JP4918462B2 - gasket - Google Patents

gasket Download PDF

Info

Publication number
JP4918462B2
JP4918462B2 JP2007287498A JP2007287498A JP4918462B2 JP 4918462 B2 JP4918462 B2 JP 4918462B2 JP 2007287498 A JP2007287498 A JP 2007287498A JP 2007287498 A JP2007287498 A JP 2007287498A JP 4918462 B2 JP4918462 B2 JP 4918462B2
Authority
JP
Japan
Prior art keywords
sheet
thin plate
gasket
corrugated metal
metal thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007287498A
Other languages
Japanese (ja)
Other versions
JP2009115163A (en
Inventor
隆久 上田
篤 末広
桐志 前田
裕樹 田邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Pillar Packing Co Ltd
Original Assignee
Nippon Pillar Packing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Pillar Packing Co Ltd filed Critical Nippon Pillar Packing Co Ltd
Priority to JP2007287498A priority Critical patent/JP4918462B2/en
Priority to PCT/JP2008/068458 priority patent/WO2009060690A1/en
Priority to US12/741,317 priority patent/US8382122B2/en
Priority to KR1020107011513A priority patent/KR101221254B1/en
Priority to CN2008801135422A priority patent/CN101842621B/en
Publication of JP2009115163A publication Critical patent/JP2009115163A/en
Application granted granted Critical
Publication of JP4918462B2 publication Critical patent/JP4918462B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Gasket Seals (AREA)

Description

本発明は、配管継手部(JIS又はJPI規格フランジ等)や機器の接合部(バルブのボンネット等)等の厳しい使用環境において長期シール安定性を求められる用途に使用されるガスケットに関する。   The present invention relates to a gasket used for applications that require long-term seal stability in severe use environments such as piping joints (JIS or JPI standard flanges, etc.) and equipment joints (valve bonnets, etc.).

従来、同心円の波形を付けた金属薄板の両面にシール材として膨張黒鉛シートを積層接着した構造が知られている。この従来構造は、それまで金属平板又は両面を不連続の凹凸やのこ歯形の凹凸に加工した金属板であった中芯材に、同心円の波形を付けた金属薄板を用いることによって、それまで僅かであった圧縮率を飛躍的に高め、歪やうねりがあるガラスライニングフランジにでも使用可能な高い変形追随性(フランジ面精度に対する追従性)を確保している。また、シール材にそれまでと同様膨張黒鉛シートが用いられ、フランジと接触する両面が膨張黒鉛シートで形成され、その膨張黒鉛シートは流動性が高く、フランジへの優れたなじみ性も確保している。   2. Description of the Related Art Conventionally, a structure in which an expanded graphite sheet is laminated and bonded as a sealing material on both surfaces of a concentric corrugated metal sheet is known. This conventional structure has been achieved by using a thin metal plate with concentric corrugations in the core material, which has previously been a flat metal plate or a metal plate that has been processed into discontinuous irregularities or sawtooth irregularities. The slight compression rate is dramatically increased, and high deformation followability (followability with respect to the flange surface accuracy) that can be used even for a glass lining flange with distortion or undulation is secured. Also, the expanded graphite sheet is used for the sealing material as before, and both surfaces that come into contact with the flange are formed of the expanded graphite sheet. The expanded graphite sheet has high fluidity and ensures excellent conformability to the flange. Yes.

このような従来構造がシール作用を発揮するメカニズムを、図6(A)〜(C)に示す当該従来構造の圧縮変形過程を参照して説明する。図において、1は中芯材である同心円の波形を付けた金属薄板、2及び3は金属薄板1の両面に積層接着された膨張黒鉛シート、4及び5はフランジ、Tはガスケット厚みである。   The mechanism by which such a conventional structure exerts a sealing action will be described with reference to the compression deformation process of the conventional structure shown in FIGS. In the figure, 1 is a thin metal plate with a concentric corrugation that is a core material, 2 and 3 are expanded graphite sheets laminated and bonded to both surfaces of the metal thin plate 1, 4 and 5 are flanges, and T is the gasket thickness.

図6(A)の締付前の自由状態では、金属薄板1は元の波ピッチP,波高さT1/2(山高さT1)を有し、膨張黒鉛シート2及び3も全体に均一な元の厚みT2を有し、金属薄板1の谷部1aと膨張黒鉛シート2及び3間に空隙4が形成されている。   In the free state before tightening in FIG. 6 (A), the metal thin plate 1 has the original wave pitch P and wave height T1 / 2 (peak height T1), and the expanded graphite sheets 2 and 3 are also uniform throughout. The gap 4 is formed between the valley 1a of the thin metal plate 1 and the expanded graphite sheets 2 and 3.

図6(B)の低締付荷重を負荷した締付状態では、相対するフランジ5及び6間で厚み方向に圧縮され、金属薄板1は波高さT1/2を縮小しながら波ピッチPを拡大し、厚み方向に圧縮変形しながら面方向(内外径方向)にも伸び変形する。膨張黒鉛シート2及び3は金属薄板1の山部1bで厚み方向に圧縮されるが、金属薄板1の谷部1aでは圧縮されない。このため、従来構造は、金属薄板1の山部1bにおいて局部的に高い締付面圧を確保してシール性能を発揮する。この際、膨張黒鉛シート2及び3はその高い流動性によって金属薄板1の山部1bの位置変化に追随変形して破壊することなく、厚みT2を金属薄板1の山部1bで減じながら金属薄板1の谷部1aで増し、空隙4の一部を埋める。   In the tightened state in which the low tightening load is applied as shown in FIG. 6 (B), the metal sheet 1 is compressed in the thickness direction between the opposed flanges 5 and 6, and the wave pitch P is increased while the wave height T1 / 2 is reduced. However, it also stretches and deforms in the surface direction (inner and outer diameter directions) while compressively deforming in the thickness direction. The expanded graphite sheets 2 and 3 are compressed in the thickness direction at the crest 1 b of the metal thin plate 1, but are not compressed at the trough 1 a of the metal thin plate 1. For this reason, the conventional structure ensures a high tightening surface pressure locally at the peak portion 1b of the thin metal plate 1 and exhibits sealing performance. At this time, the expanded graphite sheets 2 and 3 are not deformed due to the high fluidity and follow the change in the position of the crest 1b of the metal thin plate 1, and are reduced while the thickness T2 is reduced by the crest 1b of the metal thin plate 1. 1 is increased at the valley 1a, and a part of the gap 4 is filled.

図6(C)の高締付荷重を負荷した締付状態では、相対するフランジ5及び6間で厚み方向にさらに圧縮され、金属薄板1は波高さT1/2をさらに縮小しながら波ピッチPをさらに拡大し、平板に近い状態にまで厚み方向にさらに圧縮変形しながら面方向にもさらに伸び変形する。この際、膨張黒鉛シート2及び3はその高い流動性によって金属薄板1の山部1bの位置変化に追随変形して破壊することなく、厚みT2を金属薄板1の山部1bでさらに減じながら金属薄板1の谷部1aでさらに増し、遂に空隙4の全部を埋める。このため、従来構造は、膨張黒鉛シート2及び3が金属薄板1の谷部1aでも厚み方向に圧縮され、金属薄板1の山部1b及び谷部1aの全面で締付面圧を確保して安定したシール性能を発揮する。   In the tightening state in which a high tightening load is applied in FIG. 6C, the metal sheet 1 is further compressed in the thickness direction between the opposing flanges 5 and 6, and the metal sheet 1 further reduces the wave height T1 / 2 while reducing the wave pitch P1 / 2. Is further expanded and further deformed in the plane direction while further compressively deforming in the thickness direction to a state close to a flat plate. At this time, the expanded graphite sheets 2 and 3 are formed by further reducing the thickness T2 at the peak portion 1b of the metal thin plate 1 without further deforming and destroying the position change of the peak portion 1b of the metal thin plate 1 due to its high fluidity. It further increases at the valley 1a of the thin plate 1 and finally fills the entire gap 4. For this reason, in the conventional structure, the expanded graphite sheets 2 and 3 are compressed in the thickness direction even in the valley portion 1a of the metal thin plate 1, and the tightening surface pressure is secured over the entire surface of the peak portion 1b and the valley portion 1a of the metal thin plate 1. Demonstrates stable sealing performance.

なお、同心円の波形を付けた金属薄板の両面に膨張黒鉛シートを積層接着した従来構造は、例えば特許文献1に記載のガスケットで採用されて公知である。
実開平5−92574号公報
Note that a conventional structure in which an expanded graphite sheet is laminated and bonded to both surfaces of a thin metal plate having a concentric corrugated shape is known, for example, in a gasket described in Patent Document 1.
Japanese Utility Model Publication No. 5-92574

上記従来構造は、シール材として膨張黒鉛シートを用いるため、400℃以下の非酸化性流体には使用できるものの、酸化性流体には使用困難である。そこで、シール材としてマイカシート、バーミキュライト系シート、又は金属シート等の無機シートを用いたところ、下記のような課題があることが判明した。なお、上記のような無機シートは400℃以上の酸化性流体に使用できるシール材である。   The conventional structure uses an expanded graphite sheet as a sealing material, and thus can be used for a non-oxidizing fluid at 400 ° C. or lower, but is difficult to use for an oxidizing fluid. Then, when inorganic sheets, such as a mica sheet, a vermiculite-type sheet | seat, or a metal sheet, were used as a sealing material, it became clear that there existed the following subjects. The inorganic sheet as described above is a sealing material that can be used for an oxidizing fluid at 400 ° C. or higher.

すなわち、同心円の波形を付けた金属薄板を中芯材として用いるため、低締付荷重において全面で締付面圧を確保することは困難な上に、無機シートは硬く圧縮性が低いため、低締付荷重において実用に供するシール性能を得難く、高締付荷重を負荷すると、無機シートは膨張黒鉛シートに比べて流動性が格段に低いため破壊が起こり漏洩する。充分に厚い無機シートを用いると該無機シートの破壊は避けることはできるが、このような充分に厚い無機シートは高価である上、無機シートは硬く圧縮性が低いため、高締付荷重においても安定したシール性能を得難い。   That is, since a thin metal plate with concentric corrugations is used as the core material, it is difficult to secure a tightening surface pressure over the entire surface at a low tightening load, and the inorganic sheet is hard and has low compressibility. It is difficult to obtain a practical sealing performance at the tightening load, and when a high tightening load is applied, the inorganic sheet has a significantly lower fluidity than the expanded graphite sheet, and breaks and leaks. If a sufficiently thick inorganic sheet is used, the destruction of the inorganic sheet can be avoided, but such a sufficiently thick inorganic sheet is expensive and the inorganic sheet is hard and has low compressibility. It is difficult to obtain stable sealing performance.

本発明は、上記課題に鑑みてなされたもので、その目的は、中芯材である同心円の波形を付けた金属薄板の両面に無機シートを積層接着したガスケットを実現するとともに、上記のような課題を解決し、低〜高締付荷重において長期的に安定したシール性能を確保することにある。 The present invention has been made in view of the above problems, with the purpose to realize a gasket formed by laminating against wearing inorganic sheet on both surfaces of the metal thin plate with a concentric waveform is the central core material, the It is to solve such problems and to secure a stable sealing performance for a long period of time at a low to high tightening load.

上記目的を達成するための請求項1に記載のガスケットは、同心円の波形を付けた金属薄板の谷部にマイカ粉体のシール材を充填し、該金属薄板の両面にシール性を有する厚み0.10mm以上0.50mm以下のマイカシートを積層接着したことを特徴とするものである。 The gasket of claim 1 for achieving the above object, a sealing member of the mica powder was filled into a valley sheet metal corrugated concentric, thickness having a sealing property on both sides of the sheet metal 0 .Mica sheet having a thickness of 10 mm or more and 0.50 mm or less is laminated and adhered.

請求項に記載のガスケットは、請求項1に記載のガスケットにおいて、金属薄板の谷部における締付面圧が金属薄板の山部における締付面圧よりも低くなる密度で、マイカ粉体のシール材を金属薄板の谷部に充填したことを特徴とするものである。 The gasket of claim 2, in gasket according to claim 1, at a density tightening surface pressure in the valleys of the sheet metal is lower than the tightening surface pressure of the ridge portions of the sheet metal, mica powder The sealing material is filled in the valleys of the thin metal plate.

請求項1、2に記載のガスケットでは、従来空隙であった金属薄板の谷部にマイカ粉体のシール材を充填し該部を最初から埋めておくことによって、従来低締付荷重では圧縮できなかった金属薄板の谷部におけるマイカシートを圧縮し、低締付荷重において全面で締付面圧を確保することができるため、低締付荷重から実用上問題のない安定したシール性能が得られる。また、マイカシートの変形量を抑えることができるため、流動性が低いマイカシートが高締付荷重を負荷しても破壊しないため、より薄い厚み0.10mm以上0.50mm以下のマイカシートの使用が可能となる。 The gasket according to claim 1 or 2 can be compressed with a conventional low tightening load by filling the valley portion of the metal thin plate, which has been a conventional gap, with a sealing material of mica powder and filling the portion from the beginning. compressing the mica sheet in the valleys of which was not metal sheet, it is possible to secure a fastening surface pressure over the entire surface in a load with a low tightening, sealing performance was stable with no practical problem from the load with a low tightening is obtained It is done. Further, it is possible to suppress the deformation amount of the mica sheet, because less liquid mica sheet is not broken even when loaded with high fastening load, a thinner thickness 0.10mm or 0.50mm less mica Sea Can be used.

また、金属薄板の両面にシール材が2層に配置されるので、外側のシール材であるマイカシートが破壊したとしても、内側のシール材であるマイカ粉体によってシールが可能であり、シールの信頼性が高まる Further, since the sealing material on both sides of the sheet metal is disposed in two layers, even if the mica sheet is outside of the sealing material was broken, but may be sealed by mica powder is an inner sealant, the seal Increased reliability .

さらに、金属薄板の谷部に充填するシール材は粉体で、高い圧縮性と高い流動性を兼備しているので、金属薄板の変形を妨げずガスケットの変形追随性を損なわない。金属薄板の谷部に空隙が生じ難く該部において締付面圧を安定して確保できる。粉体のシール材は安価である上、高い歩留りで無駄なく使用でき、経済的である。   Furthermore, since the sealing material filled in the valleys of the metal thin plate is powder and has both high compressibility and high fluidity, the deformation of the metal thin plate is not hindered and the deformation followability of the gasket is not impaired. It is difficult to generate a gap in the valley portion of the metal thin plate, and the clamping surface pressure can be stably secured in the portion. The powder sealing material is inexpensive and can be used without waste at a high yield and is economical.

請求項に記載のガスケットのように、金属薄板の谷部における締付面圧が金属薄板の山部における締付面圧よりも低くなる密度で、マイカ粉体のシール材を金属薄板の谷部に充填することで、締付面圧分布が均等にならず締付面圧が低下しないため、シールに必要な最小締付力の増加がない。 As in the gasket according to claim 2 , the sealing material of mica powder is used to form a valley of the metal thin plate at a density such that the clamping surface pressure at the valley of the metal thin plate is lower than the clamping surface pressure at the peak of the metal thin plate. By filling the portion, the tightening surface pressure distribution is not uniform and the tightening surface pressure does not decrease, so that the minimum tightening force required for sealing does not increase.

請求項1、2に記載のガスケットによれば、中芯材である同心円の波形を付けた金属薄板の両面に厚み0.10mm以上0.50mm以下のマイカシートを積層接着したガスケットを実現できるとともに、低〜高締付荷重において長期的に安定したシール性能を確保することができる。 According to the gasket of claim 1, 2, realizing a gasket formed by laminating against wear following mica sheet thickness 0.10mm or 0.50mm on both surfaces of the metal thin plate with a concentric waveform is the central core member In addition, it is possible to ensure a long-term stable sealing performance at low to high tightening loads.

請求項に記載のガスケットによれば、使用に当たって、求められる機器・配管の接合部の強度が大きくならず、設計の見直し、設備・装置の改造等の必要性がない。 According to the gasket of the second aspect , the strength of the required joint portion of the equipment / pipe is not increased in use, and there is no need for a review of the design and modification of the equipment / device.

以下、本発明に係るガスケットの実施形態を図面に基づいて説明する。図1は本発明の一実施形態に係るガスケットの平面図、図2は本発明の一実施形態に係るガスケットの構造を示す断面図である。   Hereinafter, embodiments of a gasket according to the present invention will be described with reference to the drawings. FIG. 1 is a plan view of a gasket according to an embodiment of the present invention, and FIG. 2 is a cross-sectional view showing the structure of the gasket according to an embodiment of the present invention.

図1、図2に示すガスケット10は、中芯材である同心円の波形を付けた円環状の金属薄板(以下、「波形金属薄板」という。)11の表裏両面に、シール性を有する円環状の無機シート12及び13を積層接着したガスケットであって、従来空隙4(図6参照)であった部分(波形金属薄板11の谷部11aと無機シート12及び13間)には、従来低締付荷重では圧縮できなかった波形金属薄板11の谷部11aにおける無機シート12及び13を圧縮し、低締付荷重において全面で締付面圧を確保し、低締付荷重から安定したシール性能を得、また、無機シート12及び13の変形量を抑え、流動性が低い無機シート12及び13が破壊しないようにし、より薄い無機シート12及び13の使用を可能とするために、無機粉体のシール材(以下、「充填材」という。)14が充填され、該充填材14によって従来空隙4であった部分を最初から埋める。したがって、当該ガスケット10では、波形金属薄板11の表裏両面にシール材である充填材14と無機シート12及び13とが内外2層に配置された構造となっている。   A gasket 10 shown in FIGS. 1 and 2 is an annular ring having sealing properties on both front and back surfaces of an annular thin metal plate (hereinafter referred to as “corrugated thin metal plate”) 11 having a concentric corrugation as a core material. Is a gasket obtained by laminating and bonding the inorganic sheets 12 and 13, and the portion that is the conventional gap 4 (see FIG. 6) (between the valley 11 a of the corrugated metal sheet 11 and the inorganic sheets 12 and 13) By compressing the inorganic sheets 12 and 13 in the trough portion 11a of the corrugated metal sheet 11 that could not be compressed with a load, the tightening surface pressure is secured over the entire surface at a low tightening load, and a stable sealing performance from the low tightening load is achieved. In order to suppress the amount of deformation of the inorganic sheets 12 and 13, prevent the inorganic sheets 12 and 13 having low fluidity from breaking, and enable the use of thinner inorganic sheets 12 and 13, sticker (Hereinafter, referred to as "filler".) 14 is filled, fill a portion conventionally space 4 from the beginning by the filler 14. Therefore, the gasket 10 has a structure in which the filler 14 as the sealing material and the inorganic sheets 12 and 13 are arranged in two layers on the front and back sides of the corrugated metal sheet 11.

ここで、波形金属薄板11の内周端縁と外周端縁には、波形金属薄板11の片面側(図2の下側)に突出した各山部11bの頂点を含む一平面上に位置する円環状の平坦部11c及び11dが形成されている。また、充填材14が谷部11aに充填された後の波形金属薄板11の表裏両面の外形は、表面(図2の上側)の外形が、同一平面上に位置する平坦部11c及び11dの表面の間が低背の台形に盛り上がった立体形状となり、裏面(図2の下側)の外形が、同一平面上に位置する平坦部11c及び11dの裏面の間が平坦面で繋がれた平面形状となっている。そして、波形金属薄板11の表面側の無機シート12は、波形金属薄板11の内周側の平坦部11cの端部から外周側の平坦部11dの端部にわたって、波形金属薄板11の表面の立体形状の外形に沿って積層接着され、波形金属薄板11の裏面側の無機シート13は、波形金属薄板11の内周側の平坦部11cの端部から外周側の平坦部11dの端部にわたって、波形金属薄板11の裏面の平面形状の外形に沿って積層接着されている。無機シート12及び13の内周端縁は、波形金属薄板11の内周側の平坦部11cの端部から内径方向に突出し、該平坦部11cの端部より内周側で、該平坦部11cの厚み内で貼合わされて固着されている。無機シート12及び13の外周端縁は、波形金属薄板11の外周側の平坦部11dの端部から外径方向に突出し、該平坦部11dの端部より外周側で、該平坦部11dの厚み内で貼合わされて固着されている。   Here, the inner peripheral edge and the outer peripheral edge of the corrugated metal thin plate 11 are located on one plane including the apex of each peak portion 11b projecting to one side of the corrugated metal thin plate 11 (the lower side in FIG. 2). Circular flat portions 11c and 11d are formed. Further, the outer shape of the front and back surfaces of the corrugated metal thin plate 11 after the filler 14 is filled in the valley portion 11a is the surface of the flat portions 11c and 11d whose outer surfaces (upper side in FIG. 2) are located on the same plane. Is a three-dimensional shape that rises into a trapezoid with a low profile, and the outer shape of the back surface (the lower side in FIG. 2) is a planar shape in which the back surfaces of the flat portions 11c and 11d located on the same plane are connected by a flat surface. It has become. Then, the inorganic sheet 12 on the surface side of the corrugated metal sheet 11 is formed on the surface of the corrugated metal sheet 11 from the end of the flat part 11c on the inner peripheral side to the end of the flat part 11d on the outer peripheral side. The inorganic sheet 13 on the back side of the corrugated metal thin plate 11 is laminated and adhered along the outer shape of the shape, and extends from the end of the flat portion 11c on the inner peripheral side of the corrugated metal thin plate 11 to the end of the flat portion 11d on the outer peripheral side. The corrugated metal thin plate 11 is laminated and adhered along the outer shape of the planar shape on the back surface. The inner peripheral edges of the inorganic sheets 12 and 13 protrude in the inner diameter direction from the end of the flat portion 11c on the inner peripheral side of the corrugated metal sheet 11, and the flat portion 11c on the inner peripheral side from the end of the flat portion 11c. It is stuck and fixed within the thickness of. The outer peripheral edges of the inorganic sheets 12 and 13 protrude in the outer diameter direction from the end of the flat portion 11d on the outer peripheral side of the corrugated metal sheet 11, and the thickness of the flat portion 11d on the outer peripheral side from the end of the flat portion 11d. It is stuck and fixed inside.

ガスケット10の製造は、プレス成型品である波形金属薄板11を略水平姿勢に保持し、波形金属薄板11の上面側にある各谷部11aに充填材14を充填した後、波形金属薄板11の上面(表面)に一方の無機シート12を図示しない接着剤を介して積層接着する。次いで、波形金属薄板11を裏返し、波形金属薄板11の上面側にある各谷部11aに充填材14を充填した後、波形金属薄板11の上面(裏面)に他方の無機シート13を図示しない接着剤を介して積層接着するともに、無機シート12及び13の内周端縁同士と外周端縁同士を貼合わせ固着することにより完了する。 The gasket 10 is manufactured by holding the corrugated metal sheet 11, which is a press-molded product, in a substantially horizontal posture, filling the valleys 11 a on the upper surface side of the corrugated metal sheet 11 with the filler 14, and then forming the corrugated metal sheet 11. One inorganic sheet 12 is laminated and bonded to the upper surface (surface) via an adhesive (not shown). Next, the corrugated metal thin plate 11 is turned over, and after filling the valleys 11a on the upper surface side of the corrugated metal thin plate 11 with the filler 14, the other inorganic sheet 13 is bonded to the upper surface (back surface) of the corrugated metal thin plate 11 (not shown). completing the laminating adhesive through the agent monitor, by fixing alignment bonded to the inner peripheral edge between the outer peripheral edge between the inorganic sheet 12, and 13.

この際、波形金属薄板11の谷部11aにおける締付面圧が波形金属薄板11の山部11bにおける締付面圧よりも低くなるように、無機シート12及び13の密度より低い密度で、充填材14を波形金属薄板11の谷部11に充填することが重要である。このような密度で充填材14を充填することで、当該ガスケット10では、波形金属薄板11の表裏両面に密度の異なるシール材である充填材14(低密度)と無機シート12及び13(高密度)とが内外2層に配置された構造となる。   At this time, filling is performed at a density lower than the density of the inorganic sheets 12 and 13 so that the tightening surface pressure in the valley portion 11a of the corrugated metal sheet 11 is lower than the tightening surface pressure in the peak section 11b of the corrugated metal sheet 11. It is important to fill the valleys 11 of the corrugated metal sheet 11 with the material 14. By filling the filler 14 with such a density, in the gasket 10, the filler 14 (low density) and the inorganic sheets 12 and 13 (high density) which are sealing materials having different densities on the front and back surfaces of the corrugated metal sheet 11 are used. ) Are arranged in two layers inside and outside.

図3は本発明の他の実施形態に係るガスケットの構造を示す断面図である。なお、本実施形態に係るガスケットの平面は前記ガスケット10の図1に示した平面と同一である。また、本実施形態に係るガスケットの構造は前記ガスケット10の図2に示した構造と無機シート以外同一のため、同一構造には同一符号を付して詳しい説明を省略する。   FIG. 3 is a cross-sectional view showing the structure of a gasket according to another embodiment of the present invention. In addition, the plane of the gasket which concerns on this embodiment is the same as the plane shown in FIG. Moreover, since the structure of the gasket which concerns on this embodiment is the same as the structure shown in FIG. 2 of the said gasket 10 except an inorganic sheet, the same code | symbol is attached | subjected to the same structure and detailed description is abbreviate | omitted.

図3に示すガスケット20は、波形金属薄板11の表裏両面と内周を、円環状の金属平板を切削加工することにより製作された一体構造の金属成形体21で連続的に被覆したものである。この金属成形体21は、厚み方向で相対する円環状のシート部21a及び21bと、シート部21a及び21bの内周側端縁の間に連続一体に形成される短円筒状の繋ぎ部21cとを有し、これらシート部21a及び21bと繋ぎ部21cの内側に、外周に開口部21dを有する中芯収納空間21eが形成されている。そして、波形金属薄板11が中芯収納空間21eに装着され、波形金属薄板11の内周側の平坦部11cの直ぐ内側に立上がる繋ぎ部21cの上下端部から波形金属薄板11の表裏両面側にシート部21a及び21bが延設されている。   The gasket 20 shown in FIG. 3 is obtained by continuously covering the front and back surfaces and the inner periphery of the corrugated metal thin plate 11 with an integrally formed metal molded body 21 produced by cutting an annular metal flat plate. . The metal molded body 21 includes annular sheet portions 21a and 21b that are opposed in the thickness direction, and a short cylindrical connecting portion 21c that is integrally formed between the inner peripheral side edges of the sheet portions 21a and 21b. A core storage space 21e having an opening 21d on the outer periphery is formed inside the connecting portions 21c and the sheet portions 21a and 21b. The corrugated metal thin plate 11 is mounted in the core housing space 21e, and the front and back both sides of the corrugated metal thin plate 11 from the upper and lower ends of the connecting portion 21c rising immediately inside the flat portion 11c on the inner peripheral side of the corrugated metal thin plate 11 Sheet portions 21a and 21b are extended.

ガスケット20の製造は、金属成形体21を水平姿勢に保持し、上面側にある一方のシート部21aを繋ぎ部21cと同一円筒面上に捲上げ、波形金属薄板11を上方から円筒状のシート部21aを通して繋ぎ部21cの外側に嵌込んだ後、波形金属薄板11の上面側にある各谷部11aに充填材14を充填する。次いで、円筒状のシート部21aを元に戻して波形金属薄板11の上面(表面)に図示しない接着剤を介して積層接着する。次いで、波形金属薄板11を裏返し、上面側にある他方のシート部21bを繋ぎ部21cと同一円筒面上に捲上げた後、波形金属薄板11の上面側にある各谷部11aに充填材14を充填する。次いで、円筒状のシート部21bを元に戻して波形金属薄板11の上面(裏面)に図示しない接着剤を介して積層接着することにより完了する。この際の充填材14の充填密度につても前記ガスケット10と同様に、金属成形体21の密度より低い密度で、充填材14を波形金属薄板11の谷部11に充填することが重要である。   The gasket 20 is manufactured by holding the metal molded body 21 in a horizontal posture, lifting one sheet portion 21a on the upper surface side on the same cylindrical surface as the connecting portion 21c, and lifting the corrugated metal thin plate 11 from above into a cylindrical sheet. After being fitted to the outside of the connecting portion 21 c through the portion 21 a, the filling material 14 is filled into each trough portion 11 a on the upper surface side of the corrugated metal thin plate 11. Next, the cylindrical sheet portion 21a is returned to the original, and laminated and bonded to the upper surface (front surface) of the corrugated metal thin plate 11 via an adhesive (not shown). Next, the corrugated metal thin plate 11 is turned over, and the other sheet portion 21b on the upper surface side is raised on the same cylindrical surface as the connecting portion 21c, and then the filler 14 is applied to each trough portion 11a on the upper surface side of the corrugated metal thin plate 11. Fill. Next, the cylindrical sheet portion 21b is returned to its original position, and is completed by laminating and bonding the upper surface (back surface) of the corrugated metal thin plate 11 with an adhesive (not shown). In this case, it is important that the filling material 14 is filled in the valley portion 11 of the corrugated metal sheet 11 at a density lower than that of the metal molded body 21 in the same manner as the gasket 10. .

なお、当該ガスケット20の場合、内周の内側角部(波形金属薄板11の平坦部11cと一方のシート部21aの内周端縁部間)に空隙が形成されるため、その空隙にも充填材14が充填されて空隙が埋められている。   In the case of the gasket 20, a gap is formed in the inner corner of the inner periphery (between the flat portion 11c of the corrugated metal thin plate 11 and the inner peripheral edge of one sheet portion 21a). The material 14 is filled to fill the gap.

上記のように構成された各ガスケット10、20がシール作用を発揮するメカニズムは同一のため、図4(A)〜(C)に示す当該ガスケット10、20の圧縮変形過程を参照して説明する。   Since the gaskets 10 and 20 configured as described above have the same mechanism for exerting a sealing action, description will be given with reference to the compression deformation process of the gaskets 10 and 20 shown in FIGS. .

図4において、50及び60は機器・配管のフランジ、tはガスケット厚みである。   In FIG. 4, 50 and 60 are flanges of equipment and piping, and t is the gasket thickness.

図4(A)の締付前の自由状態では、波形金属薄板11は元の波ピッチp,波高さt1/2(山高さt1)を有し、無機シート12及び13や金属成形体21のシート部21a及び21bも全体に均一な元の厚みt2を有し、従来空隙4であった部分(波形金属薄板11の谷部11aと無機シート12及び13や金属成形体21の間)には、充填材14が充填されている。   In the free state before tightening in FIG. 4 (A), the corrugated metal sheet 11 has the original wave pitch p and wave height t1 / 2 (peak height t1). The sheet portions 21a and 21b also have a uniform original thickness t2 as a whole, and in the portion (between the trough portion 11a of the corrugated metal thin plate 11 and the inorganic sheets 12 and 13 and the metal molded body 21) that has been the air gap 4 in the past. The filler 14 is filled.

図4(B)の低締付荷重を負荷した締付状態では、相対するフランジ50及び60間でガスケット10、20が厚み方向に圧縮され、波形金属薄板11は波高さt1/2を縮小しながら波ピッチpを拡大し、厚み方向に圧縮変形しながら面方向(内外径方向)にも伸び変形する。無機シート12及び13や金属成形体21のシート部21a及び21bは、波形金属薄板11の山部11bで厚み方向に圧縮されるとともに、波形金属薄板11の谷部11aには充填材14が充填されているので、該波形金属薄板11の谷部11aでも圧縮され、波形金属薄板11の山部11b及び谷部11aの全面で締付面圧を確保して安定したシール性能を発揮する。   In the tightened state in which the low tightening load shown in FIG. 4B is applied, the gaskets 10 and 20 are compressed in the thickness direction between the opposing flanges 50 and 60, and the corrugated metal sheet 11 reduces the wave height t1 / 2. While expanding the wave pitch p, it is also deformed in the surface direction (inner / outer diameter direction) while compressively deforming in the thickness direction. The sheet portions 21 a and 21 b of the inorganic sheets 12 and 13 and the metal molded body 21 are compressed in the thickness direction by the crest portions 11 b of the corrugated metal thin plate 11, and the trough portions 11 a of the corrugated metal thin plate 11 are filled with the filler 14. As a result, the corrugated metal sheet 11 is compressed even in the valley 11a, and the tightening surface pressure is secured over the entire surface of the crest 11b and the valley 11a of the corrugated metal sheet 11 to exhibit stable sealing performance.

図4(C)の高締付荷重を負荷した締付状態では、相対するフランジ50及び60間でガスケット10、20が厚み方向にさらに圧縮され、波形金属薄板11は波高さt1/2をさらに縮小しながら波ピッチpをさらに拡大し、平板に近い状態にまで厚み方向にさらに圧縮変形しながら面方向にもさらに伸び変形する。無機シート12及び13や金属成形体21のシート部21a及び21bは、波形金属薄板11の山部11bで厚み方向にさらに圧縮されるとともに、波形金属薄板11の谷部11aには充填材14が充填されているので、該波形金属薄板11の谷部11aでもさらに圧縮され、波形金属薄板11の山部11b及び谷部11aの全面でさらに高い締付面圧を確保して、低締付荷重で得た安定したシール性能を引き続き保持する。   4C, the gaskets 10 and 20 are further compressed in the thickness direction between the opposing flanges 50 and 60, and the corrugated metal sheet 11 further increases the wave height t1 / 2. The wave pitch p is further enlarged while being reduced, and further stretched and deformed in the surface direction while further compressively deforming in the thickness direction to a state close to a flat plate. The sheet portions 21 a and 21 b of the inorganic sheets 12 and 13 and the metal molded body 21 are further compressed in the thickness direction by the crest portions 11 b of the corrugated metal thin plate 11, and the filler 14 is formed in the valley portions 11 a of the corrugated metal thin plate 11. Since it is filled, it is further compressed even in the valley 11a of the corrugated metal sheet 11, ensuring a higher clamping surface pressure on the entire surface of the crest 11b and the valley 11a of the corrugated metal sheet 11, and a low clamping load. Continue to maintain the stable sealing performance obtained in.

このように、各ガスケット10、20では、従来空隙4であった波形金属薄板11の谷部11aに充填材14を充填し該部を最初から埋めているので、従来低締付荷重では圧縮できなかった波形金属薄板11の谷部11aにおける無機シート12及び13や金属成形体21のシート部21a及び21bを圧縮し、低締付荷重において全面で締付面圧を確保することができるため、低締付荷重から安定したシール性能が得られる。したがって、低〜高締付荷重において長期的に安定したシール性能を確保することができる。   Thus, in each gasket 10 and 20, since the filling material 14 is filled in the valley portion 11a of the corrugated metal thin plate 11 which has been the gap 4 in the past and the portion is buried from the beginning, it can be compressed with the conventional low tightening load. Since the inorganic sheets 12 and 13 in the trough portion 11a of the corrugated metal thin plate 11 and the sheet portions 21a and 21b of the metal molded body 21 can be compressed and a tightening surface pressure can be secured over the entire surface with a low tightening load. Stable sealing performance can be obtained from low tightening load. Therefore, it is possible to ensure a long-term stable sealing performance at low to high tightening loads.

また、各ガスケット10、20では、従来空隙4であった波形金属薄板11の谷部11aに充填材14を充填し該部を最初から埋めているので、無機シート12及び13や金属成形体21が自身の流動性や厚みt2によって波形金属薄板11の谷部11aを埋めようとして変形するのを抑えるため、無機シート12及び13や金属成形体21のシート部21a及び21bの変形量は非常に小さくなる。このため、流動性が低い無機シート12及び13や金属成形体21が高締付荷重を負荷しても破壊しないため、より薄い無機シート12及び13や金属成形体21の使用が可能となる。 Moreover, in each gasket 10 and 20, since the trough part 11a of the corrugated metal thin plate 11 which was the space | gap 4 conventionally is filled with the filler 14, and this part is buried from the beginning, the inorganic sheets 12 and 13 and the metal molded body 21 are filled. There order to suppress the deformation of an attempt to fill the valley portion 11a of the corrugated metal sheet 11 by its fluidity and thickness t 2, the amount of deformation of the seat portions 21a and 21b of the inorganic sheet 12 and 13 and metal forming body 21 Very small. For this reason, since the inorganic sheets 12 and 13 and the metal molded body 21 having low fluidity do not break even when a high tightening load is applied, the thinner inorganic sheets 12 and 13 and the metal molded body 21 can be used.

また、各ガスケット10、20では、波形金属薄板11の表裏両面にシール材である充填材14と無機シート12及び13や金属成形体21のシート部21a及び21bとが内外2層に配置された構造となっているので、外側のシール材である無機シート12及び13や金属成形体21が破壊したとしても、内側のシール材である充填材14によってシールが可能であり、シールの信頼性が高い。内側のシール材である充填材14と外側のシール材である無機シート12及び13や金属成形体21の材料には同材料又は異種材料の組み合わせが可能である。   Moreover, in each gasket 10 and 20, the filler 14 which is a sealing material, the inorganic sheets 12 and 13, and the sheet | seat parts 21a and 21b of the metal molded body 21 are arrange | positioned in two layers inside and outside on the front and back of the corrugated metal thin plate 11. Since it has a structure, even if the inorganic sheets 12 and 13 and the metal molded body 21 which are the outer sealing materials are broken, the sealing can be performed by the filler 14 which is the inner sealing material, and the reliability of the sealing is improved. high. The filler 14 as the inner seal material, the inorganic sheets 12 and 13 as the outer seal material, and the metal molded body 21 can be the same material or a combination of different materials.

また、各ガスケット10、20では、波形金属薄板11の谷部11aに充填する充填材14は粉体で、高い圧縮性と高い流動性を兼備しているので、波形金属薄板11の谷部11aの形状変化に追従性良く波形金属薄板11の谷部11a内で圧縮され、流動するので、波形金属薄板11の変形を妨げずガスケット10、20の変形追随性を損なわない。波形金属薄板11の谷部11aに空隙が生じ難く該部において締付面圧を安定して確保できる。粉体の充填材14は安価である上、高い歩留りで無駄なく使用でき、経済的である。   Moreover, in each gasket 10 and 20, since the filler 14 with which the trough part 11a of the corrugated metal sheet 11 is filled is a powder and has both high compressibility and high fluidity, the trough part 11a of the corrugated metal sheet 11 is obtained. Since the corrugated metal sheet 11 is compressed and flows in the valley portion 11a of the corrugated metal sheet 11 with good followability, the deformation of the corrugated metal sheet 11 is not disturbed and the deformation followability of the gaskets 10 and 20 is not impaired. It is difficult to generate a gap in the valley portion 11a of the corrugated metal sheet 11, and the tightening surface pressure can be stably secured in the portion. The powder filler 14 is inexpensive and can be used without waste at a high yield and is economical.

さらに、各ガスケット10、20では、無機シート12及び13や金属成形体21の密度より低い密度で、充填材14を波形金属薄板11の谷部11に充填してあるので、何れの締付荷重においても、波形金属薄板11の谷部11aにおける締付面圧が波形金属薄板11の山部11bにおける締付面圧よりも低くなり、締付面圧分布が均等にならず締付面圧が低下しないため、シールに必要な最小締付力の増加がない。したがって、使用に当たって、求められる機器・配管の接合部の強度が大きくならず、設計の見直し、設備・装置の改造等の必要性がない。   Further, in each gasket 10, 20, the filling material 14 is filled in the valley portion 11 of the corrugated metal thin plate 11 at a density lower than the density of the inorganic sheets 12 and 13 and the metal molded body 21. In this case, the tightening surface pressure at the valley portion 11a of the corrugated metal sheet 11 is lower than the tightening surface pressure at the peak portion 11b of the corrugated metal sheet 11, and the tightening surface pressure distribution is not uniform and the tightening surface pressure is increased. Since it does not decrease, there is no increase in the minimum tightening force required for sealing. Therefore, in use, the required strength of the joints of equipment and piping does not increase, and there is no need for a review of the design and modification of facilities and equipment.

上記のように各ガスケット10、20は、流動性が低い無機シート12及び13や金属成形体21との適合性を確保し、その無機シート12及び13や金属成形体21の使用を実現しているため、無機シートとしてマイカシート、バーミキュライト系シート、又は金属シート等を用い、400℃以上の酸化性流体に使用できる。またこの用途では、充填材14としてマイカ、タルク(無機鉱物)等の粉体が使用可能である。   As described above, the gaskets 10 and 20 ensure compatibility with the inorganic sheets 12 and 13 and the metal molded body 21 having low fluidity, and realize the use of the inorganic sheets 12 and 13 and the metal molded body 21. Therefore, a mica sheet, a vermiculite sheet, a metal sheet or the like can be used as the inorganic sheet, and it can be used for an oxidizing fluid at 400 ° C. or higher. In this application, powder such as mica and talc (inorganic mineral) can be used as the filler 14.

また、波形金属薄板11の材料としては内部流体の温度及び内部流体との耐食性等を考慮の上、銅、鉄、軟鋼、ステンレス鋼、アルミニウム等の金属薄板であれば、上記用途で使用可能である。   Further, the corrugated metal sheet 11 can be used for the above applications as long as it is a metal sheet such as copper, iron, mild steel, stainless steel, and aluminum in consideration of the temperature of the internal fluid and the corrosion resistance with the internal fluid. is there.

波形金属薄板11として波形金属薄板(材質:ステンレス鋼[316L],板厚:0.5mm,波ピッチp:3.2mm,波高さt1/2:0.55mm[山高さt1:1.1mm])を使用し、無機シート12及び13としてマイカシート(厚みt2:0.5mm)を使用し、充填材14としてマイカ粉末(平均粒径:50μm)を使用して、図1、図2に示すようなガスケット(以下、「実施例」という。)を作製した。   Corrugated metal thin plate 11 (material: stainless steel [316L], plate thickness: 0.5 mm, wave pitch p: 3.2 mm, wave height t1 / 2: 0.55 mm [mountain height t1: 1.1 mm] 1), mica sheets (thickness t2: 0.5 mm) are used as the inorganic sheets 12 and 13, and mica powder (average particle size: 50 μm) is used as the filler 14, and shown in FIGS. Such a gasket (hereinafter referred to as “Example”) was produced.

実施例の比較例として、充填材14を充填していないこと以外、実施例と同一構造のガスケット(以下「比較例」という。)を作製した。   As a comparative example of the example, a gasket having the same structure as the example (hereinafter referred to as “comparative example”) was prepared except that the filler 14 was not filled.

実施例と比較例とのシール特性を図5に示す。図5は常温での窒素ガスシール試験を実施例と比較例について行い、それぞれのシール特性を比較したものである。図5において、実施例は比較例と比べ低〜高締付荷重(面圧)においてシール性能に優れる。また、比較例は高締付荷重において無機シート12及び13の破壊が起こり漏洩を生じた。これにより、従来空隙4であった波形金属薄板11の谷部11aに充填材14を充填し該部を最初から埋めることによって、低〜高締付荷重において長期的に安定したシール性能を確保できることと、流動性が低い材料の無機シート12及び13や金属成形体21でも高締付荷重において破壊ぜす使用できることを確認した。   FIG. 5 shows the sealing characteristics of the example and the comparative example. FIG. 5 shows a nitrogen gas seal test at room temperature for the example and the comparative example, and the respective seal characteristics are compared. In FIG. 5, the example is superior in sealing performance at a low to high tightening load (surface pressure) as compared with the comparative example. In the comparative example, the inorganic sheets 12 and 13 were broken and leaked at a high tightening load. Thereby, by filling the valley portion 11a of the corrugated metal sheet 11 that has been the conventional gap 4 with the filler 14 and filling the portion from the beginning, it is possible to secure a stable sealing performance for a long period of time with a low to high tightening load. In addition, it was confirmed that the inorganic sheets 12 and 13 and the metal molded body 21 made of a material having low fluidity can be used in a high tightening load.

また、実施例と比較例の無機シート12及び13(マイカシート)の厚みとシール性能の関係を下記の表1に示す。   Table 1 below shows the relationship between the thicknesses of the inorganic sheets 12 and 13 (mica sheets) and the sealing performance of the examples and comparative examples.

Figure 0004918462
Figure 0004918462

上記表1は窒素ガスシール試験を実施例と比較例について無機シート12及び13の厚みを変えながら行い、厚みごとのシール性能を比較したものである。表1において、実施例は比較例では得られなかった標準的な厚みt2の無機シート12及び13で安定したシール性能が得られた。これにより、従来空隙4であった波形金属薄板11の谷部11aに充填材14を充填し該部を最初から埋めることによって、標準的な厚みでより薄い無機シート2及び13や金属成形体21の使用が可能となることを確認した。   Table 1 shows a nitrogen gas seal test in which the thicknesses of the inorganic sheets 12 and 13 are changed for the examples and comparative examples, and the sealing performance for each thickness is compared. In Table 1, in Examples, stable sealing performance was obtained with inorganic sheets 12 and 13 having a standard thickness t2, which was not obtained in the comparative example. In this way, the filler 14 is filled in the valley portion 11a of the corrugated metal thin plate 11 which has been the conventional gap 4, and the portion is filled from the beginning, so that the inorganic sheets 2 and 13 and the metal molded body 21 which are thinner with a standard thickness. It was confirmed that it can be used.

本発明の実施形態に係るガスケットの平面図である。It is a top view of the gasket concerning the embodiment of the present invention. 本発明の実施形態に係るガスケットの構造を示す断面図である。It is sectional drawing which shows the structure of the gasket which concerns on embodiment of this invention. 本発明の他の実施形態に係るガスケットの構造を示す断面図である。It is sectional drawing which shows the structure of the gasket which concerns on other embodiment of this invention. 本発明の実施形態及び他の実施形態に係るガスケットの圧縮変形過程を示す図である。It is a figure which shows the compression deformation process of the gasket which concerns on embodiment of this invention and other embodiment. 本発明の実施例と比較例とのシール特性を示す折線グラフである。It is a line graph which shows the sealing characteristic of the Example and comparative example of this invention. 従来ガスケット構造の圧縮変形過程を示す図である。It is a figure which shows the compression deformation process of the conventional gasket structure.

ガスケット
11 波形金属薄板(金属薄板)
11a 谷部
11b 山部
12,13 無機シート
14 充填材(シール材)
20 ガスケット
21 金属成形体
1 0 Gasket 11 Corrugated sheet metal (metal sheet)
11a Valley 11b Mountain 12,13 Inorganic sheet 14 Filler (sealant)
20 Gasket 21 Metal molding

Claims (2)

同心円の波形を付けた金属薄板の谷部にマイカ粉体のシール材を充填し、該金属薄板の両面にシール性を有する厚み0.10mm以上0.50mm以下のマイカシートを積層接着したことを特徴とするガスケット。 The concentric corrugated metal sheet is filled with a mica powder sealing material in the valleys, and the mica sheet having a sealing property on both sides of the metal sheet is laminated and bonded. Characteristic gasket. 金属薄板の谷部における締付面圧が金属薄板の山部における締付面圧よりも低くなる密度で、マイカ粉体のシール材を金属薄板の谷部に充填したことを特徴とする請求項1に記載のガスケット。 The mica powder sealing material is filled in the valley of the metal thin plate at a density such that the clamping surface pressure in the valley of the metal thin plate is lower than the clamping surface pressure in the peak of the metal thin plate. The gasket according to 1 .
JP2007287498A 2007-11-05 2007-11-05 gasket Expired - Fee Related JP4918462B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2007287498A JP4918462B2 (en) 2007-11-05 2007-11-05 gasket
PCT/JP2008/068458 WO2009060690A1 (en) 2007-11-05 2008-10-10 Gasket
US12/741,317 US8382122B2 (en) 2007-11-05 2008-10-10 Gasket
KR1020107011513A KR101221254B1 (en) 2007-11-05 2008-10-10 Gasket
CN2008801135422A CN101842621B (en) 2007-11-05 2008-10-10 Gasket

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007287498A JP4918462B2 (en) 2007-11-05 2007-11-05 gasket

Publications (2)

Publication Number Publication Date
JP2009115163A JP2009115163A (en) 2009-05-28
JP4918462B2 true JP4918462B2 (en) 2012-04-18

Family

ID=40782522

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007287498A Expired - Fee Related JP4918462B2 (en) 2007-11-05 2007-11-05 gasket

Country Status (1)

Country Link
JP (1) JP4918462B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5643519B2 (en) * 2010-02-12 2014-12-17 ニチアス株式会社 Method for manufacturing coated corrugated metal gasket and coated corrugated metal gasket

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829958B2 (en) * 1977-03-07 1983-06-25 工業技術院長 How to form protein crystals
JPS58210342A (en) * 1982-05-31 1983-12-07 Ishikawa Gasket Kk Head gasket for internal-combustion engine
JPH075819B2 (en) * 1986-09-11 1995-01-25 東レ株式会社 Resin composition
DE10236731A1 (en) * 2001-09-28 2003-04-30 Forschungszentrum Juelich Gmbh High temperature resistant seal
JP2005180660A (en) * 2003-12-22 2005-07-07 Uchiyama Mfg Corp Cylinder head gasket

Also Published As

Publication number Publication date
JP2009115163A (en) 2009-05-28

Similar Documents

Publication Publication Date Title
JP4918460B2 (en) gasket
KR101221254B1 (en) Gasket
JP4324607B2 (en) Non-asbestos gasket
JP5599787B2 (en) Comb double-sided coated gasket for sealing removable flange joints
KR101050918B1 (en) Sealing device
JP4208957B2 (en) gasket
JP4570897B2 (en) Gasket for flange joint
JPH04134958U (en) Metal laminated gasket
JP4918462B2 (en) gasket
JP2011256885A (en) Stationary sealing structure
JP4538238B2 (en) gasket
JP4918461B2 (en) gasket
CN218670624U (en) Assembled flexible graphite composite reinforced gasket structure
JP2019015336A (en) Spiral gasket
WO2007049339A1 (en) Gasket
JP4789992B2 (en) gasket
JP7328325B2 (en) Serrated metal gasket
KR20170000076U (en) Multi kammprofile gasket
CN212776117U (en) Metal wave tooth composite sealing gasket
JP2007182950A (en) Spiral gasket
JPH0611082A (en) Flange joint construction
JP5563248B2 (en) Rubber seal with bracket
JP5643519B2 (en) Method for manufacturing coated corrugated metal gasket and coated corrugated metal gasket
JP2002098277A (en) Flange type joint structure
US20150115548A1 (en) Composite gasket

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150203

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4918462

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees