DE4335224A1 - Process for the production of optical layers - Google Patents

Process for the production of optical layers

Info

Publication number
DE4335224A1
DE4335224A1 DE19934335224 DE4335224A DE4335224A1 DE 4335224 A1 DE4335224 A1 DE 4335224A1 DE 19934335224 DE19934335224 DE 19934335224 DE 4335224 A DE4335224 A DE 4335224A DE 4335224 A1 DE4335224 A1 DE 4335224A1
Authority
DE
Germany
Prior art keywords
cathode
sputtering
cvd
chamber
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
DE19934335224
Other languages
German (de)
Inventor
Ralf Dipl Ing Faber
Peter Winter
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Balzers und Leybold Deutschland Holding AG
Original Assignee
Leybold AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Leybold AG filed Critical Leybold AG
Priority to DE19934335224 priority Critical patent/DE4335224A1/en
Publication of DE4335224A1 publication Critical patent/DE4335224A1/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/34Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions
    • C03C17/3411Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials
    • C03C17/3417Surface treatment of glass, not in the form of fibres or filaments, by coating with at least two coatings having different compositions with at least two coatings of inorganic materials all coatings being oxide coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/56Apparatus specially adapted for continuous coating; Arrangements for maintaining the vacuum, e.g. vacuum locks
    • C23C14/568Transferring the substrates through a series of coating stations
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4412Details relating to the exhausts, e.g. pumps, filters, scrubbers, particle traps
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/54Apparatus specially adapted for continuous coating

Abstract

The invention relates to a combined sputtering and CVD device for the coating of substrates, especially for the production of optical multilayer systems, in which layers of high and low refractive index are applied in alternation in a uniform in-line coating unit. In order to take account of the differing pressures which occur in the course of sputtering and in CVD methods, the continuous reduction of a gas flow, and a constant partial pressure ratio, are used to approximate the pressure conditions so that it is not necessary to use devices for gas separation, for example slotted locks or pressure reduction stages.

Description

Die Erfindung betrifft eine Vorrichtung nach dem Oberbegriff des Patentanspruchs 1.The invention relates to a device according to the preamble of patent claim 1.

Für die Breitbandentspiegelung von Bildschirmzusatzscheiben werden in der Regel Filtersysteme mit mehreren übereinander angeordneten Schichten verwendet. Diese Schichten bestehen in der Regel aus unterschiedlichen Materialien, wobei sich Materialen mit hohem und niedrigem Brechungsindex abwechseln. Auch zur Verrin­ gerung von Reflexionen auf Linsen und dergleichen werden mehrere Schichten aus unterschiedlichen Materialien übereinander angeordnet.For the broadband anti-glare of additional screen screens are usually Filter systems with several layers arranged one above the other are used. These Layers usually consist of different materials, with each other Alternate materials with high and low refractive index. Also to the Verrin To reduce reflections on lenses and the like, multiple layers are formed different materials arranged one above the other.

So ist beispielsweise eine Antireflexbeschichtung bekannt, die aus drei Schichten be­ steht, von denen die unterste Schicht aus SiO, die mittlere aus ZrO₂ und die oberste aus MgF₂ besteht (US-PS 3 356 523). Ein anderer reflexionsvermindernder Film be­ steht dagegen aus vier Schichten, von denen die unterste und erste SiO, die zweite SiO₂, die dritte CeO₂ und die vierte wieder SiO₂ ist (DE-OS 39 09 654).For example, an anti-reflective coating is known which consists of three layers stands, of which the bottom layer made of SiO, the middle layer made of ZrO₂ and the top one consists of MgF₂ (US Pat. No. 3,356,523). Another anti-reflective film be on the other hand consists of four layers, of which the bottom and first SiO, the second SiO₂, the third CeO₂ and the fourth SiO₂ again (DE-OS 39 09 654).

Die Herstellung derartiger Schichtfolgen ist relativ aufwendig. Die hochbrechend und in der Regel metallischen Schichten werden vorzugsweise mittels eines Gleichstrom- Kathodenzerstäubungs- oder DC-Sputterverfahrens erzeugt (vgl. hierzu: Rut­ scher/Deutsch: Plasmatechnik, Grundlagen und Anwendungen, 1984, S. 351/352). Dagegen werden die niedrig brechenden Schichten wie SiO₂ mittels eines CVD (Chemical Vapor Deposition)-Verfahrens mit Hochfrequenzanregung abgeschieden (H. G. Severin: Sputtern, Physik in unserer Zeit, 1986, S. 71 bis 79, S. 72 R. F. Sput­ tern). Durch die Anwendung einer hochfrequenten Wechselspannung von z. B. 13,56 MHz ist es möglich, auch nichtleitende Target-Materialien zu zerstäuben.The production of such layer sequences is relatively complex. The refractive and usually metallic layers are preferably by means of a direct current Generated cathode sputtering or DC sputtering process (see: Rut Scher / German: Plasma Technology, Fundamentals and Applications, 1984, pp. 351/352). In contrast, the low refractive index layers such as SiO₂ by means of a CVD (Chemical Vapor Deposition) process with high frequency excitation (H. G. Severin: Sputtering, Physics in our time, 1986, pp. 71 to 79, p. 72 R. F. Sput tern). By using a high frequency AC voltage of e.g. B. 13.56 MHz, it is also possible to atomize non-conductive target materials.

Der Erfindung liegt die Aufgabe zugrunde, auf einfache Weise Substrate nacheinan­ der verschiedenartigen Beschichtungsprozessen zu unterwerfen.The invention has for its object substrates in a simple manner the various coating processes.

Diese Aufgabe wird gemäß den Merkmalen des Patentanspruchs 1 gelöst.This object is achieved in accordance with the features of patent claim 1.

Der mit der Erfindung erzielte Vorteil besteht insbesondere darin, daß die zu bearbei­ tenden Substrate in einem einheitlichen Inline-Betrieb verschiedenen Prozessen unterworfen werden können.The advantage achieved with the invention is, in particular, that it can be processed trending substrates in a uniform inline operation of different processes can be subjected.

Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung dargestellt und wird im folgenden näher beschrieben. Es zeigen:An embodiment of the invention is shown in the drawing and is in following described in more detail. Show it:

Fig. 1 eine Hochfrequenz-CVD-Anlage für den Einsatz in einer kombinierten Beschichtungsanlage; Fig. 1 is a high-frequency CVD apparatus for use in a combined coating system;

Fig. 2 eine kombinierte Anordnung einer Hochfrequenz-CVD-Anlage mit einer Gleichstrom-Sputteranlage. Fig. 2 shows a combined arrangement of a high-frequency CVD system with a DC sputtering system.

In der Fig. 1 ist eine Hochfrequenz-CVD-Anlage 25 dargestellt, die ein zu beschich­ tendes oder zu ätzendes Substrat 1 aufweist. Diesem Substrat liegt ein Target 2 von z. B. 1450 mm × 100 mm gegenüber, das beispielsweise aus Aluminium besteht und das mit einer Kathodenwanne 3 in Verbindung steht. Der Abstand zwischen Target 2 und Substrat 1 beträgt beispielsweise 90 mm. In der Kathodenwanne 3 befinden sich nicht dargestellte Dauermagnete. Oberhalb der Kathodenwanne 3 ist eine Elektroden­ platte 4 vorgesehen, die mit der Kathodenwanne 3 verbunden ist und auf einer elek­ trischen Isolierung 5 ruht, die ihrerseits auf einem Gehäuseboden 6 lagert. Dieser Ge­ häuseboden ist Bestandteil eines Gehäuses 7, das in seinem oberen Bereich ein elek­ trisches Anpassungsnetzwerk 8 aufweist, welches über eine Leitung 9 mit einem Hochfrequenz-Generator 10 in Verbindung steht. Dieser Hochfrequenz-Generator 10 gibt vorzugsweise bei einer Leistung von z. B. 1 W/cm² eine Wechselspannung von 13,56 MHz ab.In FIG. 1, a high frequency CVD system 25 is shown that a too beschich tendes or has to be etched substrate 1. This substrate is a target 2 of z. B. 1450 mm × 100 mm, which consists for example of aluminum and which is connected to a cathode tub 3 . The distance between target 2 and substrate 1 is, for example, 90 mm. Permanent magnets (not shown ) are located in the cathode trough 3 . Above the cathode tub 3 , an electrode plate 4 is provided which is connected to the cathode tub 3 and rests on an electrical insulation 5 , which in turn is supported on a housing base 6 . This Ge häuseboden is part of a housing 7 , which has an electrical adaptation network 8 in its upper region, which is connected via a line 9 to a high-frequency generator 10 . This high-frequency generator 10 is preferably at a power of z. B. 1 W / cm² from an AC voltage of 13.56 MHz.

An das Gehäuse 7 sind Stege 11, 12 angeflanscht, die jeweils mit einer Turbomoleku­ larpumpe 13, 14 versehen sind, welche z. B. 1000 Liter Gas pro Sekunde absaugen können. Die Stege 11, 12 ruhen ihrerseits auf einer äußeren Kammer 15, welche das Gehäuse 7 umschließt. Die Seitenwand 20 der Kammer 15 weist eine Öffnung auf, über welche die Kammer 15 mit einer weiteren Kammer in Verbindung steht.On the housing 7 webs 11 , 12 are flanged, each of which is provided with a Turbomoleku larpump 13 , 14 , which, for. B. can suck 1000 liters of gas per second. The webs 11 , 12 in turn rest on an outer chamber 15 which surrounds the housing 7 . The side wall 20 of the chamber 15 has an opening through which the chamber 15 is connected to another chamber.

Zwischen Target 2 und Substrat 1 bzw. seitlich vom Substrat 1 sind Gaseinlässe 16, 17 vorgesehen. Der Gasdruck, der im Raum 18 herrscht, beträgt normalerweise 0,1 bis 1,0 mbar. Als Prozeßgase, die von den Gaseinlässen 16, 17 gesteuert werden, die­ nen z. B. He/SiH₄, N₂, N₂O, O₂, NH₃; CF₄, C₂H₂. Durch den Einsatz der Turbo­ molekularpumpen 13, 14 kann der Gasdruck im Raum 18 reduziert werden. Mit der Hochfrequenz-Magnetron-PECVD-Anlage (PECVD = Plasma Enhanced Chemical Vapor Deposition) gemäß Fig. 1, bei welcher chemische Reaktionen in der Gasphase stattfinden, werden vorzugsweise niedrigbrechende Schichten wie SiO₂, SiOxNy, SiOxFy etc. auf dem Substrat 1 aufgebracht. Die mit dieser Anlage aufgebrachten Schichten besitzen außer ihren optischen Eigenschaften auch sehr gute Eigenschaften hinsichtlich ihrer mechanischen und chemischen Beständigkeit. Im Gegensatz zum Sputterprozeß beschichten sich bei dem Hochfrequenz-PECVD-Prozeß gemäß Fig. 1 nicht die Wände der Kammer, um danach abzublättern und sich auf das Substrat 1 zu legen. Außerdem ist die Beschichtungsrate des PECVD-Prozesses relativ hoch.Gas inlets 16 , 17 are provided between target 2 and substrate 1 or laterally from substrate 1 . The gas pressure prevailing in room 18 is normally 0.1 to 1.0 mbar. As process gases, which are controlled by the gas inlets 16 , 17 , the z. B. He / SiH₄, N₂, N₂O, O₂, NH₃; CF₄, C₂H₂. The gas pressure in the room 18 can be reduced by using the turbo molecular pumps 13 , 14 . With the high-frequency magnetron PECVD system (PECVD = Plasma Enhanced Chemical Vapor Deposition) according to FIG. 1, in which chemical reactions take place in the gas phase, low-refractive index layers such as SiO₂, SiO x N y , SiO x F y etc. are preferably used. applied to the substrate 1 . In addition to their optical properties, the layers applied with this system also have very good properties with regard to their mechanical and chemical resistance. In contrast to the sputtering process in the high-frequency PECVD process according to FIG. 1, the walls of the chamber do not coat in order to then peel off and lie on the substrate 1 . In addition, the coating rate of the PECVD process is relatively high.

Hochbrechende metallische Schichten sind mit der Anordnung gemäß Fig. 1 nur schwer herzustellen. Für die Herstellung dieser Schichten eignet sich das DC- Magnetron-Sputtern besser.Highly refractive metallic layers are difficult to produce with the arrangement according to FIG. 1. DC magnetron sputtering is more suitable for the production of these layers.

In der Fig. 2 ist eine Anlage 30 gezeigt, welche eine Hochfrequenz-PECVD- und DC-Magnetron-Sputter-Anlage miteinander kombiniert. FIG. 2 shows a system 30 which combines a high-frequency PECVD and DC magnetron sputter system with one another.

Die Hochfrequenz-PECVD-Anlage 25 ist in der Mitte der Fig. 2 dargestellt und ent­ spricht im wesentlichen der in der Fig. 1 gezeigten Anordnung. Rechts und links von dieser Anlage 25 befinden sich DC-Magnetron-Sputter-Anlagen 26, 27. An diese An­ lagen 26, 27 können sich weitere Hochfrequenz-PECVD-Anlagen anschließen etc.The high-frequency PECVD system 25 is shown in the middle of FIG. 2 and corresponds essentially to the arrangement shown in FIG. 1. To the right and left of this system 25 are DC magnetron sputter systems 26 , 27 . At these systems 26 , 27 further high-frequency PECVD systems can be connected, etc.

Die Sputter-Anlagen 26, 27 weisen eine Gleichstromquelle 31, 32 auf, die mit jeweils einer Kathode 33, 34 verbunden ist. Jede dieser Kathoden 33, 34 ist auf der Untersei­ te mit einem Target 35, 36 versehen. Durch die anliegende Gleichspannung bildet sich zwischen den Targets 35, 36 und den gegenüberliegenden Substraten 37, 38 eine Glimmentladung aus, die in Verbindung mit den in den Elektroden 39, 40 befind­ lichen Magneten einen Sputter-Prozeß bewirkt. The sputtering systems 26 , 27 have a direct current source 31 , 32 , which is connected to a cathode 33 , 34 in each case. Each of these cathodes 33 , 34 is provided on the Untersei with a target 35 , 36 . Due to the applied DC voltage, a glow discharge forms between the targets 35 , 36 and the opposing substrates 37 , 38 , which causes a sputtering process in conjunction with the magnets in the electrodes 39 , 40 .

Die Kombination der verschiedenen Beschichtungsanlagen ist nicht ohne weiteres möglich, da beide bei ganz verschiedenen Gasdrücken arbeiten. Der in der Anlage 25 ablaufende HF-CVD-Prozeß arbeitet normalerweise in einem Druckbereich von 0,1 bis 1,0 mbar und übersteigt damit den Sputterdruck um ein Vielfaches.The combination of the different coating systems is not easily possible, since both work at very different gas pressures. The HF-CVD process running in the system 25 normally works in a pressure range of 0.1 to 1.0 mbar and thus exceeds the sputter pressure many times over.

Im CVD-Betrieb bei einem Druck von 0,1 bis 1 mbar können schmutzige Prozesse entstehen, z. B. durch Volumenpolymerisation sowie durch Staub, der sich an Kammerwänden, Kathodenumgebung, Blenden usw. ablagert, was zu erhöhtem Reinigungsaufwand führt und nach gewisser Zeit Einfluß auf die Qualität der herge­ stellten Schichten hat.Dirty processes can occur in CVD operation at a pressure of 0.1 to 1 mbar arise, e.g. B. by bulk polymerization and by dust that accumulates Deposits of chamber walls, cathode surroundings, screens, etc., leading to increased Cleaning effort leads and after a certain time influence the quality of the herge posed layers.

Um dieses Problem zu lösen, wird der Druck des CVD-Prozesses in der Anlage 25 erfindungsgemäß auf 5 × 10-3 mbar herabgesetzt, so daß der Druck in der Anlage 25 im wesentlichen dem Druck in den Sputteranlagen 26 und 27 entspricht.To solve this problem, the pressure of the CVD process in the system 25 is reduced according to the invention to 5 × 10 -3 mbar, so that the pressure in the system 25 essentially corresponds to the pressure in the sputtering systems 26 and 27 .

Damit nun nicht das PECVD-Verfahren aufgrund des an sich zu niedrigen Drucks eine mangelhafte Beschichtung bewirkt, wird der N₂O- bzw. SiH₄-Gasfluß bei konstantem N₂O/SiH₄-Partialdruckverhältnis N₂O/SiH₄, über das die Stöchiometrie der SiOx-Schichten eingestellt werden kann, herabgesetzt.So that the PECVD process does not cause a defective coating due to the pressure which is too low per se, the N₂O or SiH₄ gas flow becomes constant with a constant N₂O / SiH₄ partial pressure ratio N₂O / SiH₄, via which the stoichiometry of the SiO x layers is set can, belittled.

Da das Partialdruckverhältnis ein entscheidender Parameter für die SiO₂-Abschei­ dung ist, dieses Verhältnis aber trotz abnehmendem Gesamtdruck konstant gehalten wird, kann das HF-PECVD-Verfahren auch bei sehr niedrigem Gasdruck durchge­ führt werden.Since the partial pressure ratio is a crucial parameter for SiO₂ separation is, but this ratio is kept constant despite the decreasing total pressure the HF-PECVD process can be carried out even at very low gas pressure leads.

Hierdurch sind in der Anlage 30 keine Einbauten für die Gastrennung erforderlich. Vielmehr können die Einzelanlagen 26, 25, 30 durch Öffnungen 60, 61, 62 miteinan­ der in Verbindung stehen. Durch diese Öffnungen 60 bis 62 kann eine Transportvor­ richtung 63 geführt werden, welche die Substrate 2, 37, 38 trägt. Durch einen Pfeil 64 ist angedeutet, daß die Transportvorrichtung 63 nach rechts bewegt wird.As a result, no installations for gas separation are required in the system 30 . Rather, the individual systems 26 , 25 , 30 through openings 60 , 61 , 62 are connected to each other. Through these openings 60 to 62 a Transportvor direction 63 can be performed, which carries the substrates 2 , 37 , 38 . An arrow 64 indicates that the transport device 63 is moved to the right.

Die Abscheiderate wird durch die Herabsetzung des Drucks zwar reduziert, doch ist dies bei den verwendeten optisch wirkenden Schichten ohne Bedeutung, weil durch andere Faktoren der Durchsatz ohnehin reduziert ist. The deposition rate is reduced by reducing the pressure, but it is this is irrelevant for the optically active layers used, because of other factors the throughput is reduced anyway.  

Die in der Fig. 1 dargestellte Vorrichtung kann auch noch nachträglich in bereits be­ stehende Sputteranlagen eingebaut werden. Durch die Anordnung der Pumpen 13, 14 und der Gaseinlässe sowie die Anordnung der Magnete in der Kathode 3 wird die Schichtbildung auf Kathode und Substrat begrenzt, so daß an den Kammerwänden keine Abscheidung stattfindet.The device shown in FIG. 1 can also be retrofitted into already existing sputtering systems. The arrangement of the pumps 13 , 14 and the gas inlets and the arrangement of the magnets in the cathode 3 limit the layer formation to the cathode and substrate, so that no deposition takes place on the chamber walls.

Massenspektroskopische Untersuchungen haben ergeben, daß mit der Anlage 30 an­ nähernd der gesamte Gasfluß für die Schichtbildung umgesetzt wird. Um zu verhin­ dern, daß die Substrate 2, 37, 38 mit störenden Partikeln belegt werden, ist es zweck­ mäßig, an diesen Substraten 2, 37, 38 beim Einschleusen in die Anlage, z. B. an der Eintrittsstelle 65, eine Gasdusche mit N₂ vorzunehmen. Weitere Maßnahmen sind: leichtes Abpumpen an der Einschleusstelle oder Aufheizen der Substrate.Mass spectroscopic investigations have shown that the entire gas flow for the layer formation is implemented with the system 30 . In order to prevent the substrates 2 , 37 , 38 from being covered with disruptive particles, it is expedient to use these substrates 2 , 37 , 38 when they are introduced into the system, e.g. B. at the entry point 65 to make a gas shower with N₂. Other measures include: easy pumping out at the infeed point or heating of the substrates.

Claims (10)

1. Vorrichtung für die sukzessive Bearbeitung von Substraten mit einem CVD- Prozeß und einem Gleichstrom-Sputterprozeß, gekennzeichnet durch
  • a) wenigstens eine CVD-Kammer (25);
  • b) wenigstens eine Gleichstrom-Sputter-Kammer (27);
  • c) eine die beiden Kammern (25, 27) miteinander verbindende Öffnung (62);
  • d) Gaszuführungsvorrichtungen (16, 17) in der CVD-Kammer (25);
  • e) eine Gas-Absaugvorrichtung (13, 14).
1. Device for the successive processing of substrates with a CVD process and a DC sputtering process, characterized by
  • a) at least one CVD chamber ( 25 );
  • b) at least one DC sputtering chamber ( 27 );
  • c) an opening ( 62 ) connecting the two chambers ( 25 , 27 );
  • d) gas supply devices ( 16 , 17 ) in the CVD chamber ( 25 );
  • e) a gas suction device ( 13 , 14 ).
2. Vorrichtung nach Anspruch 1, gekennzeichnet durch eine Einrichtung, welche das Partialdruckverhältnis von zwei in die CVD-Kammer (25) einströmenden Gasen konstant hält.2. Device according to claim 1, characterized by a device which keeps the partial pressure ratio of two gases flowing into the CVD chamber ( 25 ) constant. 3. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß der Gasdruck in der CVD-Kammer (25) dem Gasdruck in der Gleichstrom-Sputter-Kammer (27) ange­ nähert wird.3. Apparatus according to claim 1, characterized in that the gas pressure in the CVD chamber ( 25 ) the gas pressure in the DC sputtering chamber ( 27 ) is approached. 4. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die CVD-Kammer (25) eine Kathode (3, 4) aufweist, die über ein Anpassungsnetzwerk (8) mit einem Hochfrequenzgenerator (10) verbunden ist.4. The device according to claim 1, characterized in that the CVD chamber ( 25 ) has a cathode ( 3 , 4 ) which is connected via a matching network ( 8 ) to a high-frequency generator ( 10 ). 5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß die Kathode (3, 4) eine Magnetron-Kathode ist.5. The device according to claim 4, characterized in that the cathode ( 3 , 4 ) is a magnetron cathode. 6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zu beiden Seiten der Kathode (3, 4) jeweils eine Gaszuführungsvorrichtung (16, 17) vorgesehen ist, die sich unmittelbar über einem Substrat (1) befindet.6. The device according to claim 1, characterized in that on both sides of the cathode ( 3 , 4 ) a gas supply device ( 16 , 17 ) is provided, which is located directly above a substrate ( 1 ). 7. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Gleichstrom- Sputter-Kammer (26, 27) eine Kathode (33, 35 bzw. 34, 36) aufweist, die an dem negativen Pol einer Gleichspannungsquelle (31 bzw. 32) liegt, und daß die Kathode ein Target (36) aufweist.7. The device according to claim 1, characterized in that the DC sputtering chamber ( 26 , 27 ) has a cathode ( 33 , 35 or 34 , 36 ) which is located on the negative pole of a DC voltage source ( 31 or 32 ) , and that the cathode has a target ( 36 ). 8. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß eine Transportein­ richtung (63) vorgesehen ist, die linear durch die Öffnung (62) bewegbar ist.8. The device according to claim 1, characterized in that a Transportein direction ( 63 ) is provided which is linearly movable through the opening ( 62 ). 9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß sich auf der Trans­ porteinrichtung Substrate (2, 37, 38) befinden.9. The device according to claim 8, characterized in that there are substrates on the trans port ( 2 , 37 , 38 ). 10. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß die Gas-Absaug­ vorrichtung (13, 14) an der CVD-Kammer (25) vorgesehen ist und aus mehreren Turbomolekularpumpen besteht, von denen die eine rechts und die andere links von den Elektroden (3, 4) angeordnet ist.10. The device according to claim 1, characterized in that the gas suction device ( 13 , 14 ) on the CVD chamber ( 25 ) is provided and consists of several turbomolecular pumps, one of which is on the right and the other on the left of the electrodes ( 3 , 4 ) is arranged.
DE19934335224 1993-10-15 1993-10-15 Process for the production of optical layers Withdrawn DE4335224A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
DE19934335224 DE4335224A1 (en) 1993-10-15 1993-10-15 Process for the production of optical layers

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
DE19934335224 DE4335224A1 (en) 1993-10-15 1993-10-15 Process for the production of optical layers

Publications (1)

Publication Number Publication Date
DE4335224A1 true DE4335224A1 (en) 1995-04-20

Family

ID=6500257

Family Applications (1)

Application Number Title Priority Date Filing Date
DE19934335224 Withdrawn DE4335224A1 (en) 1993-10-15 1993-10-15 Process for the production of optical layers

Country Status (1)

Country Link
DE (1) DE4335224A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111087A1 (en) * 1998-07-03 2001-06-27 Shincron Co., Ltd. Apparatus and method for forming thin film
WO2006010451A2 (en) * 2004-07-26 2006-02-02 Schott Ag Vacuum-coating installation and method
US7252902B2 (en) 2001-09-28 2007-08-07 Forschungszentrum Julich Gmbh High-temperature resistant seal
WO2012052749A1 (en) * 2010-10-22 2012-04-26 Pilkington Group Limited Method of coating glass

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234622A (en) * 1979-04-11 1980-11-18 The United States Of American As Represented By The Secretary Of The Army Vacuum deposition method
DE3625356A1 (en) * 1986-07-26 1988-02-04 Andreas Biedermann METHOD FOR INTERNAL COATING ELECTRICALLY NON-CONDUCTIVE HOLLOW BODY
US4728406A (en) * 1986-08-18 1988-03-01 Energy Conversion Devices, Inc. Method for plasma - coating a semiconductor body
DE3302827C2 (en) * 1983-01-28 1990-04-05 Leybold Ag, 6450 Hanau, De
DE3941796A1 (en) * 1989-12-19 1991-06-20 Leybold Ag Optical multilayer coating - with high anti-reflection, useful for glass and plastics substrates
DE3926023C2 (en) * 1988-09-06 1991-07-11 Schott Glaswerke, 6500 Mainz, De
DE4030900A1 (en) * 1990-09-29 1992-04-02 Bosch Gmbh Robert METHOD AND DEVICE FOR COATING PARTS

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4234622A (en) * 1979-04-11 1980-11-18 The United States Of American As Represented By The Secretary Of The Army Vacuum deposition method
DE3302827C2 (en) * 1983-01-28 1990-04-05 Leybold Ag, 6450 Hanau, De
DE3625356A1 (en) * 1986-07-26 1988-02-04 Andreas Biedermann METHOD FOR INTERNAL COATING ELECTRICALLY NON-CONDUCTIVE HOLLOW BODY
US4728406A (en) * 1986-08-18 1988-03-01 Energy Conversion Devices, Inc. Method for plasma - coating a semiconductor body
DE3926023C2 (en) * 1988-09-06 1991-07-11 Schott Glaswerke, 6500 Mainz, De
DE3941796A1 (en) * 1989-12-19 1991-06-20 Leybold Ag Optical multilayer coating - with high anti-reflection, useful for glass and plastics substrates
DE4030900A1 (en) * 1990-09-29 1992-04-02 Bosch Gmbh Robert METHOD AND DEVICE FOR COATING PARTS

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
1-319675 A., C-698, March 8,1990,Vol.14,No.123 *
4- 28871 A., C-938, May 11,1992,Vol.16,No.194 *
62-205272 A., C-478, Feb. 23,1988,Vol.12,No. 59 *
63-274765 A., C-573, March 6,1989,Vol.13,No. 95 *
BELKIND, A. *
et.al.: Deposition of AIO¶x¶F¶y¶ Films Using D.C. Reactive Sputtering. In: Thin So-lid Films, 199, 1991, S.279-290 *
et.al.: High rate sputtering of metals and metal oxides with a moving plasma zone. In: Thin Solid Films, 228, 1993, S.51-55 *
JP Patents Abstracts of Japan: 62-205271 A., C-478, Feb. 23,1988,Vol.12,No. 59 *
KUKLA, R. *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1111087A1 (en) * 1998-07-03 2001-06-27 Shincron Co., Ltd. Apparatus and method for forming thin film
US7252902B2 (en) 2001-09-28 2007-08-07 Forschungszentrum Julich Gmbh High-temperature resistant seal
WO2006010451A2 (en) * 2004-07-26 2006-02-02 Schott Ag Vacuum-coating installation and method
WO2006010451A3 (en) * 2004-07-26 2006-04-20 Schott Ag Vacuum-coating installation and method
WO2012052749A1 (en) * 2010-10-22 2012-04-26 Pilkington Group Limited Method of coating glass
EA025375B1 (en) * 2010-10-22 2016-12-30 Пилкингтон Груп Лимитед Method of coating glass
US10167224B2 (en) 2010-10-22 2019-01-01 Pilkington Group Limited Method of coating glass

Similar Documents

Publication Publication Date Title
EP0205028B1 (en) Apparatus for depositing thin layers on a substrate
EP0235770B1 (en) Device for the plasma processing of substrates in a high frequency excited plasma discharge
DE4109619C1 (en)
DE4025396A1 (en) DEVICE FOR PRODUCING A PLASMA
DE4106513C2 (en) Method for regulating a reactive sputtering process and device for carrying out the method
EP0713242A2 (en) Device for suppressing arcing in cathode sputtering installations
DE2307649A1 (en) ARRANGEMENT FOR ATOMIZING VARIOUS MATERIALS
EP0783174B1 (en) Apparatus for coating a substrate
DE1571001A1 (en) Process for forming polymers
EP0411359A2 (en) Device for measuring the thickness of thin layers
DE3726006A1 (en) DEVICE FOR PRODUCING THIN FILMS
DE3709175A1 (en) METHOD AND DEVICE FOR SPRAYING HIGH-OHMED LAYERS THROUGH CATODE SPRAYING
EP0767483B1 (en) Device for coating substrates in vacuum
EP0772223A2 (en) Device for coating a substrate from an electrically conductive target
EP0555518B1 (en) Method for treating an oxide layer
DE1765127B2 (en) Device for thin-film spraying with a high-frequency excited glow discharge
DE4335224A1 (en) Process for the production of optical layers
DE2115590A1 (en) Cathode sputtering device - has cathode with projecting rim
DE4414083C2 (en) Device for producing thin layers on plastic substrates and for etching such substrates
DE3902862A1 (en) METHOD FOR REMOVING PARTICLES ON SUBSTRATE SURFACES
EP0794014B1 (en) Process and apparatus for high frequency plasma polymerization
DE102008026000B4 (en) Method and device for coating flat substrates
EP0607787A2 (en) Device for coating or etching of substrates
DE4223987A1 (en) DEVICE FOR LARGE ION NETWORK
EP0541919B1 (en) Cathodic sputtering apparatus for coating substrates

Legal Events

Date Code Title Description
OM8 Search report available as to paragraph 43 lit. 1 sentence 1 patent law
8127 New person/name/address of the applicant

Owner name: BALZERS UND LEYBOLD DEUTSCHLAND HOLDING AG, 63450

8141 Disposal/no request for examination