EP1584970B1 - Nicht-reziprokes optisches Bauelement mit getrennt regelbarer Einstellung der Übertragung in entgegengesetzte Richtungen - Google Patents

Nicht-reziprokes optisches Bauelement mit getrennt regelbarer Einstellung der Übertragung in entgegengesetzte Richtungen Download PDF

Info

Publication number
EP1584970B1
EP1584970B1 EP05250658A EP05250658A EP1584970B1 EP 1584970 B1 EP1584970 B1 EP 1584970B1 EP 05250658 A EP05250658 A EP 05250658A EP 05250658 A EP05250658 A EP 05250658A EP 1584970 B1 EP1584970 B1 EP 1584970B1
Authority
EP
European Patent Office
Prior art keywords
port
optical
beams
polarization
circulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP05250658A
Other languages
English (en)
French (fr)
Other versions
EP1584970A1 (de
Inventor
Oleg M. Efimov
Alexander A. Betin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Raytheon Co
Original Assignee
Raytheon Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Raytheon Co filed Critical Raytheon Co
Publication of EP1584970A1 publication Critical patent/EP1584970A1/de
Application granted granted Critical
Publication of EP1584970B1 publication Critical patent/EP1584970B1/de
Ceased legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/09Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect
    • G02F1/093Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on magneto-optical elements, e.g. exhibiting Faraday effect used as non-reciprocal devices, e.g. optical isolators, circulators
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/26Optical coupling means
    • G02B6/27Optical coupling means with polarisation selective and adjusting means
    • G02B6/2746Optical coupling means with polarisation selective and adjusting means comprising non-reciprocal devices, e.g. isolators, FRM, circulators, quasi-isolators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S359/00Optical: systems and elements
    • Y10S359/90Methods

Definitions

  • the present invention relates to optical systems. More specifically, the present invention relates to nonreciprocal optical elements.
  • Nonreciprocal optical elements are optical devices with different conditions of beam propagation in opposite directions. They are necessary components for applications in many areas, e.g. 1) in special optical schemes for controlling the parameters of counter directional beams; 2) in ring lasers to excite a unidirectional oscillation in a predetermined direction; 3) in laser gyroscopes to exclude frequency capture of the counter directional waves; and 4) in fiber optical gyroscopes to initialize the phase shift between the counter directional waves. See the following references:
  • NOEs like nonreciprocal mirrors introducing differential phase shifts between counter propagating beams are usually used in laser gyroscopes to exclude frequency capture of the counter directional waves.
  • the basic disadvantages of these elements are the restricted available phase shift and the inability of independent/separate adjustment of the wavelength and intensity of each beam.
  • the Faraday isolator - is usually used in ring lasers and in loop phase conjugate mirrors (PCM).
  • PCM loop phase conjugate mirrors
  • the Faraday isolator used for unidirectional oscillation of laser may be imperfect, lossy and change the intensity of the beam transmitted in one of the opposite directions just enough to suppress the laser oscillation in this direction.
  • the further improvements of the Faraday isolators result in their wide application including utilization in the loop PCMs.
  • JP 9 018 417 discloses a non-reciprocal optical element according to the preamble of claim 1.
  • Sugimoto N. et al. "Waveguide Polarization-Independent Optical Circulator", IEEE Photonics Technology Letters, vol. 11, no. 3, 1 March 1999, pages 355-357 discloses a circulator based on a non-reciprocal mach-Zender interferometer which consists of two waveguide Faraday rotators, two thin-film half-waveplates and two planar lightwave circuit-type 3-dB couplers.
  • the present invention addresses the need in the art by providing a nonreciprocal optical element as recited in the claims, for effecting separate control of the phase of counter propagating beams over a very wide range.
  • the reflective elements are mirrors.
  • Polarization rotation elements such as quarter-wave plates may be disposed between the mirrors and the second and fourth ports to preserve the polarization of the input beams.
  • An arrangement is taught for translating the positions of the mirrors relative to the ports to adjust the phase of the output signals.
  • the invention provides a nonreciprocal optical element with separate control of signals transmitted in opposite directions therethrough.
  • the present invention allows independent phase shift control of transmitted beams over a wide region in that the optical path length of the beams propagated in opposite directions can be varied independently.
  • Fig. 1 shows an optical schematic of a loop PCM 10 implemented in accordance with conventional teachings.
  • An input beam from an amplifier beamline (denoted E 1 ) enters a nonlinear medium 11 from the left and traverses the loop in a clockwise direction.
  • An optical diode 12 is used to prevent saturation of a gain medium (amplifier) 18 in this direction.
  • the optical diode is typically implemented with a Faraday rotator.
  • the clockwise beam (E 3 ) is directed back into the nonlinear medium 11 by mirrors 14, 16, 20 and 22, where it interferes with the input beam (E 1 ) and writes real-time holographic gratings in the medium 11.
  • the grating serves as a holographic resonator mirror, which allows a laser mode (E 2 ) to build from noise in the preferred counterclockwise direction around the loop only. A portion of this beam (E OUT ) is coupled out of the PCM 10 through the grating in the nonlinear medium, in the opposite direction to the input beam.
  • the dynamic grating is set up such that the output beam is a phase conjugate replica of the input beam.
  • this basic architecture in a vector (or polarization-correcting) configuration, near-diffraction limited restoration of completely depolarized beam may be achieved with optical aberration and birefringence correction.
  • This attenuator can have a definite, prior specified, transmittance ⁇ in one direction and a transmittance of close to 100% in the opposite direction.
  • a ny optical diodes including Faraday attenuators cannot have different spectral transmissions for the counter propagating beams and provide a wavelength shift in the loop PCM.
  • a Bragg grating is disclosed as a narrow-band reflector in place of one of the mirrors in the loop PCM.
  • a Faraday attenuator 12' is used.
  • a Bragg grating in combination with the laser amplifier and Faraday attenuator could promote oscillation in the required direction at a shifted wavelength ⁇ 2 and suppress an oscillation at the input wavelength ⁇ 1 .
  • one more condition for proper operation of a loop PCM is that the lengths of the optical paths in both directions need to be close (preferably equal) to each other for good compensation of beam distortions.
  • the above-mentioned applications by Betin et al. may not exactly satisfy this condition because the reflection of thick Bragg gratings is distributed along a sample thickness having some physical depth. That is, the reflection occurs from some effective plane inside the Bragg grating. Therefore, if the reflections of counter-directional beams occur from different gratings or from a grating and any surface as was proposed in the copending applications, the optical paths may be different and this may limit the compensation of beam distortions. This may be a disadvantage of using a thick Bragg grating and a Faraday attenuator.
  • the NOEs described here as an embodiment and those which are not embodiments addresse the above-mentioned issues when used in phase conjugate master oscillator/power amplifier (PC MOPA) arrangements, with a loop-type vector phase conjugate mirror.
  • PC MOPA phase conjugate master oscillator/power amplifier
  • the NOE can be used as a separate optical element and is essential for many applications in addition to PC MOPA based laser systems.
  • the inventive NOE utilizes a circulator - with two reflective elements, e.g., standard mirrors, reflective Bragg gratings, mirrors based on multilayer optical coatings.
  • a beam phase shift or optical length can easily be varied over a wide range in both directions.
  • this element can operate with unpolarized beams if it is necessary.
  • Fig. 3a is a diagram that illustrates the operation of a standard circulator 30.
  • Fig. 3b is a schematic representation of the standard circulator of Fig. 3a .
  • An unpolarized beam enters port #1 is split into two perpendicularly polarized beams with a polarization beam splitter (PBS) 32.
  • the polarizations of the two beams are rotated by 90°, after sequentially passing through Faraday rotators 34 or 44 and a polarization compensator (PC) 36 or 46.
  • the Faraday rotator and polarization compensator combination functions in such a way that it rotates the plane of polarization of the input polarized beam by 90°, but conserves polarization on the return path.
  • a beam that enters port #2 exits through port #3.
  • a beam passes around the circulator in the cyclical sequence #1 - #2 - #3 - #4 - #1. See “Optical Fiber Amplifiers: Materials, Devices, and Applications," S. Sudo, editor, Artech House Inc., 1999. Hereinafter the schematic representation of a circulator shown in Fig. 3b will be used.
  • Fig. 4 is an optical schematic of a nonreciprocal optical element 100.
  • first and second mirrors 50 and 52 are mounted to reflect a beam exiting ports #2 and #4 respectively.
  • a beam that enters port #1 exits through port #3, each time bypassing port #2.
  • a beam that enters port #3 exits through port #1, each time bypassing port #4.
  • the first mirror 50 defines the transmittance of the element in the forward direction while the second mirror 5 2 defines the transmittance in the opposite direction.
  • each polarization component of the input beam is rotated by 90° after passing the ports #1 - #2 - #3 or #3 - #4 - #1.
  • quarter-wave plates 54 and 56 can be installed in each beam as shown in Fig. 4 .
  • This design provides 90° polarization rotations of beams which have double-passed the quarter-wave plates and total restoration of the output beam polarization relative to the input beam polarization.
  • One more advantage of this solution is that each beam component propagates through both shoulders of the circulator. Therefore, the optical paths within a circulator for both polarizations will be exactly equal to each other. This ensures proper phase conditions for the polarization components independent of any possible difference in the optical paths of the circulator shoulders.
  • Fig. 5 is a schematic diagram of an NOE, which is not an embodiment of the invention with filters added to effect adjustable transmittance. Accurate and separate adjustment of the device transmittance in any direction is achieved by changing the reflection coefficients of mirrors 50 and 52. The reflection coefficients may be changed by inserting adjustable filters 56 and 58 between the mirrors 50 and 52, respectively, and the circulator 30.
  • the filters may be implemented with linear or circular variable filters via actuators 62 in response to a control system 70 and user input provided via an I/O interface 72.
  • the control system may be a general-purpose microprocessor, digital logic or other suitable arrangement. This arrangement makes it possible to modify the intensity of the beams in real time.
  • Fig. 6 is a schematic diagram of the inventive NOE with an arrangement for effecting an adjustable phase shift of transmitted beams in accordance with an illustrative embodiment of the present teachings.
  • the first and second mirrors 50 and 52 are mounted for translational motion relative to the circulator 30.
  • Actuators 64 move the mirrors relative to the circulator 30 in response to signals from the controller 70.
  • separate arbitrary phase shift or variation of the optical lengths of counter propagating beams is effected by precise translation of one or both mirrors along the optical axes.
  • This arrangement facilitates a setting of equal lengths of the optical paths in the loop PCM in both directions for good compensation of the beam distortions.
  • Fig. 7 shows an alternative NOE 100', which is not an embodiment of the invention in which independent spectral control of transmission in each direction is effected by use of spectral filters.
  • the mirror 50 is replaced with a Bragg grating 66 and/or a spectral filter, such as an interference filter 68 is inserted between the second mirror 52 and the circulator 30.
  • a spectral filter such as an interference filter 68
  • narrow-band reflectors like thick Bragg gratings o r interference filters can be used as shown in Fig 7 .
  • the placement of these reflectors perpendicular to the optical axes yields an additional benefit in that the reflectors will operate over wide angles of reflection and symmetrically relative to the optical axes.
  • the proposed invention allows easy and separate control of the phase shift or optical length of counter propagating beams over a very wide range of variations.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)

Claims (2)

  1. Nichtreziprokes optisches Element (100), aufweisend:
    einen Zirkulator (30), der dafür ausgelegt ist, ein erstes Signal von einem ersten Port zu einem zweiten Port und ein zweites Signal vom zweiten Port zu einem dritten Port, ein drittes Signal vom dritten Port zu einem vierten Port und ein viertes Signal vom vierten Port zum ersten Port weiterzuleiten;
    ein erstes reflektierendes Element (50), das dafür ausgelegt ist, ein Signal, das vom zweiten Port ausgegeben wird, in den zweiten Port zurück zu reflektieren;
    ein zweites reflektierendes Element (52), das dafür ausgelegt ist, ein Signal, das vom vierten Element ausgegeben wird, in den vierten Port zurück zu reflektieren,
    gekennzeichnet durch:
    eine Anordnung (64, 70, 72), die dafür ausgelegt ist, die Phase des Signals, das vom zweiten Port ausgegeben wird, und die Phase des Signals, das vom vierten Port ausgegeben wird, unabhängig voneinander anzupassen;
    ein erstes Polarisationsdrehelement (54), das zwischen dem zweiten Port und dem ersten reflektierenden Element (50) angeordnet ist, und
    ein zweites Polarisationsdrehelement (56), das zwischen dem vierten Port und dem zweiten reflektierenden Element (50) angeordnet ist.
  2. Erfindung nach Anspruch 1, wobei das erste Polarisationsdrehelement eine erste Viertelwellenplatte (54) ist, und das zweite Polarisationsdrehelement eine zweite Viertelwellenplatte (56) ist.
EP05250658A 2004-03-22 2005-02-04 Nicht-reziprokes optisches Bauelement mit getrennt regelbarer Einstellung der Übertragung in entgegengesetzte Richtungen Ceased EP1584970B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US806717 2004-03-22
US10/806,717 US6965472B2 (en) 2004-03-22 2004-03-22 Nonreciprocal optical element with independent control of transmission opposite directions

Publications (2)

Publication Number Publication Date
EP1584970A1 EP1584970A1 (de) 2005-10-12
EP1584970B1 true EP1584970B1 (de) 2011-03-30

Family

ID=34912646

Family Applications (1)

Application Number Title Priority Date Filing Date
EP05250658A Ceased EP1584970B1 (de) 2004-03-22 2005-02-04 Nicht-reziprokes optisches Bauelement mit getrennt regelbarer Einstellung der Übertragung in entgegengesetzte Richtungen

Country Status (3)

Country Link
US (1) US6965472B2 (de)
EP (1) EP1584970B1 (de)
DE (1) DE602005027143D1 (de)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7349089B1 (en) * 2005-06-28 2008-03-25 Hrl Laboratories, Llc High transmission multi-wavelength filter and method
US8043087B2 (en) * 2006-10-11 2011-10-25 Raytheon Company Methods and apparatus for thermal development of large area solids
JP4953943B2 (ja) * 2007-07-02 2012-06-13 株式会社アドバンテスト モードロックレーザ装置
TWI372270B (en) * 2009-05-04 2012-09-11 Ind Tech Res Inst Optical switch and communication system of optical signal
TWI505656B (zh) * 2011-08-23 2015-10-21 Hon Hai Prec Ind Co Ltd 光發射裝置
WO2019018034A2 (en) * 2017-05-22 2019-01-24 The Regents Of The University Of Colorado, A Body Corporate SYSTEM AND METHOD FOR UNIDIRECTIONAL ROUTING OF SIGNALS
US10845550B1 (en) * 2019-10-18 2020-11-24 The Boeing Company Input coupler for chip-scale laser receiver device
CN117433631B (zh) * 2023-12-20 2024-03-12 四川中久大光科技有限公司 光纤激光器正反光解算装置、解算方法和应用方法

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3700309A (en) * 1971-03-15 1972-10-24 United Aircraft Corp Nonresonant interferometric optical isolator
US4194168A (en) * 1977-11-25 1980-03-18 Spectra-Physics, Inc. Unidirectional ring laser apparatus and method
US4195908A (en) * 1978-05-15 1980-04-01 Sperry Corporation Magnetic mirror for imparting non-reciprocal phase shift
US4219275A (en) * 1978-06-22 1980-08-26 Rockwell International Corporation Ring laser having magnetic isolation of counter-propagating light waves
DE69013130T2 (de) * 1989-12-28 1995-03-09 Fujitsu Ltd Optischer räumlicher Schalter und Netzwerk mit derartigen optischen räumlichen Schaltern.
NL9101244A (nl) * 1991-07-15 1993-02-01 Nederland Ptt Polarisatie-ongevoelige versterkingsinrichting.
US5400418A (en) * 1992-12-04 1995-03-21 Williams Telecommunication Group, Inc. Polarization independent all-fiber optical circulator
US5303314A (en) * 1993-03-15 1994-04-12 The United States Of America As Represented By The Secretary Of The Navy Method and apparatus for polarization-maintaining fiber optical amplification with orthogonal polarization output
JPH06324368A (ja) * 1993-05-11 1994-11-25 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ増幅器
US6055081A (en) * 1995-03-15 2000-04-25 Sumitomo Electric Industries, Ltd. Chromatic dispersion compensator and chromatic dispersion compensating optical communication system
JPH0918417A (ja) * 1995-06-26 1997-01-17 Fuji Elelctrochem Co Ltd 双方向光通信システムの中継装置
US5729380A (en) * 1996-10-30 1998-03-17 Hughes Electronics Loop phase-conjugate mirror for depolarized beams
JPH10190112A (ja) * 1996-12-27 1998-07-21 Mitsubishi Electric Corp 光増幅装置
US5887091A (en) * 1997-07-18 1999-03-23 Ditech Corporation Bidirectional optical amplifier having flat gain
GB2327546A (en) * 1997-07-18 1999-01-27 Northern Telecom Ltd Optical frequency channel assignment plan and filtering technique to support it
JP3019828B2 (ja) * 1997-12-02 2000-03-13 日本電気株式会社 双方向光増幅器
JP3264246B2 (ja) * 1998-03-31 2002-03-11 日本電気株式会社 光増幅器
US6278547B1 (en) * 1998-05-06 2001-08-21 Hughes Electronics Corporation Polarization insensitive faraday attenuator
US6157477A (en) * 1998-05-27 2000-12-05 Mci Communications Corporations Bidirectional dispersion compensation system
US6407861B1 (en) * 1999-04-06 2002-06-18 Adc Telecommunications, Inc. Adjustable optical circulator
FR2796164B1 (fr) * 1999-07-08 2002-01-25 Cit Alcatel Filtre optique a fibre a reseau de bragg avec une reponse temps de groupe constante dans la bande utile
US6538815B1 (en) * 2000-05-18 2003-03-25 Avanex Corporation Bi-directional optical circulator and applications thereof
US6693743B2 (en) * 2000-06-07 2004-02-17 Cirvine Corporation Birefringent devices
US6594410B2 (en) * 2000-08-26 2003-07-15 Cidra Corporation Wide range tunable optical filter
JP2002196279A (ja) * 2000-12-27 2002-07-12 Kddi Submarine Cable Systems Inc 分散補償装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
SUGIMOTO, N. ET AL:: "Waveguide Polarization-Independent Optical Circulator", IEEE PHOTONICS TECHNOLOGY LETTERS, vol. 11, no. 3, 1 March 1999 (1999-03-01), PISCATAWAY, NJ, US, pages 355 - 357 *

Also Published As

Publication number Publication date
US20050207009A1 (en) 2005-09-22
US6965472B2 (en) 2005-11-15
DE602005027143D1 (de) 2011-05-12
EP1584970A1 (de) 2005-10-12

Similar Documents

Publication Publication Date Title
EP1584970B1 (de) Nicht-reziprokes optisches Bauelement mit getrennt regelbarer Einstellung der Übertragung in entgegengesetzte Richtungen
US6175668B1 (en) Wideband polarization splitter, combiner, isolator and controller
US5917648A (en) Packaged optical amplifier assembly
US20060045536A1 (en) Optical Switch
EP3514491B1 (de) Vorrichtung und verfahren zur verminderung des biasfehlers aufgrund von polarisationsinkongruenz
JPH0743489B2 (ja) 偏光面独立型光増幅装置
JP2565099B2 (ja) 光非相反回路
US6075596A (en) Low cost fiber optic circulator
JPH11271700A (ja) 波長特性制御装置、利得等価器及び光増幅器
US6943932B2 (en) Waveguide mach-zehnder optical isolator utilizing transverse magneto-optical phase shift
JPH10170867A (ja) 光サーキュレータの機能を有する光デバイス
US6198567B1 (en) Faraday rotation variable attenuator
US7050671B1 (en) Tunable compensation of chromatic dispersion using etalons with tunable optical path length and non-tunable reflectivity
EP1367427B1 (de) Schaltung und einrichtung für variable lichtwellenfunktion
EP0634025A1 (de) Verbesserungen bei optischen phasenschiebern
CA2039226C (en) Integrated optical devices for the interferometric measurement of light waves
JP3090292B2 (ja) 非相反光回路
US20020071181A1 (en) Polarisation splitting circulator method and device
JP2761141B2 (ja) 偏波回転ミラー
JP3540826B2 (ja) ファイバ型光アイソレータ
JPH0894969A (ja) 光サーキュレータおよび光の制御方法
JPH0634915A (ja) 光アイソレータ、該光アイソレータを備えた光増幅器、及び該光増幅器を備えた双方向光伝送システム
AU675424B2 (en) Improvements to optical phase shifting
JPH07248422A (ja) 光導波路型偏光解消子
JPH07159632A (ja) デポラライザ

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL BA HR LV MK YU

17P Request for examination filed

Effective date: 20060317

AKX Designation fees paid

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 20080703

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 602005027143

Country of ref document: DE

Date of ref document: 20110512

Kind code of ref document: P

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 602005027143

Country of ref document: DE

Effective date: 20110512

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20120102

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 602005027143

Country of ref document: DE

Effective date: 20120102

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 13

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20201210

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20210127

Year of fee payment: 17

Ref country code: DE

Payment date: 20210119

Year of fee payment: 17

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 602005027143

Country of ref document: DE

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20220204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220228

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220204

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220901