EP1576685A2 - Hochtemperaturbeständige dichtung - Google Patents

Hochtemperaturbeständige dichtung

Info

Publication number
EP1576685A2
EP1576685A2 EP02769929A EP02769929A EP1576685A2 EP 1576685 A2 EP1576685 A2 EP 1576685A2 EP 02769929 A EP02769929 A EP 02769929A EP 02769929 A EP02769929 A EP 02769929A EP 1576685 A2 EP1576685 A2 EP 1576685A2
Authority
EP
European Patent Office
Prior art keywords
filler
seal
metallic layer
temperature resistant
resistant seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02769929A
Other languages
German (de)
English (en)
French (fr)
Inventor
Martin Bram
Stephan Reckers
Hans Peter Buchkremer
Rolf Steinbrech
Detlev STÖVER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1576685A2 publication Critical patent/EP1576685A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/12Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering
    • F16J15/121Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement
    • F16J15/122Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement generally parallel to the surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a high temperature resistant seal, in particular a seal for use in a high temperature fuel cell.
  • Such high-temperature-resistant components include components for gas turbines or high-temperature fuel cells.
  • High-temperature fuel cell is the high-temperature fuel cell with solid electrolyte (Solid Oxide Fuel Cell (SOFC)), whose operating temperature can be up to 1000 ° C. On the cathode one
  • SOFC Solid Oxide Fuel Cell
  • High-temperature fuel cells form oxygen ions in the presence of the oxidizing agent.
  • the oxygen ions diffuse through the electrolyte and recombine on the anode side with the hydrogen from the fuel to form water. With the recombination, electrons are released and electrical energy is generated from the fuel cell via this electrical current.
  • Several fuel cells are usually electrically and mechanically connected to one another in order to achieve high electrical outputs by connecting elements, also called interconnectors or bipolar plates. Bipolar plates are used to create stacked fuel cells that are electrically connected in series. This arrangement is called a fuel cell stack.
  • the fuel cell stacks consist of the interconnectors and the electrode-electrolyte units.
  • This problem also affects the glass solders frequently used in fuel cells, which are intended to ensure the tightness of the fuel cells within a stack.
  • the object of the invention is to provide a high-temperature-resistant seal that enables a long-term stable seal between components with different coefficients of thermal expansion and optionally also allows electrical contacting between the components.
  • the seal according to claim 1 comprises a structured metallic layer with at least one area, on the surface of which a filler is arranged.
  • the metallic structured layer forms the load-bearing structure of this seal and can consist, for example, of an embossed or stamped metal foil or else of embossed metal structures, in particular hollow profiles.
  • high temperature-resistant, ie highly heat-resistant metallic alloys such as iron-chromium alloys, nickel-based alloys or also cobalt-based alloys can be used.
  • alloys are suitable which are protected against corrosion by their aluminum content, ie lead to the formation of a thin, dense Al 2 O 3 oxide layer at high temperatures.
  • the Al 2 O 3 layer formed is of sufficient thickness, it has an electrically insulating effect.
  • austenitic materials are preferably used as the metallic layer since they have a sufficiently high creep resistance.
  • the elastic behavior of this metallic layer is determined in particular by the profile geometry of the layer (flank angle, radius, number of waves,
  • the metallic layer of the seal according to the invention has at least one area on which a filler is arranged.
  • a filler is arranged.
  • clay minerals or ceramic powders are used as fillers. Due to their plate-like structure, the clay minerals have elastic resilience when subjected to pressure. Suitable clay minerals are especially mica. These leaves often shimmer and shine silvery or golden, which is why they have often been mistaken for valuable minerals.
  • mica is used as an insulating material. This property is advantageous here because the filler can also take over the electrical insulation. Its weathering products are found in the clay and are important for ceramic production.
  • Suitable, non-conductive ceramic fillers are oxide ceramics based on Al 2 0 3 , Zr0 2 / MgO, Ti0 2 , Cr 2 0 3 or Si0 2 and their combination in composite materials.
  • the filler advantageously has elastic high-temperature behavior below 1000 ° C. This means that the filler does not change its thermomechanical properties over a long period of time, even at operating temperatures.
  • the seal according to the invention regularly fulfills its function with a suitable load even with thermal cycling in a temperature range from room temperature to 1000 ° C.
  • Embodiments of the seal according to the invention provide fillers both only on one side and on both sides of the structured metallic layer. Depending on the amount of filler applied, the stiffness of the metallic layer or the film, and thus the entire seal, changes. An arrangement on both sides with filler regularly leads to a stiffer seal.
  • the filler is advantageously arranged in the wave troughs. In this way, the sealing effect of the metallic is combined
  • the filler itself is generally non-conductive. In the case of a seal with simultaneous electrical contact, care must therefore be taken that the filler is not arranged between the metallic layer and the component to be sealed, since otherwise the components to be sealed are insulated.
  • a further embodiment of the seal according to the invention provides a hollow profile as a metallic layer, in the cavity of which the filler is arranged.
  • Fig. 1 Embodiment of the seal with a corrugated metal foil and filler arranged on both sides.
  • Fig. 2 Embodiment of the seal with a corrugated metal foil and filler arranged on one side.
  • Fig. 4 embodiment of the seal with two metallic layers that form a hollow profile, and filler arranged therein
  • thermomechanical properties of this seal are influenced by the height of the seal, the number of shafts and the inclination of the flanks. At least one shaft with two contact lines (wave troughs) on the first component and one contact line (wave crest) on the second component is necessary for a seal between two components 3. The higher the number of contact lines, the better the seal. On the other hand, the elasticity of the seal is regularly reduced by a large number of contact lines and by steeper flanks in a shaft. A person skilled in the art will therefore select a suitable selection of the profile geometry parameters for a given problem.
  • FIG. 2 shows a similar embodiment of the seal according to the invention.
  • this has the filler applied only on one side of the metallic layer.
  • the rigidity of the seal can be reduced, and the elasticity can thereby advantageously be increased.
  • the metallic layer of the seal forms a sufficiently thick Al 2 0 3 layer, electrical insulation of the components to be sealed can be achieved at the same time. This is regularly the case, in particular, when the seal is used in a high-temperature fuel cell. With a suitable choice of material for the metallic layer, however, electrical conduction can also be effected via the seal. Further configurations of the seal according to the invention are shown in FIGS. 3 and 4.
  • Corrugated profile made of an embossed metal foil made of an austenitic nickel-based alloy
  • Film thickness 0.030 to 0.6 mm, preferably 0.1 to 0.2 mm,
  • Flank angle 20 to 50 °, preferably 30 °
  • profile height 0.5 to 5 mm, preferably 1 mm
  • Number of wave profiles 1 to 4, preferably 2.
  • Film thickness 0.030 to 0.6 mm, preferably 0.1 to 0.2 mm, Flank angle: 30 to 50 °, preferably 45 °, profile height: 0.5 to 5 mm, preferably 1 mm, number of corrugated profiles: 1 to 2, preferably 1

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Gasket Seals (AREA)
  • Sealing Material Composition (AREA)
EP02769929A 2001-09-28 2002-09-07 Hochtemperaturbeständige dichtung Withdrawn EP1576685A2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10148141 2001-09-28
DE10148141 2001-09-28
DE10236731 2002-08-09
DE10236731A DE10236731A1 (de) 2001-09-28 2002-08-09 Hochtemperarturbeständige Dichtung
PCT/DE2002/003323 WO2003032420A2 (de) 2001-09-28 2002-09-07 Hochtemperaturbeständige dichtung

Publications (1)

Publication Number Publication Date
EP1576685A2 true EP1576685A2 (de) 2005-09-21

Family

ID=26010257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02769929A Withdrawn EP1576685A2 (de) 2001-09-28 2002-09-07 Hochtemperaturbeständige dichtung

Country Status (6)

Country Link
US (1) US7252902B2 (enExample)
EP (1) EP1576685A2 (enExample)
JP (1) JP2005511795A (enExample)
AU (1) AU2002336055B2 (enExample)
DE (1) DE10236731A1 (enExample)
WO (1) WO2003032420A2 (enExample)

Families Citing this family (35)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222406B2 (en) * 2002-04-26 2007-05-29 Battelle Memorial Institute Methods for making a multi-layer seal for electrochemical devices
WO2004010523A2 (en) * 2002-07-23 2004-01-29 Global Thermoelectric Inc. High temperature gas seals
DE10358458B4 (de) * 2003-12-13 2010-03-18 Elringklinger Ag Brennstoffzellenstapel und Verfahren zum Herstellen eines Brennstoffzellenstapels
FR2867903B1 (fr) * 2004-03-22 2008-10-03 Commissariat Energie Atomique Pile a combustible a electrolyte solide a structure etanche
JP4389718B2 (ja) * 2004-08-06 2009-12-24 日産自動車株式会社 絶縁シール構造および燃料電池
NL1026861C2 (nl) * 2004-08-18 2006-02-24 Stichting Energie SOFC stackconcept.
CN103032569B (zh) * 2006-01-17 2016-05-04 阿尔弗雷德·荣格 密封装置
US7708842B2 (en) * 2006-08-18 2010-05-04 Federal-Mogul World Wide, Inc. Metal gasket
JP2010520956A (ja) 2007-03-09 2010-06-17 フェデラル−モーグル コーポレイション 金属ガスケット
US20080260455A1 (en) * 2007-04-17 2008-10-23 Air Products And Chemicals, Inc. Composite Seal
JP4918461B2 (ja) * 2007-11-05 2012-04-18 日本ピラー工業株式会社 ガスケット
JP4918462B2 (ja) * 2007-11-05 2012-04-18 日本ピラー工業株式会社 ガスケット
KR101221254B1 (ko) * 2007-11-05 2013-01-11 니폰 필라고교 가부시키가이샤 가스켓
JP4918460B2 (ja) * 2007-11-05 2012-04-18 日本ピラー工業株式会社 ガスケット
FR2925140B1 (fr) * 2007-12-13 2010-02-19 Commissariat Energie Atomique Joint d'etancheite superplastique, de preference pour systeme a cellules electrochimiques
US8206087B2 (en) 2008-04-11 2012-06-26 Siemens Energy, Inc. Sealing arrangement for turbine engine having ceramic components
US20090311570A1 (en) * 2008-06-17 2009-12-17 Battelle Memorial Institute SOFC Double Seal with Dimensional Control for Superior Thermal Cycle Stability
US8268504B2 (en) * 2008-12-22 2012-09-18 General Electric Company Thermomechanical sealing of interconnect manifolds in fuel cell stacks
US8304122B2 (en) 2009-02-06 2012-11-06 Protonex Technology Corporation Solid oxide fuel cell systems with hot zones having improved reactant distribution
FR2951517B1 (fr) * 2009-10-20 2011-12-09 Commissariat Energie Atomique Joint d'etancheite entre deux elements a coefficients de dilatation thermique differents
WO2011162769A2 (en) * 2010-06-25 2011-12-29 Utc Power Corporation Composite seal for fuel cells, process of manufacture, and fuel cell stack using same
CN102537345B (zh) * 2010-12-24 2015-09-09 秦皇岛秦冶重工有限公司 一种金属包覆式密封圈
US8678754B2 (en) 2011-01-24 2014-03-25 General Electric Company Assembly for preventing fluid flow
US20120211943A1 (en) * 2011-02-22 2012-08-23 General Electric Company Sealing device and method for providing a seal in a turbine system
FR2974401B1 (fr) * 2011-04-22 2013-06-14 Commissariat Energie Atomique Joint d'etancheite metallique a ame ceramique
EP2733777B1 (en) 2012-11-16 2014-12-17 Air Products And Chemicals, Inc. Seal between metal and ceramic conduits
US10109867B2 (en) 2013-06-26 2018-10-23 Upstart Power, Inc. Solid oxide fuel cell with flexible fuel rod support structure
US9416675B2 (en) 2014-01-27 2016-08-16 General Electric Company Sealing device for providing a seal in a turbomachine
SG11201702330XA (en) 2014-10-07 2017-04-27 Protonex Technology Corp Sofc-conduction
US10099290B2 (en) 2014-12-18 2018-10-16 General Electric Company Hybrid additive manufacturing methods using hybrid additively manufactured features for hybrid components
JP2017078437A (ja) * 2015-10-19 2017-04-27 ニッタ株式会社 異物侵入防止壁
SG11201804110WA (en) 2015-10-20 2018-06-28 Protonex Tech Corporation Improved cpox fuel peformer and sofc system
US10790523B2 (en) 2015-10-20 2020-09-29 Upstart Power, Inc. CPOX reactor control system and method
US11108072B2 (en) 2016-08-11 2021-08-31 Upstart Power, Inc. Planar solid oxide fuel unit cell and stack
EP4014269A4 (en) 2019-08-14 2024-10-09 Upstart Power, Inc. Sofc-conduction

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125861A (ja) * 1986-11-14 1988-05-30 Koichi Maruyama シ−ル構造
US4830698A (en) * 1988-04-20 1989-05-16 Fel-Pro Incorporated Method of forming a gasket with enhanced sealing characteristics
US5080934A (en) * 1990-01-19 1992-01-14 Avco Corporation Process for making abradable hybrid ceramic wall structures
JPH06231784A (ja) * 1992-09-01 1994-08-19 Fuji Electric Co Ltd 固体電解質型燃料電池
DE4325224A1 (de) * 1993-07-28 1995-02-02 Goetze Ag Spiralringdichtung
DE4335224A1 (de) 1993-10-15 1995-04-20 Leybold Ag Vorrichtung für die Herstellung optischer Schichten
BE1006102A6 (fr) * 1993-11-16 1994-05-10 Royale Asturienne Des Mines S Joint spirale.
US5532073A (en) * 1993-11-29 1996-07-02 Kabushiki Kaisha Toshiba Fuel cell
US6092811A (en) * 1996-04-30 2000-07-25 Jamco Products, Llc Hybrid gasket
DE19735854C2 (de) * 1997-08-19 2002-08-01 Daimler Chrysler Ag Stromkollektor für eine Brennstoffzelle und Verfahren zu seiner Herstellung
JP3809491B2 (ja) * 1997-10-29 2006-08-16 アイシン高丘株式会社 燃料電池用セパレータ
DE69940420D1 (de) * 1998-12-15 2009-04-02 Topsoe Fuel Cell As Hitzebeständiger Abdichtungswerkstoff
US6302402B1 (en) 1999-07-07 2001-10-16 Air Products And Chemicals, Inc. Compliant high temperature seals for dissimilar materials
US6777126B1 (en) * 1999-11-16 2004-08-17 Gencell Corporation Fuel cell bipolar separator plate and current collector assembly and method of manufacture
JP2001271937A (ja) * 2000-03-24 2001-10-05 Nippon Gasket Co Ltd 金属ガスケット
JP2002013640A (ja) * 2000-06-29 2002-01-18 Uchiyama Mfg Corp シリンダヘッドガスケット
DE10044703B4 (de) * 2000-09-09 2013-10-17 Elringklinger Ag Brennstoffzelleneinheit, Brennstoffzellenblockverbund und Verfahren zum Herstellen eines Brennstoffzellenblockverbunds
US6852439B2 (en) * 2001-05-15 2005-02-08 Hydrogenics Corporation Apparatus for and method of forming seals in fuel cells and fuel cell stacks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03032420A2 *

Also Published As

Publication number Publication date
WO2003032420A2 (de) 2003-04-17
US20040195782A1 (en) 2004-10-07
AU2002336055B2 (en) 2008-02-28
WO2003032420A3 (de) 2005-08-25
US7252902B2 (en) 2007-08-07
JP2005511795A (ja) 2005-04-28
DE10236731A1 (de) 2003-04-30

Similar Documents

Publication Publication Date Title
EP1576685A2 (de) Hochtemperaturbeständige dichtung
DE60019238T2 (de) Flacher festoxid-brennstoffzellenstapel mit metallfolie-interkonnektoren
EP1314217B1 (de) Hochtemperaturbrennstoffzelle
DE2753198A1 (de) Magnetohydrodynamische elektrode
EP0424732A1 (de) Stromübertragungselemente für stapelförmig angeordnete Hochtemperatur-Brennstoffzellen und Verfahren zu deren Herstellung
DE112014000307B4 (de) Anschlussplatte für eine Brennstoffzelle, Herstellungsverfahren für eine Anschlussplatte für eine Brennstoffzelle und Brennstoffzelle
DE102021109158A1 (de) Elektrochemischer Reaktionszellenstapel
DE102022121234A1 (de) Elektrochemischer Reaktionszellenstapel
EP1844513B1 (de) Interkonnektor für hochtemperaturbrennstoffzellen
EP0615298B1 (de) Stromanschlusselement für Festelektrolyt-Brennstoffzellen
DE102005014077B4 (de) Interkonnektor für Hochtemperaturbrennstoffzellen und Verfahren zu dessen Herstellung und Verfahren zum Betreiben einer Brennstoffzelle
EP1589602B1 (de) Kontaktfederblech und elektrochemische Batterie mit einem derartigen Kontaktfederblech
DE102021112993A1 (de) Elektrochemischer Reaktionszellenstapel
EP1999802A1 (de) Vielschichtaktoren mit interdigitalelektroden
DE4324181C2 (de) Hochtemperatur-Brennstoffzelle, Verfahren zu ihrer Herstellung sowie deren Verwendung
DE102005005117B4 (de) Hochtemperaturbrennstoffzelle, Brennstoffzellenstapel, Verfahren zur Herstellung eines Interkonnektors
EP2850687B1 (de) Elektrischer energiespeicher
EP1665443B1 (de) Brennstoffzelle und zugehöriges brennstoffzellenmodul
DE102019132112A1 (de) Bauteil einer Batteriezelle und Verfahren zur Herstellung eines Bauteils
EP1301957B1 (de) Aluminiumhaltiger interkonnektor für brennstoffzellen
EP2372825B1 (de) Brennstoffzellenmodul
DE102022113662A1 (de) Elektrochemische Reaktionseinzelzelle und elektrochemischer Reaktionszellenstapel
DE102006054201A1 (de) Hochtemperatur-Brennstoffzelle in Leichtbauweise

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

17P Request for examination filed

Effective date: 20040417

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 01M 8/02 B

Ipc: 7F 16J 15/12 A

17Q First examination report despatched

Effective date: 20080725

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20081127