deux demi-tours moteur successifs, et à faire suivre ces deux commandes de deux demi-tours moteur successifs sans commande d'injecteurs, puis à reprendre la séquence, tant que le moteur est commandé en fonctionnement synchrone.
  • On constate que le choix de l'appariement des injecteurs ainsi que le choix d'initier l'injection des deux paires d'injecteurs chacune au cours de l'un respectivement de deux demi-tours moteur successifs, ont pour avantages de rendre le fonctionnement insensible à l'incertitude de la phase moteur, et soit de minimiser le retard entre l'acquisition des paramètres qui servent au calcul du temps d'injection et l'admission effective du combustible dans les cylindres du moteur, ce qui procure un meilleur comportement de ce dernier en suivi de richesse, soit de favoriser la préparation du mélange en évitant l'injection soupape d'admission ouverte - il est connu que le fait de faire séjourner le carburant dans une préchambre d'admission, c'est-à-dire en injectant ce carburant avant l'ouverture de la soupape d'admission, est favorable à la préparation du mélange -, selon que les débuts d'injection se font respectivement en phases d'admission et de détente ou en phases de compression et d'échappement.
  • Ces avantages sont obtenus aussi bien avec un séquencement de commande consistant à commander d'abord la paire d'injecteurs 1-4, puis la paire 2-3, qu'avec le séquencement de commande consistant d'abord à commander la paire d'injecteurs 2-3, puis la paire 1-4.
  • Avantageusement de plus, le procédé de commande d'injection selon l'invention comprend l'étape consistant à déterminer le séquencement de la commande des deux paires d'injecteurs (paire 1-4 puis paire 2-3, suivie de deux demi-tours moteur sans commande, puis à nouveau de la commande de la paire 1-4 puis de la paire 2-3, ou commande de la paire 2-3 puis de la paire 1-4, suivie de deux demi-tours moteur sans commande, puis à nouveau de la commande de la paire 2-3 suivie de la paire 1-4) en fonction de la situation du moteur par rapport à son cycle, au moment de l'entrée en phase de fonctionnement synchrone du moteur, par exemple à la suite d'un démarrage du moteur ou à l'occasion d'une reprise d'injection après une coupure de cette dernière.
  • Selon un mode avantageux de réalisation, le procédé de commande selon l'invention consiste à choisir le séquencement de commande de la paire d'injecteurs 1-4 puis de la paire 2-3, ou le séquencement de commande de la paire d'injecteurs 2-3 puis de la paire 1-4, selon que le premier signal de Point Mort Haut (PMH) ou de Point Mort Bas (PMB) donné par un capteur de rotation du moteur après l'entrée du moteur en phase de fonctionnement synchrone est un signal de PMH ou de PMB pour la paire 1-4.
  • Le procédé peut consister, de plus, à introduire une temporisation entre la détermination du séquencement de la commande des paires d'injecteurs, par exemple en fonction du premier signal de PMH ou de PMB, et le déroulement effectif de l'injection en fonction d'évènements antérieurs, tels que le démarrage du moteur ou une coupure d'injection, par exemple en décélération.
  • En outre, le procédé peut consister à initier l'injection pendant la phase d'admission de l'un des deux cylindres de chaque paire (correspondant à chaque paire d'injecteur) et pendant la phase de détente de l'autre cylindre, si on recherche de faibles retards, ou, en variante, pendant la phase d'échappement de l'un des deux cylindres de chaque paire et pendant la phase de compression de l'autre cylindre, si on recherche une bonne préparation du mélange. Il peut enfin consister à passer de la mise en oeuvre de l'une à l'autre des deux variantes du procédé en fonction d'au moins un paramètre de fonctionnement ou d'état thermique du moteur ou d'un équipement associé.
  • D'autres avantages de l'invention découleront de la description donnée ci-dessous, à titre non limitatif, d'exemples de réalisation décrits en référence aux dessins annexés sur lesquels :
    • la figure 1, déjà présentée et décrite ci-dessus, correspond à un diagramme schématisant les différentes phases du cycle moteur pour chacun des quatre cylindres, avec indication des phases d'admission, des commandes d'injection et des temps de réponse pour un système dit semi-séquentiel à couplage des injecteurs ou des cylindres 1-4 et 2-3, et à commande d'injection régulière, symétrique ou équi-répartie sur une phase moteur,
    • la figure 2 est un diagramme analogue à celui de la figure 1 pour un système semi-séquentiel également à couplage des cylindres ou injecteurs d'indice 1-4 dans la première paire et d'indice 2-3 dans la seconde paire, mais à commande d'injecteur asymétrique, privilégiant la réduction des retards,
    • la figure 3 représente deux séquencements possibles de commande des paires d'injecteurs, qui sont choisis en fonction du premier signal de PMH ou de PMB détecté pour la paire 1-4 lors de l'entrée du moteur en phase de fonctionnement synchrone, soit après démarrage, soit à l'occasion d'une reprise d'injection, suite à une coupure de celle-ci,
    • la figure 4 est un diagramme analogue à celui de la figure 2 pour un système semi-séquentiel avec le même couplage des injecteurs, mais à commande asymétrique privilégiant la qualité de la préparation du mélange, et
    • la figure 5 correspond à la figure 3 pour la commande asymétrique de la figure 4.
  • On rappelle que la conséquence d'un fonctionnement semi-séquentiel à commande d'injecteurs symétrique, tel que décrit ci-dessus en référence à la figure 1, conduit à des retards maximum supérieurs à trois demi-tours moteur, à une somme des retards supérieure à six demi-tours moteur, et donc à une moyenne des retards de l'ordre de 1,5 demi-tour moteur par cylindre, les autres variantes possibles de fonctionnement semi-séquentiel à commande d'injecteurs symétriques présentant des inconvénients en terme de retard et en terme de sensibilité à l'incertitude du phasage du moteur. De plus, l'injection se produit en phase d'admission dans un cylindre.
  • Sur la figure 2, où l'on a également représenté les phases d'admission par la référence 1, les commandes d'injecteurs par la référence 2 et les retards par la référence 3, dans les mêmes conditions que sur la figure 1, on constate que l'injection par la paire d'injecteurs 1-4 est initiée et se déroule lors du premier demi-tour, pour lequel le cylindre 1 est en phase d'admission, et que l'injection par la paire d'injecteurs 2-3 est initiée et se déroule au cours du demi-tour moteur immédiatement suivant, c'est-à-dire le second demi-tour moteur, pour lequel le cylindre 3 est en phase d'admission. Aucune commande d'injecteurs n'intervient au cours des deux demi-tours moteur suivants, pour lesquels le cylindre 4 puis le cylindre 2 sont successivement en phase d'admission. Au premier demi-tour du cycle moteur suivant (le cinquième demi-tour sur la figure 2), on commande à nouveau les injecteurs de la paire 1-4, puis, au demi-tour moteur immédiatement suivant, on commande à nouveau la paire d'injecteurs 2 et 3, à la suite de quoi deux demi-tours moteur se succèdent sans commande d'injecteurs. On obtient ainsi le séquencement représenté sur la première ligne de la figure 3, qui est conservé tant que le moteur est commandé en fonctionnement synchrone. Ce séquencement fait suite à la détection, au début du premier demi-tour, d'un PMH pour le cylindre 1 en admission, mais, en variante, pourrait être celui du cylindre 4 en admission. Le cycle moteur commencerait alors à partir du troisième demi-tour moteur de la figure 2.
  • Sur cette figure 2, les dernières acquisitions A des valeurs mesurées des paramètres de fonctionnement du moteur ayant servi au calcul de la quantité de combustible à injecter, et qui précèdent les commandes d'injecteurs, sont celles obtenues respectivement au début de chacun des deux premiers demi-tours moteur. On constate ainsi que pour les cylindres 1 et 3, le retard est faible, alors qu'il est lègèrement supérieur à deux demi-tours moteur pour les cylindres 2 et 4. La valeur maximum des retards est ainsi diminuée, par rapport à une commande selon la figure 1, la somme des retards n'étant plus que de l'ordre de quatre demi-tours moteur, ce qui correspond à une moyenne d'environ un demi-tour moteur par cylindre.
  • On réduit bien ainsi le retard maximum, la somme des retards et leur moyenne. Ces résultats avantageux sont également obtenus si on adopte le séquencement de commande des paires d'injecteurs représenté sur la deuxième ligne de la figure 3, à savoir une première commande de la paire d'injecteurs 2-3, suivie d'une commande, au demi-tour moteur immédiatement suivant, de la paire d'injecteurs 1-4, puis de deux demi-tours moteur sans commande, puis à nouveau de la commande de la paire d'injecteurs 2-3 suivie de la commande de la paire 1-4, etc ..., tant que le moteur reste commandé en fonctionnement synchrone.
  • Un tel séquencement peut commencer par la commande de la paire 2-3, après passage par un PMB pour la paire 1-4, par exemple lors du second demi-tour de la figure 2, pour lequel le cylindre 3 est en phase d'admission, ou lors du quatrième demi-tour moteur de la figure 2, pour lequel le cylindre 2 est en phase d'admission.
  • La figure 3 et la figure 2 permettent de comprendre que, lorsque le moteur entre en phase de fonctionnement synchrone, soit après son démarrage, soit à l'occasion d'une reprise d'injection, faisant suite à une coupure d'injection en raison d'une décélération par exemple, le séquencement automatiquement adopté par l'unité centrale de commande du dispositif, comportant un microprocesseur convenablement programmé à cet effet, sera celui de la première ligne de la figure 3 si le premier signal de PMH ou de PMB détecté pour la paire 1-4 par le capteur de rotation du moteur est un signal de PMH, et sera le séquencement de la seconde ligne de la figure 3 si ce premier signal détecté est un signal de PMB.
  • Il est généralement admis que la commande de l'injection de combustible dans un cylindre en phase d'admission est défavorable à une bonne préparation du mélange combustible-air. De ce point de vue, le procédé de commande décrit ci-dessus peut être considéré comme désavantageux, dans la mesure où il va à l'encontre de cet enseignement, puisque la figure 2 montre que l'ouverture des injecteurs des cylindres 1 et 3 est commandée, c'est-à-dire que l'injection est initiée, alors que ces derniers sont en phase d'admission, tandis que l'injection est initiée pendant la phase de détente des cylindres 4 et 2.
  • Si on veut privilégier non plus l'obtention de faibles retards, comme cela est obtenu par la mise en oeuvre de la première variante du procédé décrite ci-dessus en référence aux figures 2 et 3, mais la bonne préparation du mélange air-combustible admis dans les cylindres, on met en oeuvre la seconde variante du procédé à présent décrite en référence aux figures 4 et 5.
  • En continuant de représenter les phases d'admission par la référence 1 et les commandes d'injecteurs par la référence 2, on constate que l'injection par la paire d'injecteurs 1-4 est initiée lors du second demi-tour, pour lequel le cylindre 1 est en phase de compression et le cylindre 4 en phase d'échappement, et, dans cet exemple, que l'injection se déroule au cours de ce second demi-tour. L'injection par la paire d'injecteurs 2-3 est initiée lors du demi-tour moteur immédiatement suivant, c'est-à-dire le troisième demi-tour moteur, pour lequel le cylindre 2 est en phase d'échappement et le cylindre 3 en phase de compression, l'injection se déroulant également au cours de ce troisième demi-tour moteur. Aucune commande d'injecteur n'intervient au cours des deux demi-tours moteur suivants, pour lesquels le cylindre 2 puis le cylindre 1 sont successivement en phase d'admission. Au second demi-tour du cycle moteur suivant (le sixième demi-tour sur la figure 4), on commande à nouveau les injecteurs de la paire 1-4, puis, au demi-tour moteur immédiatement suivant, on commande à nouveau la paire d'injecteurs 2-3, à la suite de quoi deux demi-tours moteur se succèdent sans commande d'injecteur. On obtient ainsi le séquencement représenté sur la première ligne de la figure 5, qui est conservé tant que le moteur est commandé en fonctionnement synchrone. Ce séquencement fait suite à la détection, au début du second demi-tour, d'un PMB pour les cylindres 1 et 4, mais, en variante, le PMB détecté pour ces cylindres 1 et 4 pourrait être au début du quatrième demi-tour moteur de la figure 4. Le séquencement des commandes d'injecteurs commencerait alors par la commande des injections au niveau des injecteurs 1 et 4 au cours de ce quatrième demi-tour moteur, suivi, au cinquième demi-tour moteur, de la commande des injections par les injecteurs 2 et 3, avec, ensuite, deux demi-tours moteur consécutifs sans commande d'injecteur, puis reprise du séquencement.
  • On constate qu'aucune injection n'est commandée en phase d'admission du cyclindre correspondant, ce qui est très favorable à une bonne préparation du mélange admis dans ce cylindre.
  • Ce résultat avantageux est également obtenu si on adopte le séquencement de commande des paires d'injecteurs représenté sur la seconde ligne de la figure 5, à savoir une première commande de la paire d'injecteurs 2-3, suivie d'une commande, au demi-tour moteur immédiatement suivant, de la paire d'injecteurs 1-4, puis de deux demi-tours moteur sans commande, puis à nouveau de la commande de la paire d'injecteurs 2-3 suivie de la commande de la paire 1-4, etc.., tant que le moteur reste commandé en fonctionnement synchrone.
  • Un tel séquencement peut commencer par la commande de la paire d'injecteurs 2-3, après passage des cylindres 1 et 4 par un PMH, par exemple lors du troisième demi-tour de la figure 4, pour lequel le cylindre 4 est en phase d'admission, [la paire d'injecteurs 1-4 étant commandée au cours du demi-tour moteur immédiatement suivant, c'est-à-dire le quatrième sur la figure 4], ou lors du cinquième demi-tour moteur de la figure 4 (correspondant au premier demi-tour), pour lequel le cylindre 1 est en phase d'admission, les injecteurs 1 et 4 étant alors commandés au cours du demi-tour moteur immédiatement suivant, soit le sixième (correspondant au second) sur la figure 4.
  • Les figures 4 et 5 permettent de comprendre que le séquencement automatiquement adopté par l'unité centrale de commande du dispositif sera celui de la première ligne de la figure 5, si le premier signal de PMH ou de PMB détecté par le capteur de rotation du moteur pour les cylindres 1 et 4 est un signal de PMB, et sera le séquencement de la seconde ligne de la figure 5, si ce premier signal détecté est un signal de PMH pour ces mêmes cylindres 1 et 4, lorsque le moteur entre en phase de fonctionnement synchrone.
  • Sur la figure 4, les retards 3 ainsi que les instants des dernières acquisitions A des valeurs mesurées des paramètres de fonctionnement du moteur ayant servi au calcul de la quantité de combustible à injecter, et qui précèdent les commandes d'injecteurs, n'ont pas été représentés, car le procédé correspondant, qui privilégie la bonne préparation du mélange et non la recherche de retards faibles, n'est pas, sur ce dernier point, sensiblement meilleur que les procédés de l'état de la technique (voir figure 1).
  • Dans la description qui précède des figures 2 et 4, on a mentionné que l'injection est initiée et se déroule au cours d'un seul demi-tour moteur particulier pour les deux injecteurs de chaque paire respectivement. Mais l'injection peut commencer juste avant le début de ce demi-tour moteur, et s'étendre éventuellement sur plusieurs demi-tours moteur successifs, voire sur tout le cycle moteur, en cas de besoin, par exemple si le régime du moteur est élevé et/ou les besoins du moteur en combustible sont élevés.
  • Dans les configurations associant un moteur et son système d'injection dans lesquelles, compte-tenu des conditions de fonctionnement considérées, soit le moteur est particulièrement exigeant en matière de préparation du mélange air-combustible, soit le système d'apport de combustible n'est pas jugé assez performant en matière de préparation du mélange, on adopte le procédé des figures 4 et 5 (début d'injection en phase d'échappement pour l'un et de compression pour l'autre des deux injecteurs de chaque paire), qui favorise une bonne préparation du mélange. Dans les autres cas, on préfère adopter le procédé des figures 2 et 3 (début d'injection en phase d'admission pour l'un et de détente pour l'autre des deux injecteurs de chaque paire).
  • Le choix entre les deux variantes du procédé peut être fait de façon définitive, ou en fonction des conditions de fonctionnement du moteur, par l'unité électronique de contrôle et commande du moteur. Par exemple, lorsque le catalyseur recevant les gaz d'échappement du moteur est inefficace, du fait de sa basse température, ce qui est le cas pendant un certain temps après le démarrage du moteur, on peut d'abord mettre en oeuvre le procédé privilégiant la préparation du mélange (figures 4 et 5) puis basculer sur la mise en oeuvre du procédé favorisant les faibles retards, donc le suivi de richesse en transitoire (figures 2 et 3).
  • Le basculement d'une variante à l'autre peut être commandé par l'unité électronique de contrôle et commande du moteur en fonction de paramètres de fonctionnement du moteurs, tels que son régime et la pression à la tubulure d'admission d'air, et/ou en fonction de l'état thermique du moteur ou d'un équipement associé.
  • Pour éviter des à-coups de fonctionnement du moteur, pouvant par exemple découler d'une reprise d'injection trop précoce suite à une coupure en décélération, une temporisation, éventuellement réglable, peut être introduite entre la détermination du séquencement de commande à adopter à la suite de la détection d'un PMH ou d'un PMB, et la reprise effective d'injection.
  • On comprend que le dispositif permettant de mettre en oeuvre le procédé ci-dessus décrit peut être rigoureusement identique à un dispositif semi-séquentiel à commande symétrique, mais que le microprocesseur de l'unité de commande sera programmé différemment pour assurer les commandes d'injecteur asymétriques selon les séquencements décrits ci-dessus. Bien entendu, le capteur de rotation du moteur est le même que dans les dispositifs connus, à savoir un capteur à roue dentée avec une singularité pour la détection du PMH, cette roue dentée étant solidaire en rotation du vilebrequin ou du volant moteur.

Claims (7)

  1. Procédé de commande d'injection d'un moteur à allumage commandé et injection multipoints, à quatre cylindres et fonctionnant selon un cycle à quatre temps, et qui comprend un injecteur par cylindre, le procédé comprenant les étapes consistant à grouper les injecteurs par paires, à commander l'ouverture des injecteurs de chaque paire une seule fois par cycle moteur, et de sorte que le séquencement de la commande des deux paires soit insensible au phasage du moteur, caractérisé en ce qu'il comprend de plus les étapes consistant, à indexer chaque injecteur avec le même indice que le cylindre du moteur qu'il alimente, à apparier les injecteurs 1 et 4 d'une part et les injecteurs 2 et 3 d'autre part, à initier l'injection de chacune des deux paires d'injecteurs 1-4 et 2-3 au cours de l'un respectivement de deux demi-tours moteur successifs, et à faire suivre ces deux commandes de deux demi-tours moteur successifs sans commande d'injecteurs, puis à reprendre la séquence tant que le moteur est commandé en fonctionnement synchrone.
  2. Procédé de commande d'injection selon la revendication 1, caractérisé en ce qu'il comprend de plus l'étape consistant à déterminer le séquencement de la commande des deux paires d'injecteur (1-4 puis 2-3, ou 2-3 puis 1-4) en fonction de la situation du moteur par rapport à son cycle au moment de l'entrée en phase de fonctionnement synchrone du moteur, par exemple suite à un démarrage du moteur ou à l'occasion d'une reprise d'injection après coupure de cette dernière.
  3. Procédé de commande d'injection selon la revendication 2, caractérisé en ce qu'il consiste à choisir le séquencement de commande de la paire d'injecteurs 1-4 puis de la paire 2-3 ou le séquencement de commande de la paire d'injecteurs 2-3 puis de la paire 1-4, selon que le premier signal de PMH ou de PMB donné par un capteur de rotation du moteur après l'entrée du moteur en phase de fonctionnement synchrone est un signal de PMH ou de PMB, pour la paire 1-4.
  4. Procédé de commande d'injection selon l'une quelconque des revendications 2 et 3, caractérisé en ce qu'il consiste, de plus, à introduire une temporisation entre la détermination du séquencement de la commande des paires d'injecteurs 1-4 et 2-3, et le déroulement effectif de l'injection en fonction d'évènements antérieurs, tel que le démarrage du moteur ou une coupure d'injection, par exemple en décélération.
  5. Procédé de commande d'injection selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il consiste à initier l'injection pendant la phase d'admission de l'un des deux cylindres correspondant à chaque paire d'injecteurs 1-4 et 2-3, et pendant la phase de détente de l'autre cylindre.
  6. Procédé de commande d'injection selon l'une quelconque des revendications 1 à 4, caractérisé en ce qu'il consiste à initier l'injection pendant la phase d'échappement de l'un des deux cylindres correspondant à chaque paire d'injecteurs 1-4 et 2-3, et pendant la phase de compression de l'autre cylindre.
  7. Procédé de commande d'injection selon les revendications 5 et 6, caractérisé en ce qu'il consiste de plus à passer de la mise en oeuvre du procédé selon l'une des revendications 5 et 6 à la mise en oeuvre du procédé selon l'autre de ces revendications, en fonction d'au moins un paramètre de fonctionnement et/ou d'état thermique du moteur ou d'un équipement associé.
EP19940400256 1993-02-10 1994-02-07 Procédé de commande d'injection pour moteur à injection multipoints à allumage commande Expired - Lifetime EP0614005B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9301464 1993-02-10
FR9301464A FR2701515B1 (fr) 1993-02-10 1993-02-10 Procédé de commande d'injection pour moteur à injection multipoints à allumage commandé.

Publications (3)

Publication Number Publication Date
EP0614005A2 EP0614005A2 (fr) 1994-09-07
EP0614005A3 EP0614005A3 (fr) 1994-12-07
EP0614005B1 true EP0614005B1 (fr) 1996-12-18

Family

ID=9443908

Family Applications (1)

Application Number Title Priority Date Filing Date
EP19940400256 Expired - Lifetime EP0614005B1 (fr) 1993-02-10 1994-02-07 Procédé de commande d'injection pour moteur à injection multipoints à allumage commande

Country Status (4)

Country Link
EP (1) EP0614005B1 (fr)
DE (1) DE69401147T2 (fr)
ES (1) ES2095134T3 (fr)
FR (1) FR2701515B1 (fr)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7047934B1 (en) 2005-08-05 2006-05-23 Yamaha Hatsudoki Kabushiki Kaisha Fuel injection type internal combustion engine and vehicle provided with the same

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2135560A1 (de) * 1971-07-16 1973-02-01 Bosch Gmbh Robert Elektrisch gesteuerte einspritzanlage mit umschaltbaren ventilgruppen
JPS5999044A (ja) * 1982-11-26 1984-06-07 Toyota Motor Corp 燃料噴射時期制御装置
US4932380A (en) * 1987-10-28 1990-06-12 Honda Giken Kogyo Kabushiki Kaisha Fuel injection controller for an internal-combustion engine
ES2024616B3 (es) * 1988-11-28 1992-03-01 Siemens Ag Procedimiento para inyectar combustible en una maquina de combustion interna

Also Published As

Publication number Publication date
FR2701515A1 (fr) 1994-08-19
EP0614005A2 (fr) 1994-09-07
DE69401147T2 (de) 1997-07-10
ES2095134T3 (es) 1997-02-01
FR2701515B1 (fr) 1995-04-21
EP0614005A3 (fr) 1994-12-07
DE69401147D1 (de) 1997-01-30

Similar Documents

Publication Publication Date Title
EP0987421B1 (fr) Procédé de reconnaissance de la phase des cylindres d'un moteur multicylindres à combustion interne à cycle à quatre temps
EP1454048B1 (fr) Procede d'arret et de redemarrage d'un moteur a combustion interne a injection indirecte
EP0647774B1 (fr) Système d'acquisition et de traitement instantané de données pour le contrÔle d'un moteur à combustion interne
FR2536121A1 (fr) Systeme et procede de reglage d'un rapport air-carburant
FR2658244A1 (fr) Dispositif de commande numerique de carburant pour un petit moteur thermique et procede de commande de carburant pour un moteur thermique.
CH625596A5 (fr)
EP0995022B1 (fr) Procede d'injection de carburant au demarrage d'un moteur a combustion interne
EP0686762A1 (fr) Procédé et dispositif de détermination des paramètres spécifiques des injecteurs d'un moteur à combustion, notamment Diesel à pré-injection
FR2925593A1 (fr) Procede pour produire un signal de synchronisation du cycle de fonctionnement d'un moteur a combustion interne
FR2528909A1 (fr) Procede de commande du fonctionnement d'un moteur a combustion interne au demarrage
JP4159006B2 (ja) 単気筒エンジンの燃料噴射制御装置
FR2887300A1 (fr) Procede et dispositif de gestion d'un moteur a combustion interne
EP0614005B1 (fr) Procédé de commande d'injection pour moteur à injection multipoints à allumage commande
EP0127510A1 (fr) Procédé de coupure de l'injection de carburant pendant les phases de décélération d'un moteur à combustion interne
FR2878574A1 (fr) Procede de gestion d'un moteur a combustion interne a plusieurs cylindres
EP1613850B1 (fr) Procede de synchronisation de l'injection avec la phase moteur dans un moteur a commande electronique des injecteurs
FR2937684A1 (fr) Procede de determination de la duree d'une dent longue d'une cible montee sur un vilebrequin de moteur a combustion interne
EP0029374B1 (fr) Générateur de signal de correction d'angle d'avance à l'allumage sous l'action de cliquetis
FR2720445A1 (fr) Dispositif pour la reconnaissance de la relation des phases dans un moteur à combustion internee.
FR2749885A1 (fr) Procede pour produire un signal de synchronisation permettant le pilotage d'un systeme d'injection electronique d'un moteur a combustion interne
FR2619598A1 (fr) Procede pour la commande de la phase d'injection d'une injection de carburant electronique
JP3135725B2 (ja) 多気筒内燃エンジンの制御装置
WO1999019616A1 (fr) Procede pour produire un signal de synchronisation permettant le pilotage d'un systeme d'injection electronique d'un moteur a combustion interne
WO2013104842A1 (fr) Procede de commande de l'avance pour l'allumage commande d'un moteur a combustion interne
WO2009086871A1 (fr) Dispositif de controle de fonctionnement d'un moteur a combustion interne, a rephasage perfectionne d'evenements d'injection

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE ES FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19950114

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: MAGNETI MARELLI FRANCE

17Q First examination report despatched

Effective date: 19960412

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 69401147

Country of ref document: DE

Date of ref document: 19970130

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2095134

Country of ref document: ES

Kind code of ref document: T3

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970125

ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20050125

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20050208

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20050214

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20050224

Year of fee payment: 12

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060207

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060208

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20060228

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060901

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20060207

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20061031

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20060208

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20060228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20070207