EP1576685A2 - High-temperature resistant seal - Google Patents

High-temperature resistant seal

Info

Publication number
EP1576685A2
EP1576685A2 EP02769929A EP02769929A EP1576685A2 EP 1576685 A2 EP1576685 A2 EP 1576685A2 EP 02769929 A EP02769929 A EP 02769929A EP 02769929 A EP02769929 A EP 02769929A EP 1576685 A2 EP1576685 A2 EP 1576685A2
Authority
EP
European Patent Office
Prior art keywords
filler
seal
metallic layer
temperature resistant
resistant seal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP02769929A
Other languages
German (de)
French (fr)
Inventor
Martin Bram
Stephan Reckers
Hans Peter Buchkremer
Rolf Steinbrech
Detlev STÖVER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Forschungszentrum Juelich GmbH
Original Assignee
Forschungszentrum Juelich GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Forschungszentrum Juelich GmbH filed Critical Forschungszentrum Juelich GmbH
Publication of EP1576685A2 publication Critical patent/EP1576685A2/en
Withdrawn legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16JPISTONS; CYLINDERS; SEALINGS
    • F16J15/00Sealings
    • F16J15/02Sealings between relatively-stationary surfaces
    • F16J15/06Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces
    • F16J15/10Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing
    • F16J15/12Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering
    • F16J15/121Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement
    • F16J15/122Sealings between relatively-stationary surfaces with solid packing compressed between sealing surfaces with non-metallic packing with metal reinforcement or covering with metal reinforcement generally parallel to the surfaces
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/241Grouping of fuel cells, e.g. stacking of fuel cells with solid or matrix-supported electrolytes
    • H01M8/2425High-temperature cells with solid electrolytes
    • H01M8/2432Grouping of unit cells of planar configuration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0271Sealing or supporting means around electrodes, matrices or membranes
    • H01M8/028Sealing means characterised by their material
    • H01M8/0282Inorganic material
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the invention relates to a high temperature resistant seal, in particular a seal for use in a high temperature fuel cell.
  • Such high-temperature-resistant components include components for gas turbines or high-temperature fuel cells.
  • High-temperature fuel cell is the high-temperature fuel cell with solid electrolyte (Solid Oxide Fuel Cell (SOFC)), whose operating temperature can be up to 1000 ° C. On the cathode one
  • SOFC Solid Oxide Fuel Cell
  • High-temperature fuel cells form oxygen ions in the presence of the oxidizing agent.
  • the oxygen ions diffuse through the electrolyte and recombine on the anode side with the hydrogen from the fuel to form water. With the recombination, electrons are released and electrical energy is generated from the fuel cell via this electrical current.
  • Several fuel cells are usually electrically and mechanically connected to one another in order to achieve high electrical outputs by connecting elements, also called interconnectors or bipolar plates. Bipolar plates are used to create stacked fuel cells that are electrically connected in series. This arrangement is called a fuel cell stack.
  • the fuel cell stacks consist of the interconnectors and the electrode-electrolyte units.
  • This problem also affects the glass solders frequently used in fuel cells, which are intended to ensure the tightness of the fuel cells within a stack.
  • the object of the invention is to provide a high-temperature-resistant seal that enables a long-term stable seal between components with different coefficients of thermal expansion and optionally also allows electrical contacting between the components.
  • the seal according to claim 1 comprises a structured metallic layer with at least one area, on the surface of which a filler is arranged.
  • the metallic structured layer forms the load-bearing structure of this seal and can consist, for example, of an embossed or stamped metal foil or else of embossed metal structures, in particular hollow profiles.
  • high temperature-resistant, ie highly heat-resistant metallic alloys such as iron-chromium alloys, nickel-based alloys or also cobalt-based alloys can be used.
  • alloys are suitable which are protected against corrosion by their aluminum content, ie lead to the formation of a thin, dense Al 2 O 3 oxide layer at high temperatures.
  • the Al 2 O 3 layer formed is of sufficient thickness, it has an electrically insulating effect.
  • austenitic materials are preferably used as the metallic layer since they have a sufficiently high creep resistance.
  • the elastic behavior of this metallic layer is determined in particular by the profile geometry of the layer (flank angle, radius, number of waves,
  • the metallic layer of the seal according to the invention has at least one area on which a filler is arranged.
  • a filler is arranged.
  • clay minerals or ceramic powders are used as fillers. Due to their plate-like structure, the clay minerals have elastic resilience when subjected to pressure. Suitable clay minerals are especially mica. These leaves often shimmer and shine silvery or golden, which is why they have often been mistaken for valuable minerals.
  • mica is used as an insulating material. This property is advantageous here because the filler can also take over the electrical insulation. Its weathering products are found in the clay and are important for ceramic production.
  • Suitable, non-conductive ceramic fillers are oxide ceramics based on Al 2 0 3 , Zr0 2 / MgO, Ti0 2 , Cr 2 0 3 or Si0 2 and their combination in composite materials.
  • the filler advantageously has elastic high-temperature behavior below 1000 ° C. This means that the filler does not change its thermomechanical properties over a long period of time, even at operating temperatures.
  • the seal according to the invention regularly fulfills its function with a suitable load even with thermal cycling in a temperature range from room temperature to 1000 ° C.
  • Embodiments of the seal according to the invention provide fillers both only on one side and on both sides of the structured metallic layer. Depending on the amount of filler applied, the stiffness of the metallic layer or the film, and thus the entire seal, changes. An arrangement on both sides with filler regularly leads to a stiffer seal.
  • the filler is advantageously arranged in the wave troughs. In this way, the sealing effect of the metallic is combined
  • the filler itself is generally non-conductive. In the case of a seal with simultaneous electrical contact, care must therefore be taken that the filler is not arranged between the metallic layer and the component to be sealed, since otherwise the components to be sealed are insulated.
  • a further embodiment of the seal according to the invention provides a hollow profile as a metallic layer, in the cavity of which the filler is arranged.
  • Fig. 1 Embodiment of the seal with a corrugated metal foil and filler arranged on both sides.
  • Fig. 2 Embodiment of the seal with a corrugated metal foil and filler arranged on one side.
  • Fig. 4 embodiment of the seal with two metallic layers that form a hollow profile, and filler arranged therein
  • thermomechanical properties of this seal are influenced by the height of the seal, the number of shafts and the inclination of the flanks. At least one shaft with two contact lines (wave troughs) on the first component and one contact line (wave crest) on the second component is necessary for a seal between two components 3. The higher the number of contact lines, the better the seal. On the other hand, the elasticity of the seal is regularly reduced by a large number of contact lines and by steeper flanks in a shaft. A person skilled in the art will therefore select a suitable selection of the profile geometry parameters for a given problem.
  • FIG. 2 shows a similar embodiment of the seal according to the invention.
  • this has the filler applied only on one side of the metallic layer.
  • the rigidity of the seal can be reduced, and the elasticity can thereby advantageously be increased.
  • the metallic layer of the seal forms a sufficiently thick Al 2 0 3 layer, electrical insulation of the components to be sealed can be achieved at the same time. This is regularly the case, in particular, when the seal is used in a high-temperature fuel cell. With a suitable choice of material for the metallic layer, however, electrical conduction can also be effected via the seal. Further configurations of the seal according to the invention are shown in FIGS. 3 and 4.
  • Corrugated profile made of an embossed metal foil made of an austenitic nickel-based alloy
  • Film thickness 0.030 to 0.6 mm, preferably 0.1 to 0.2 mm,
  • Flank angle 20 to 50 °, preferably 30 °
  • profile height 0.5 to 5 mm, preferably 1 mm
  • Number of wave profiles 1 to 4, preferably 2.
  • Film thickness 0.030 to 0.6 mm, preferably 0.1 to 0.2 mm, Flank angle: 30 to 50 °, preferably 45 °, profile height: 0.5 to 5 mm, preferably 1 mm, number of corrugated profiles: 1 to 2, preferably 1

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Sustainable Energy (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Fuel Cell (AREA)
  • Gasket Seals (AREA)
  • Sealing Material Composition (AREA)

Abstract

The invention relates to a high-temperature resistant seal, particularly a seal for use in a high-temperature fuel cell. The inventive seal comprises a structured metallic layer having at least one area on whose surface a filler is placed. The filler is comprised, in particular, of clay minerals or ceramic materials. The seal thus advantageously combines the sealing properties of a metallic layer, for example, of an undulated metal foil with the elastic properties of the filler. The seal is particularly suited for use at high temperatures and thus, for example, in high-temperature fuel cells.

Description

Beschreibung Hochtemperaturbeständige Dichtung Description High temperature resistant seal
Die Erfindung bezieht sich auf eine hochtemperaturbeständige Dichtung, insbesondere eine Dichtung für den Einsatz in einer Hochtemperatur-Brennstoffzelle.The invention relates to a high temperature resistant seal, in particular a seal for use in a high temperature fuel cell.
Stand der TechnikState of the art
Hochtemperaturbeständige Bauelemente weisen häufig unterschiedliche Einzelkomponenten mit unterschiedlichen Wärmeausdehnungskoeffizienten auf. Diese führen bei der Abdichtung zwischen den Einzelkomponenten, unabhängig ob elektrisch leitend oder isolierend, insbesondere bei einer thermozyklisehen Betriebsweise zu großen Problemen in Form von Spannungen oder auch Rissen. Zu solchen hochtemperaturbeständigen Bauelementen zählen Bauteile für Gasturbinen oder auch Hochtemperatur-Brennstoff- zellen.Components that are resistant to high temperatures often have different individual components with different coefficients of thermal expansion. These lead to major problems in the form of stresses or cracks in the sealing between the individual components, regardless of whether they are electrically conductive or insulating, in particular in a thermocyclic mode of operation. Such high-temperature-resistant components include components for gas turbines or high-temperature fuel cells.
Eine Art der Hochtemperatur-Brennstoffzelle ist die Hochtemperatur-Brennstoffzelle mit Festelektrolyt (Solide Oxide Fuel Cell (SOFC) ) , deren Betriebstemperatur bis zu 1000 °C betragen kann. An der Kathode einerOne type of high-temperature fuel cell is the high-temperature fuel cell with solid electrolyte (Solid Oxide Fuel Cell (SOFC)), whose operating temperature can be up to 1000 ° C. On the cathode one
Hochtemperatur-Brennstoffzelle bilden sich in Anwesenheit des Oxidationsmittels Sauerstoffionen. Die Sauerstoffionen diffundieren durch den Elektrolyten und rekombinieren auf der Anodenseite mit dem vom Brenn- stoff stammenden Wasserstoff zu Wasser. Mit der Rekombination werden Elektronen freigesetzt und über diesen elektrischen Strom elektrische Energie aus der Brennstoffzelle erzeugt. Mehrere Brennstoffzellen werden in der Regel zur Erzielung großer elektrischer Leistungen durch verbindende Elemente, auch Interkonnektoren oder bipolare Platten genannt, elektrisch und mechanisch miteinander verbunden. Mittels bipolarer Platten entstehen übereinander gestapelte, elektrisch in Serie geschaltete Brennstoffzellen. Diese Anordnung wird Brennstoffzellenstapel genannt . Die Brennstoffzellenstapel bestehen aus den Interkonnektoren und den Elektroden-Elektrolyt-Einheiten.High-temperature fuel cells form oxygen ions in the presence of the oxidizing agent. The oxygen ions diffuse through the electrolyte and recombine on the anode side with the hydrogen from the fuel to form water. With the recombination, electrons are released and electrical energy is generated from the fuel cell via this electrical current. Several fuel cells are usually electrically and mechanically connected to one another in order to achieve high electrical outputs by connecting elements, also called interconnectors or bipolar plates. Bipolar plates are used to create stacked fuel cells that are electrically connected in series. This arrangement is called a fuel cell stack. The fuel cell stacks consist of the interconnectors and the electrode-electrolyte units.
Nachteilig können bei Brennstoffzellen und Brennstoffzellenstapeln, oder auch bei hochtemperaturbeständigen Bauteilen ganz allgemein, folgende Probleme auftreten: Bei zyklischer Temperaturbelastung treten regelmäßig WärmeSpannungen, verbunden mit Relativbewegungen der Einzelkomponenten zueinander, auf. Diese basieren auf dem unterschiedlichen thermischen Ausdehnungsverhalten, bzw. den unterschiedlichen thermischen Ausdehnungskoeffizienten der verwendeten Materialien.The following problems can occur disadvantageously in fuel cells and fuel cell stacks, or also in general in the case of components which are resistant to high temperatures: With cyclical temperature loads, thermal stresses occur, associated with relative movements of the individual components with respect to one another. These are based on the different thermal expansion behavior or the different thermal expansion coefficients of the materials used.
Zur Abdichtung einzelner Komponenten, insbesondere bei Hochtemperatur-Brennstoffzellen, werden im Stand der Technik unter anderem Glaslote mit geringer Elastizität eingesetzt. Dabei besteht durch auftretende Wärmespan- nungen die Gefahr der Rißbildung und des Haftungsver- lusts . Weiterhin besteht gemäß dem Stand der Technik noch keine ausreichende Kompatibilität zwischen den vergleichsweise hohen Ausdehnungskoeffizienten z. B. einer metallischen bipolaren Platte und den derzeit be- kannten Elektroden-, bzw. Elektrolytmaterialien, deren Ausdehnungskoeffizienten vergleichsweise geringer sind. Dadurch können nachteilig WärmeSpannungen zwischen Elektroden und Interkonnektoren auftreten, die zu einer mechanischen Schädigung innerhalb der Brennstoffzelle führen können.For sealing individual components, especially in high-temperature fuel cells, glass solders with low elasticity are used in the prior art. There is a risk of crack formation and loss of liability due to the occurrence of thermal stresses. Furthermore, according to the prior art, there is still insufficient compatibility between the comparatively high expansion coefficients, e.g. B. a metallic bipolar plate and the currently known electrode or electrolyte materials, whose expansion coefficients are comparatively lower. This can adversely affect thermal tensions between Electrodes and interconnectors occur which can lead to mechanical damage within the fuel cell.
Diese Problematik betrifft aber auch die in Brennstoffzellen häufig eingesetzten Glaslote, die die Dichtigkeit der Brennstoffzellen innerhalb eines Stapels gewährleisten sollen.This problem also affects the glass solders frequently used in fuel cells, which are intended to ensure the tightness of the fuel cells within a stack.
Aufgabe und LösungTask and solution
Aufgabe der Erfindung ist es, eine hochtemperaturbeständige Dichtung bereit zu stellen, die zwischen Komponenten mit unterschiedlichen thermischen Ausdehnungskoeffizienten eine langzeitstabile Dichtung ermöglicht und optional auch eine elektrische Kontaktierung zwischen den Komponenten erlaubt .The object of the invention is to provide a high-temperature-resistant seal that enables a long-term stable seal between components with different coefficients of thermal expansion and optionally also allows electrical contacting between the components.
Die Aufgabe wird gelöst durch eine Dichtung mit der Gesamtheit der Merkmale des ersten Anspruchs . Weitere vorteilhafte Ausgestaltungen der Dichtung ergeben sich aus den darauf rückbezogenen Ansprüchen.The object is achieved by a seal with the entirety of the features of the first claim. Further advantageous refinements of the seal result from the claims which refer back to it.
Gegenstand der Erfindung Die Dichtung gemäß Anspruch 1 umfaßt eine strukturierte metallische Schicht mit wenigstens einem Bereich, auf dessen Oberfläche ein Füllstoff angeordnet ist. Die metallische strukturierte Schicht bildet das tragende Gerüst dieser Dichtung und kann beispielsweise aus einer geprägten oder gestanzten Metallfolie oder auch aus geprägten Metallstrukturen, insbesondere Hohl- profilen, bestehen. Als Werkstoffe für diese etalli- sehe Schicht können hochtemperaturbeständige, d. h. hochwarmfeste metallische Legierungen wie beispielsweise Eisen-Chromlegierungen, Nickel-Basislegierungen oder auch Kobalt-Basislegierungen eingesetzt werden. Insbe- sondere sind Legierungen geeignet, die durch ihren Aluminiumgehalt korrosionsgeschützt sind, d. h. bei hohen Temperaturen zur Ausbildung einer dünnen, dichten Al203-Oxidschicht führen. Bei ausreichender Dicke der gebildeten Al203-Schicht wirkt diese elektrisch isolie- rend. Insgesamt werden bevorzugt austenitische Werkstoffe als metallische Schicht eingesetzt, da sie über eine ausreichend hohe Kriechbeständigkeit verfügen. Das elastische Verhalten dieser metallischen Schicht wird dabei insbesondere durch die Profilgeometrie der Schicht (Flankenwinkel, Radius, Anzahl der Wellen,Object of the invention The seal according to claim 1 comprises a structured metallic layer with at least one area, on the surface of which a filler is arranged. The metallic structured layer forms the load-bearing structure of this seal and can consist, for example, of an embossed or stamped metal foil or else of embossed metal structures, in particular hollow profiles. As materials for these metallic see layer, high temperature-resistant, ie highly heat-resistant metallic alloys such as iron-chromium alloys, nickel-based alloys or also cobalt-based alloys can be used. In particular, alloys are suitable which are protected against corrosion by their aluminum content, ie lead to the formation of a thin, dense Al 2 O 3 oxide layer at high temperatures. If the Al 2 O 3 layer formed is of sufficient thickness, it has an electrically insulating effect. Overall, austenitic materials are preferably used as the metallic layer since they have a sufficiently high creep resistance. The elastic behavior of this metallic layer is determined in particular by the profile geometry of the layer (flank angle, radius, number of waves,
Dichtprofile) , die Materialien der abzudichtenden Bauteile und deren Wärmebehandlungszustand bestimmt.Sealing profiles), the materials of the components to be sealed and their heat treatment status.
Weiterhin weist die metallische Schicht der erfindungs- gemäßen Dichtung wenigstens einen Bereich auf, auf dem ein Füllstoff angeordnet ist. Als Füllstoff kommen insbesondere Tonmineralien oder auch keramische Pulver zum Einsatz. Die Tonmineralien weisen aufgrund ihrer platt- chenartigen Struktur bei Druckbelastung eine elastische Rückfederung auf. Geeignete Tonmineralien sind insbesondere Glimmer. Oft schimmern und glänzen diese Blatt- chen silbrig oder golden, weshalb sie schon oft mit wertvollen Mineralen verwechselt wurden. Glimmer dient unter anderem als Isoliermaterial. Diese Eigenschaft ist hier vorteilhaft, weil der Füllstoff dadurch zusätzlich die elektrische Isolierung übernehmen kann. Seine Verwitterungsprodukte finden sich im Ton und sind für die Keramikherstellung wichtig. Geeignete, nichtleitende keramische Füllstoffe sind Oxidkeramiken auf der Basis von Al203, Zr02/ MgO, Ti02, Cr203 oder Si02 sowie deren Kombination in Verbundwerkstoffen.Furthermore, the metallic layer of the seal according to the invention has at least one area on which a filler is arranged. In particular, clay minerals or ceramic powders are used as fillers. Due to their plate-like structure, the clay minerals have elastic resilience when subjected to pressure. Suitable clay minerals are especially mica. These leaves often shimmer and shine silvery or golden, which is why they have often been mistaken for valuable minerals. Among other things, mica is used as an insulating material. This property is advantageous here because the filler can also take over the electrical insulation. Its weathering products are found in the clay and are important for ceramic production. Suitable, non-conductive ceramic fillers are oxide ceramics based on Al 2 0 3 , Zr0 2 / MgO, Ti0 2 , Cr 2 0 3 or Si0 2 and their combination in composite materials.
Der Füllstoff weist unterhalb von 1000 °C vorteilhaft elastisches Hochtemperaturverhalten auf. Darunter ist zu verstehen, dass der Füllstoff auch bei Einsatztemperaturen seine thermomechanischen Eigenschaften über längere Zeit nicht verändert. Typischerweise werdenThe filler advantageously has elastic high-temperature behavior below 1000 ° C. This means that the filler does not change its thermomechanical properties over a long period of time, even at operating temperatures. Typically
Hochtemperatur-Brennstoffzellen bei Betriebstemperaturen von 700 bis 800 °C betrieben. Die erfindungsgemäße Dichtung erfüllt regelmäßig darüber hinaus ihre Funktion bei geeigneter Belastung auch bei thermischer Zyklierung in einem Temperaturbereich von Raumtemperatur bis zu 1000 °C.High-temperature fuel cells operated at operating temperatures of 700 to 800 ° C. In addition, the seal according to the invention regularly fulfills its function with a suitable load even with thermal cycling in a temperature range from room temperature to 1000 ° C.
Ausgestaltungen der erfindungsgemäßen Dichtung sehen Füllstoffe sowohl nur auf einer, als auch auf beiden Seiten der strukturierten metallischen Schicht vor. Je nach Menge des aufgebrachten Füllstoffs ändert sich dadurch die Steifigkeit der metallischen Schicht, bzw. der Folie, und damit der gesamten Dichtung. Eine beid- seitige Anordnung mit Füllstoff führt dabei regelmäßig zu einer steiferen Dichtung.Embodiments of the seal according to the invention provide fillers both only on one side and on both sides of the structured metallic layer. Depending on the amount of filler applied, the stiffness of the metallic layer or the film, and thus the entire seal, changes. An arrangement on both sides with filler regularly leads to a stiffer seal.
Bei einer Profilgeometrie der metallischen Schicht in Form eines Wellenprofils, ist der Füllstoff vorteilhaft in den Wellentälern angeordnet. Auf diese Weise kombi- niert sich die Dichtungswirkung der metallischenIn the case of a profile geometry of the metallic layer in the form of a wave profile, the filler is advantageously arranged in the wave troughs. In this way, the sealing effect of the metallic is combined
Schicht mit einer verbesserten Elastizität durch den eingefügten Füllstoff in besonderer Weise. Der Füllstoff selbst ist in der Regel nicht leitend ausgebildet. Bei einer Dichtung mit einer gleichzeitigen elektrischen Kontaktierung ist deshalb darauf zu achten, daß der Füllstoff nicht zwischen der metalli- sehen Schicht und dem abzudichtende Bauteil angeordnet wird, da es sonst zu einer Isolierung der abzudichtenden Bauteile kommt.Layer with an improved elasticity due to the inserted filler in a special way. The filler itself is generally non-conductive. In the case of a seal with simultaneous electrical contact, care must therefore be taken that the filler is not arranged between the metallic layer and the component to be sealed, since otherwise the components to be sealed are insulated.
Eine weitere Ausgestaltung der erfindungsgemäßen Dich- tung sieht ein Hohlprofil als metallische Schicht vor, in dessen Hohlraum der Füllstoff angeordnet ist.A further embodiment of the seal according to the invention provides a hollow profile as a metallic layer, in the cavity of which the filler is arranged.
Spezieller Beschreibungsteil Im folgenden wird die Erfindung anhand von Figuren und Ausführungsbeispielen erläutert. Dabei zeigen:Special description part In the following, the invention is explained with reference to figures and exemplary embodiments. Show:
Fig. 1: Ausführungsbeispiel der Dichtung mit einer wellenförmig geprägten Metallfolie und beid- seitig angeordnetem Füllstoff.Fig. 1: Embodiment of the seal with a corrugated metal foil and filler arranged on both sides.
Fig. 2: Ausführungsbeispiel der Dichtung mit einer wellenförmig geprägten Metallfolie und einseitig angeordnetem Füllstoff.Fig. 2: Embodiment of the seal with a corrugated metal foil and filler arranged on one side.
Fig. 3a: Ausführungsbeispiel der Dichtung mit zwei rae- tallischen Schichten, die ein Hohlprofil bilden, und darin angeordnetem Füllstoff3a: Embodiment of the seal with two physical layers that form a hollow profile and filler arranged therein
Fig. 4: Ausführungsbeispiel der Dichtung mit zwei metallischen Schichten, die ein Hohlprofil bilden, und darin angeordnetem FüllstoffFig. 4: embodiment of the seal with two metallic layers that form a hollow profile, and filler arranged therein
In der Figur 1 ist eine erfindungsgemäße Ausführungsform der Dichtung mit einer wellenförmig geprägten Me- w w w1 shows an embodiment of the seal according to the invention with a wave-shaped embossed www
tallfolie 1 und beidseitig angeordnetem Füllstoff 2 zu sehen. Die thermomechanischen Eigenschaften dieser Dichtung werden beeinflußt durch die Höhe der Dichtung, der Anzahl der Wellen sowie der Neigung der Flanken. Dabei ist für eine Abdichtung zwischen zwei Bauteilen 3 wenigstens eine Welle mit zwei Kontaktlinien (Wellentäler) an dem ersten Bauteil und einer Kontaktlinie (Wellenberg) an dem zweiten Bauteil notwendig. Je höher die Anzahl an Kontaktlinien, desto besser die Abdichtung. Andererseits wird durch eine große Zahl an Kontaktlinien und durch steilere Flanken in einer Welle die Elastizität der Dichtung regelmäßig verringert. Ein Fachmann wird daher für ein vorgegebenes Problem eine geeignete Auswahl der Profilgeometrieparameter auswäh- len.tall foil 1 and filler 2 arranged on both sides can be seen. The thermomechanical properties of this seal are influenced by the height of the seal, the number of shafts and the inclination of the flanks. At least one shaft with two contact lines (wave troughs) on the first component and one contact line (wave crest) on the second component is necessary for a seal between two components 3. The higher the number of contact lines, the better the seal. On the other hand, the elasticity of the seal is regularly reduced by a large number of contact lines and by steeper flanks in a shaft. A person skilled in the art will therefore select a suitable selection of the profile geometry parameters for a given problem.
Die Figur 2 zeigt eine ähnliche Ausführungsform der erfindungsgemäßen Dichtung. Im Vergleich zur Figur 1 weist diese jedoch nur auf einer Seite der metallischen Schicht den aufgebrachten Füllstoff auf. Dadurch kann die Steiffigkeit der Dichtung verringert, und die Elastizität dadurch vorteilhaft erhöht werden. Sofern die metallische Schicht der Dichtung eine genügend dicke Al203-Schicht ausbildet, kann gleichzeitig eine elekt- rische Isolierung der abzudichtenden Bauteile erzielt werden. Dies ist insbesondere bei einem Einsatz der Dichtung in einer Hochtemperatur-Brennstoffzelle regelmäßig der Fall . Bei einer geeigneten Werkstoffauswahl für die metallische Schicht kann jedoch auch eine elektrische Leitung über die Dichtung bewirkt werden. Weitere Ausgestaltungen der erfindungsgemäßen Dichtung sind in den Figuren 3 und 4 wiedergegeben. Diese bestehen jeweils aus zwei strukturierten metallischen Schichten, die eine Art Hohlkörper (Hohlprofil) erge- ben, in dem sich das Füllmaterial befindet. Auch diese Ausführungsform weist eine vorteilhafte Höhe von ca. 1 mm bei einer Profilgeometrie des quadratischen Hohlkörpers von ebenso ca. 1 mm auf. Je nach geometrischer Anordnung ergeben sich dabei Dichtungen, die mit den abzudichtenden Bauteilen eine Kontaktlinie (Fig. 3) oder eine Kontaktfläche (Fig. 4) bilden. Je nach Anforderung an die Dichtung, bzw. deren Einsatz, kann eine Anordnung mit einer Kontaktlinie vorteilhaft eine verbesserte Dichtwirkung aufweisen, während eine Anordnung mit einer Kontaktfläche den Vorteil der sehr einfachen Herstellung aufweist.FIG. 2 shows a similar embodiment of the seal according to the invention. In comparison to FIG. 1, however, this has the filler applied only on one side of the metallic layer. As a result, the rigidity of the seal can be reduced, and the elasticity can thereby advantageously be increased. If the metallic layer of the seal forms a sufficiently thick Al 2 0 3 layer, electrical insulation of the components to be sealed can be achieved at the same time. This is regularly the case, in particular, when the seal is used in a high-temperature fuel cell. With a suitable choice of material for the metallic layer, however, electrical conduction can also be effected via the seal. Further configurations of the seal according to the invention are shown in FIGS. 3 and 4. These each consist of two structured metallic layers, which result in a kind of hollow body (hollow profile) in which the filling material is located. This embodiment also has an advantageous height of approx. 1 mm with a profile geometry of the square hollow body of likewise approx. 1 mm. Depending on the geometric arrangement, this results in seals which form a contact line (FIG. 3) or a contact surface (FIG. 4) with the components to be sealed. Depending on the requirements placed on the seal or its use, an arrangement with a contact line can advantageously have an improved sealing effect, while an arrangement with a contact surface has the advantage of being very simple to manufacture.
Ausführungsbeispiele :Examples:
Wellenprofil aus einer geprägte Metallfolie aus einer austenitischen Nickelbasis-Legierung,Corrugated profile made of an embossed metal foil made of an austenitic nickel-based alloy,
Werkstoff Nr. 2.4633, 2.4668 und 2.4665,Material No. 2.4633, 2.4668 and 2.4665,
Foliendicke: 0,030 bis 0,6 mm, bevorzugt 0,1 bis 0,2 mm,Film thickness: 0.030 to 0.6 mm, preferably 0.1 to 0.2 mm,
Flankenwinkel: 20 bis 50°, bevorzugt 30°, Profilhöhe: 0,5 bis 5 mm, bevorzugt 1 mm,Flank angle: 20 to 50 °, preferably 30 °, profile height: 0.5 to 5 mm, preferably 1 mm,
Anzahl der Wellenprofile: 1 bis 4, bevorzugt 2.Number of wave profiles: 1 to 4, preferably 2.
Hohlprofil aus einer geprägten Metallfolie aus einer austenitischen Nickelbasis-Legierung, Werkstoff Nr. 2.4633, 2.4668 und 2.4665,Hollow profile made of an embossed metal foil made of an austenitic nickel-based alloy, material No. 2.4633, 2.4668 and 2.4665,
Foliendicke: 0,030 bis 0,6 mm, bevorzugt 0,1 bis 0,2 mm, Flankenwinkel: 30 bis 50°, bevorzugt 45°, Profilhöhe: 0,5 bis 5 mm, bevorzugt 1 mm, Anzahl der Wellenprofile: 1 bis 2, bevorzugt 1 Film thickness: 0.030 to 0.6 mm, preferably 0.1 to 0.2 mm, Flank angle: 30 to 50 °, preferably 45 °, profile height: 0.5 to 5 mm, preferably 1 mm, number of corrugated profiles: 1 to 2, preferably 1

Claims

Patentansprüche claims
Hochtemperaturbeständige Dichtung aus einer strukturierten metallischen Schicht (1) mit wenigstens einem Bereich auf der Oberfläche der Schicht, auf dem ein Füllstoff (2) angeordnet ist.High temperature resistant seal made of a structured metallic layer (1) with at least one area on the surface of the layer on which a filler (2) is arranged.
Hochtemperaturbeständige Dichtung nach Anspruch 1, dadurch gekennzeichnet, daß die strukturierte metallische Schicht (1) ein Wellen- oder Hohlprofil aufweist .High temperature resistant seal according to claim 1, characterized in that the structured metallic layer (1) has a corrugated or hollow profile.
Hochtemperaturbeständige Dichtung nach einem der vorhergehenden Ansprüche , mit einem Füllstoff (2) aus Tonmineral oder einem keramischen Material .High temperature resistant seal according to one of the preceding claims, with a filler (2) made of clay mineral or a ceramic material.
Hochtemperaturbeständige Dichtung nach einem der vorhergehenden Ansprüche, mit Glimmer als Füllstoff (2) .High temperature resistant seal according to one of the preceding claims, with mica as a filler (2).
5. Hochtemperaturbeständige Dichtung nach einem der vorhergehenden Ansprüche, bei dem der Füllstoff (2) einseitig in den Wellentälern der metallischen Schicht (1) angeordnet ist.5. High temperature resistant seal according to one of the preceding claims, wherein the filler (2) is arranged on one side in the troughs of the metallic layer (1).
6. Hochtemperaturbeständige Dichtung nach einem der vorhergehenden Ansprüche, bei dem der Füllstoff (2) beidseitig in den jeweiligen Wellentälern der metallischen Schicht (1) angeordnet ist. 6. High temperature resistant seal according to one of the preceding claims, wherein the filler (2) is arranged on both sides in the respective troughs of the metallic layer (1).
7. Hochtemperaturbeständige Dichtung nach einem der vorhergehenden Ansprüche, bei dem die erste metallische Schicht zusammen mit einer weiteren metallischen Schicht ein Hohlprofil bildet, in dem der Füllstoff (2) angeordnet ist.7. High temperature resistant seal according to one of the preceding claims, wherein the first metallic layer forms a hollow profile together with a further metallic layer, in which the filler (2) is arranged.
8. Vorrichtung umfaßend zwei Bauteile und einer dazwischen angeordneten Dichtung nach einem der Ansprüche 1 bis 7.8. The device comprising two components and an interposed seal according to one of claims 1 to 7.
9. Vorrichtung nach vorhergehendem Anspruch 8, dadurch gekennzeichnet, daß der Kontakt zwischen wenigstens einem Bauteil und der Dichtung über wenigstens eine Kontaktlinie erfolgt.9. Device according to the preceding claim 8, characterized in that the contact between at least one component and the seal takes place via at least one contact line.
10. Vorrichtung nach vorhergehendem Anspruch 8, dadurch gekennzeichnet, daß der Kontakt zwischen wenigstens einem Bauteil und der Dichtung über eine Kontakt- fläche erfolgt .10. The device according to the preceding claim 8, characterized in that the contact between at least one component and the seal takes place via a contact surface.
11. Brennstoffzelle mit einer Vorrichtung gemäß einem der vorhergehenden Ansprüche 8 bis 10.11. Fuel cell with a device according to one of the preceding claims 8 to 10.
12. Hochtemperatur-Brennstoffzellenstapel mit einer Vorrichtung gemäß einem der vorhergehenden Ansprüche 8 bis 10.12. High-temperature fuel cell stack with a device according to one of the preceding claims 8 to 10.
13. Hochtemperatur-Wärmeaustauscher mit einer Vorrichtung gemäß einem der vorhergehenden Ansprüche 8 bis 10. 13. High-temperature heat exchanger with a device according to one of the preceding claims 8 to 10.
EP02769929A 2001-09-28 2002-09-07 High-temperature resistant seal Withdrawn EP1576685A2 (en)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10148141 2001-09-28
DE10148141 2001-09-28
DE10236731 2002-08-09
DE10236731A DE10236731A1 (en) 2001-09-28 2002-08-09 High temperature resistant seal
PCT/DE2002/003323 WO2003032420A2 (en) 2001-09-28 2002-09-07 High-temperature resistant seal

Publications (1)

Publication Number Publication Date
EP1576685A2 true EP1576685A2 (en) 2005-09-21

Family

ID=26010257

Family Applications (1)

Application Number Title Priority Date Filing Date
EP02769929A Withdrawn EP1576685A2 (en) 2001-09-28 2002-09-07 High-temperature resistant seal

Country Status (6)

Country Link
US (1) US7252902B2 (en)
EP (1) EP1576685A2 (en)
JP (1) JP2005511795A (en)
AU (1) AU2002336055B2 (en)
DE (1) DE10236731A1 (en)
WO (1) WO2003032420A2 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7222406B2 (en) * 2002-04-26 2007-05-29 Battelle Memorial Institute Methods for making a multi-layer seal for electrochemical devices
WO2004010523A2 (en) * 2002-07-23 2004-01-29 Global Thermoelectric Inc. High temperature gas seals
DE10358458B4 (en) * 2003-12-13 2010-03-18 Elringklinger Ag Fuel cell stack and method of manufacturing a fuel cell stack
FR2867903B1 (en) * 2004-03-22 2008-10-03 Commissariat Energie Atomique SOLID ELECTROLYTE FUEL CELL WITH SEALED STRUCTURE
JP4389718B2 (en) * 2004-08-06 2009-12-24 日産自動車株式会社 Insulating seal structure and fuel cell
NL1026861C2 (en) * 2004-08-18 2006-02-24 Stichting Energie SOFC stack concept.
US8672330B2 (en) 2006-01-17 2014-03-18 Alfred Jung Sealing arrangement
US7708842B2 (en) * 2006-08-18 2010-05-04 Federal-Mogul World Wide, Inc. Metal gasket
KR101466044B1 (en) 2007-03-09 2014-11-27 페더럴-모걸 코오포레이숀 Metal gasket
US20080260455A1 (en) * 2007-04-17 2008-10-23 Air Products And Chemicals, Inc. Composite Seal
JP4918462B2 (en) * 2007-11-05 2012-04-18 日本ピラー工業株式会社 gasket
JP4918460B2 (en) * 2007-11-05 2012-04-18 日本ピラー工業株式会社 gasket
JP4918461B2 (en) * 2007-11-05 2012-04-18 日本ピラー工業株式会社 gasket
US8382122B2 (en) * 2007-11-05 2013-02-26 Nippon Pillar Packing Co., Ltd. Gasket
FR2925140B1 (en) * 2007-12-13 2010-02-19 Commissariat Energie Atomique SUPERPLASTIC SEAL, PREFERABLY FOR ELECTROCHEMICAL CELL SYSTEM
US8206087B2 (en) 2008-04-11 2012-06-26 Siemens Energy, Inc. Sealing arrangement for turbine engine having ceramic components
US20090311570A1 (en) * 2008-06-17 2009-12-17 Battelle Memorial Institute SOFC Double Seal with Dimensional Control for Superior Thermal Cycle Stability
US8268504B2 (en) * 2008-12-22 2012-09-18 General Electric Company Thermomechanical sealing of interconnect manifolds in fuel cell stacks
US8304122B2 (en) 2009-02-06 2012-11-06 Protonex Technology Corporation Solid oxide fuel cell systems with hot zones having improved reactant distribution
FR2951517B1 (en) * 2009-10-20 2011-12-09 Commissariat Energie Atomique SEAL SEAL BETWEEN TWO ELEMENTS WITH DIFFERENT THERMAL EXPANSION COEFFICIENTS
US20130101915A1 (en) * 2010-06-25 2013-04-25 Utc Power Corporation Composite seal for fuel cells, process of manufacture, and fuel cell stack using same
CN102537345B (en) * 2010-12-24 2015-09-09 秦皇岛秦冶重工有限公司 A kind of metal-coated sealing ring
US8678754B2 (en) 2011-01-24 2014-03-25 General Electric Company Assembly for preventing fluid flow
US20120211943A1 (en) * 2011-02-22 2012-08-23 General Electric Company Sealing device and method for providing a seal in a turbine system
FR2974401B1 (en) * 2011-04-22 2013-06-14 Commissariat Energie Atomique METALLIC SEAL SEAL WITH CERAMIC WAVE
EP2733777B1 (en) 2012-11-16 2014-12-17 Air Products And Chemicals, Inc. Seal between metal and ceramic conduits
US10109867B2 (en) 2013-06-26 2018-10-23 Upstart Power, Inc. Solid oxide fuel cell with flexible fuel rod support structure
US9416675B2 (en) 2014-01-27 2016-08-16 General Electric Company Sealing device for providing a seal in a turbomachine
EP3204975A4 (en) 2014-10-07 2018-11-21 Protonex Technology Corporation Sofc-conduction
US10099290B2 (en) 2014-12-18 2018-10-16 General Electric Company Hybrid additive manufacturing methods using hybrid additively manufactured features for hybrid components
JP2017078437A (en) * 2015-10-19 2017-04-27 ニッタ株式会社 Foreign matter invasion preventing wall
CA3040431C (en) 2015-10-20 2023-02-28 Upstart Power, Inc. Fuel reformer system
US10790523B2 (en) 2015-10-20 2020-09-29 Upstart Power, Inc. CPOX reactor control system and method
WO2018031742A1 (en) 2016-08-11 2018-02-15 Protonex Technology Corporation Planar solid oxide fuel unit cell and stack

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63125861A (en) * 1986-11-14 1988-05-30 Koichi Maruyama Seal structure
US4830698A (en) * 1988-04-20 1989-05-16 Fel-Pro Incorporated Method of forming a gasket with enhanced sealing characteristics
US5080934A (en) * 1990-01-19 1992-01-14 Avco Corporation Process for making abradable hybrid ceramic wall structures
JPH06231784A (en) * 1992-09-01 1994-08-19 Fuji Electric Co Ltd Solid electrolyte type fuel cell
DE4325224A1 (en) * 1993-07-28 1995-02-02 Goetze Ag Spiral-ring gasket
DE4335224A1 (en) 1993-10-15 1995-04-20 Leybold Ag Process for the production of optical layers
BE1006102A6 (en) * 1993-11-16 1994-05-10 Royale Asturienne Des Mines S Spiral joint
US5532073A (en) * 1993-11-29 1996-07-02 Kabushiki Kaisha Toshiba Fuel cell
US6092811A (en) * 1996-04-30 2000-07-25 Jamco Products, Llc Hybrid gasket
DE19735854C2 (en) * 1997-08-19 2002-08-01 Daimler Chrysler Ag Current collector for a fuel cell and method for its production
JP3809491B2 (en) * 1997-10-29 2006-08-16 アイシン高丘株式会社 Fuel cell separator
DE69940420D1 (en) * 1998-12-15 2009-04-02 Topsoe Fuel Cell As Heat-resistant sealing material
US6302402B1 (en) * 1999-07-07 2001-10-16 Air Products And Chemicals, Inc. Compliant high temperature seals for dissimilar materials
US6777126B1 (en) * 1999-11-16 2004-08-17 Gencell Corporation Fuel cell bipolar separator plate and current collector assembly and method of manufacture
JP2001271937A (en) * 2000-03-24 2001-10-05 Nippon Gasket Co Ltd Metal gasket
JP2002013640A (en) * 2000-06-29 2002-01-18 Uchiyama Mfg Corp Cylinder head gasket
DE10044703B4 (en) * 2000-09-09 2013-10-17 Elringklinger Ag Fuel cell unit, fuel cell block assembly and method for producing a fuel cell block assembly
US6852439B2 (en) * 2001-05-15 2005-02-08 Hydrogenics Corporation Apparatus for and method of forming seals in fuel cells and fuel cell stacks

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO03032420A2 *

Also Published As

Publication number Publication date
JP2005511795A (en) 2005-04-28
US7252902B2 (en) 2007-08-07
WO2003032420A2 (en) 2003-04-17
WO2003032420A3 (en) 2005-08-25
AU2002336055B2 (en) 2008-02-28
DE10236731A1 (en) 2003-04-30
US20040195782A1 (en) 2004-10-07

Similar Documents

Publication Publication Date Title
EP1576685A2 (en) High-temperature resistant seal
DE60019238T2 (en) FLAT SOLID OXIDE FUEL CELL STACK WITH METAL FOIL INTERCONNECTORS
EP1844513B1 (en) Interconnector for high-temperature fuel cells
DE2753198A1 (en) MAGNETOHYDRODYNAMIC ELECTRODE
DE112014000307B4 (en) Connection plate for a fuel cell, manufacturing method for a connection plate for a fuel cell and fuel cell
EP1314217B1 (en) High temperature fuel cell
DE102006044148A1 (en) Resilient feed tubes for a planar solid electrolyte fuel cell system
DE102005005117B4 (en) High-temperature fuel cell, fuel cell stack, method for producing an interconnector
DE102005014077B4 (en) Interconnector for high-temperature fuel cells and method for its production and method for operating a fuel cell
EP1589602B1 (en) Contact spring sheet and electrical battery containing same
EP1999802A1 (en) Multilayered actuators having interdigital electrodes
DE4324181C2 (en) High-temperature fuel cell, process for its production and its use
DE102022121234A1 (en) Electrochemical reaction cell stack
DE102021109158A1 (en) Electrochemical reaction cell stack
DE19650903C2 (en) Fuel cell module with a gas supply device
DE102011051440A1 (en) Inter-connector manufacturing method for high temperature fuel cell, involves attaching pin-shaped contact member on inter-connector base element directly or indirectly by welding process, where contact member is connected with spring
EP2850687B1 (en) Electrical energy store
DE102021112993A1 (en) Electrochemical reaction cell stack
EP1665443B1 (en) Fuel cell and fuel cell module therefor
EP1301957B1 (en) Aluminous interconnector for fuel cells
DE10156217C1 (en) Current-carrying component made from high grade steel used as a cathode current collector in a molten carbonate fuel cell has a layer containing a carbonate mixture containing lithium, sodium and/or potassium
EP2372825B1 (en) Fuel cell module
DE102022113662A1 (en) Electrochemical reaction single cell and electrochemical reaction cell stack
DE102019132112A1 (en) Component of a battery cell and method for manufacturing a component
DE102006054201A1 (en) High temperature fuel cell, has welded joints formed between window and bowl plates at openings in form of push fit-gaps and at edges in form of overlapping gaps, where plates are present under small correction angle in overlapping gaps

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

17P Request for examination filed

Effective date: 20040417

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR IE IT LI LU MC NL PT SE SK TR

RIC1 Information provided on ipc code assigned before grant

Ipc: 7H 01M 8/02 B

Ipc: 7F 16J 15/12 A

17Q First examination report despatched

Effective date: 20080725

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20081127