EP1567461A1 - Materiau de jonction entre des espaceurs et un substrat verrier - Google Patents

Materiau de jonction entre des espaceurs et un substrat verrier

Info

Publication number
EP1567461A1
EP1567461A1 EP03786023A EP03786023A EP1567461A1 EP 1567461 A1 EP1567461 A1 EP 1567461A1 EP 03786023 A EP03786023 A EP 03786023A EP 03786023 A EP03786023 A EP 03786023A EP 1567461 A1 EP1567461 A1 EP 1567461A1
Authority
EP
European Patent Office
Prior art keywords
spacers
substrate
spacer
junction
glass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03786023A
Other languages
German (de)
English (en)
Inventor
Albane Benardais
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Original Assignee
Saint Gobain Glass France SAS
Compagnie de Saint Gobain SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saint Gobain Glass France SAS, Compagnie de Saint Gobain SA filed Critical Saint Gobain Glass France SAS
Publication of EP1567461A1 publication Critical patent/EP1567461A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/04Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass
    • C04B37/045Joining burned ceramic articles with other burned ceramic articles or other articles by heating with articles made from glass characterised by the interlayer used
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C27/00Joining pieces of glass to pieces of other inorganic material; Joining glass to glass other than by fusing
    • C03C27/06Joining glass to glass by processes other than fusing
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J29/00Details of cathode-ray tubes or of electron-beam tubes of the types covered by group H01J31/00
    • H01J29/02Electrodes; Screens; Mounting, supporting, spacing or insulating thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J9/00Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
    • H01J9/24Manufacture or joining of vessels, leading-in conductors or bases
    • H01J9/26Sealing together parts of vessels
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3289Noble metal oxides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/36Glass starting materials for making ceramics, e.g. silica glass
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/02Aspects relating to interlayers, e.g. used to join ceramic articles with other articles by heating
    • C04B2237/10Glass interlayers, e.g. frit or flux
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/70Forming laminates or joined articles comprising layers of a specific, unusual thickness
    • C04B2237/708Forming laminates or joined articles comprising layers of a specific, unusual thickness of one or more of the interlayers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/50Processing aspects relating to ceramic laminates or to the joining of ceramic articles with other articles by heating
    • C04B2237/80Joining the largest surface of one substrate with a smaller surface of the other substrate, e.g. butt joining or forming a T-joint

Definitions

  • the invention relates to a junction material between at least one spacer based on ceramic or glass, and a glass substrate.
  • Spacers are used which are fixed to a glass substrate in the production, for example, of emissive flat screens, such as field emission screens (EDFs), composed of two substrates between which a space of limited thickness is maintained by means of said spacers. spacers.
  • EDFs field emission screens
  • An FED screen has a cathode and an anode formed by two plane glass substrates facing each other.
  • elements emitting electrons such as for example metallic microtips or carbon nanotubes
  • on the anode are notably deposited phosphor materials emitting light corresponding to the colors green, red and blue.
  • Electrons are extracted from the cathode by means of an extraction voltage applied between the cathode and electrodes called "electrode spoilers" arranged on the same substrate. These electrons emitted from the cathode are then accelerated by the electric field generated by the application of a voltage between the anode and the cathode. They reach the phosphors of the anode which excited, emit their color and generate an image.
  • a well defined space typically 0.1 to 5 mm separates the two substrates sealed between them, this space in which the vacuum prevails being called gap. Due to the vacuum between the two substrates, the pressure difference with the outside creates a force which tends to crush the substrates. Also, in order to resist atmospheric pressure so that the screen does not implode, spacers are arranged between the two substrates, that are the spacers, which make it possible to maintain a distance between the two glass substrates.
  • spacers secured to at least one glass substrate is of course not limited to this application of FED screens, and other uses for which it is also necessary to maintain a constant spacing between two substrates, can be envisaged such as for example plasma screens, flat lamps, double vacuum glazing or even thermochromic glazing.
  • the expression flat lamps should be understood to include lamps which may have a curvature on at least part of their surface, regardless of the technology of these lamps.
  • spacers In general, the use which is made of these spacers serves to constitute spacers, parts of separation between two substrates.
  • the attachment of spacers to a glass substrate can be achieved in different ways.
  • one end of the spacer is coated with a metallic material by known deposition techniques, of the vacuum deposition type, and the substrate is also covered. of a metal coating by known techniques, of the type also vacuum deposition.
  • the metallic materials used are preferably gold, but can also be chosen from aluminum, copper or nickel.
  • the spacers covered with metal are applied against the metallized substrate, and a heat source such as a laser is directed on the assembly in order to ensure a welding of the two metallized elements.
  • US Patent 5,561,343 proposes another solution, ultrasonic bonding.
  • This document shows that one end of the spacers is provided with a metal comprising gold or aluminum capable of undergoing ultrasonic welding, and the substrate comprises metallized zones against which the ends of the spacers are intended to be applied. spacers.
  • the weld is obtained using ultrasound delivered by a suitable device.
  • emissive screens in particular for FED screens, for which charge exchanges take place between the cathode and the anode in order to activate the phosphors, it may appear on the surface of the spacers of the charges which may to influence parasitically on phosphors adjacent to those activated and which we do not wish to activate. Furthermore, for this type of application of emissive screens, it is advisable to provide means of bonding and possibly a method of bonding which ensure perfect positioning of the spacers so that they ensure lasting mechanical strength, without implosion of the screen.
  • the positioning of the spacers at the desired location in the plane of the substrate and in a direction perfectly perpendicular to the plane of the substrate, and repeatedly for all of the spacers over the entire substrate is also important when s 'is to manufacture a screen for which the phosphors are arranged after and according to the arrangement of said spacers.
  • the invention therefore aims to provide securing means which do not cause the drawbacks mentioned, and which can ensure adequate positioning of the spacers as well as ensuring the discharge function of the charges appearing on the surface of the spacers in order to '' prevent the creation of parasitic charges which would inadvertently activate the phosphors.
  • the invention achieves this by means of a joining material which is characterized in that it comprises an enamel mixed with at least one metal oxide in the form of particles.
  • the metal oxide is stable over time and in temperature up to at most 600 ° C. It contains one or more of the following: Zr, V, AI, Cr, Mn, Fe, Ca, Si, Co, Ni, Zn, Ti, Ni, Nb, W, Sb, Pb, Sn, Cu, Ru, Ir
  • it is ruthenium oxide.
  • the material has a resistivity between 10 5 and 10 10 ⁇ .cm.
  • the material comprises at least one solvent and some resin. And advantageously, the material has at room temperature a viscosity at most equal to 50 Pa.s.
  • the material of the invention makes it possible to produce a structure comprising two glass substrates kept apart with the aid of spacers, the spacers being secured at one of their ends with at least one substrate by virtue of said joining material.
  • the opposite end of the spacers resting against the other substrate is coated with at least one bonding material which may comprise the junction material.
  • the material junction can be a means adapted to bridge a height difference between a spacer end and a substrate.
  • the spacers are conductive or non-conductive of electricity.
  • the contact resistance of the junction material located between a spacer and a substrate is negligible compared to the resistance of the spacer.
  • the method of securing spacers and a glass substrate using the material of the invention is characterized in that the spacers are held in a fixed position and are covered on one of their ends with the joining material, and the glass substrate is attached against said ends of the spacers covered with the junction material, the entire structure, substrate and spacers, then undergoing annealing.
  • An annealing temperature is defined as a temperature at most equal to 600 ° C.
  • the opposite end of the spacers assembled to the substrate as explained above will be covered with a bonding material and another substrate will be attached against said opposite ends of the spacers, the assembly of the two substrates and the spacers then undergoing a last annealing.
  • the spacers coated with the joining material on one and / or the other of their ends are annealed before their association with the substrate.
  • the material of the invention can be used in the manufacture of emissive screens, of the plasma or FED screen type, of flat lamps, of insulating glazing under vacuum, of thermochromic glazing.
  • FIG. 1 illustrates the junction material between a substrate and spacers
  • - Figure 2 illustrates the device for measuring the resistivity of the junction material
  • Figure 3 shows the structure of Figure 1 with which another substrate is associated. The figures are not drawn to scale to facilitate understanding.
  • FIG. 1 illustrates a substrate 10 on which spacers 20 are bonded using a joining material 30.
  • the substrate 10 is made of glass, and has a planar surface on the bonding side of the spacers.
  • the spacers 20 are based on glass or ceramic, they are conductive or non-conductive of electricity, and can have various shapes, the section of which can be in particular circular, rectangular or in the shape of a cross.
  • the joining material 30 comprises an enamel mixed with at least one electrically conductive element, in particular a metal oxide in the form of particles.
  • the enamel is glass-based, the composition of which is chosen from the sealing frit compositions usually used in the glass industry. Sealing involves heating to a temperature not exceeding 600 ° C. For use in an emissive screen, the sealing temperature is preferably between 400 and 550 ° C. In other uses, for example for securing spacers as spacers for insulating glazing of the vacuum type, it may be lower temperatures of the order of 200 ° C. which thus allow avoid tempering of glazing and / or reduce the cost of sealing.
  • the metal oxide particles ensure that the junction material is electrically conductive, so that the material can perform, in addition to its bonding role, a function for discharging electrical charges possibly contained on the surface of the spacers.
  • the material must be sufficiently conductive to evacuate said electrical charges. Its electrical resistivity must however remain sufficiently high so as to avoid the parasitic emission effect.
  • the parasitic emission is for example highlighted in a screen with emission of fields when only a voltage is applied between the cathode and the anode without providing an extraction voltage. Under these conditions, the cathode does not emit electrons. However, due to the electric field created by the voltage applied between the cathode and the anode, electrons are extracted from the conductive junction material and come to inadvertently excite the phosphors which constitutes a parasitic emission observed all around the spacer.
  • the material has a resistivity p of between 10 5 ⁇ .cm and 10 10 ⁇ .cm. This value is given for a material which has already undergone various heat treatments which correspond to the treatments which the material would undergo during the manufacture of an FED type emissive screen.
  • the resistivity is measured at room temperature on a sample of the material 30 having an area S, for example 1 cm 2 , and a thickness e, for example 15 ⁇ m.
  • the sample is integral with two substrates 10 coated with a conductive layer 11 ( Figure 2) to form two electrodes between which a voltage is applied, all the substrates and the sample having undergone the heat treatments necessary for manufacturing an emissive screen.
  • the current is measured to deduce therefrom a resistance value which, related to the thickness e and to the surface S of the sample, makes it possible to deduce the resistivity p.
  • the metal oxide present in the form of particles in the joining material must have, after being annealed, the following properties: to be stable over time and in temperature, that is to say that the oxide does not does not dissolve in the enamel, and in particular in a range of temperatures for which the joint material withstands several anneals up to 600 ° C., in particular under vacuum, under air or under inert gas, in order to resist the process of sealing spacers on the substrate as well as the manufacturing process, for example of emissive screens, using a substrate of this type provided with spacers; - do not generate visible parasitic emission around the spacers.
  • the metal oxide particles consist of one or more of the following elements which do not dissolve in the enamel at the temperatures described above, in particular up to 600 ° C: Zr, V, Al, Cr, Mn, Fe , Ca, Si, Co, Ni, Zn, Ti, Ni, Nb, W, Sb, Pb, Sn, Cu, Ru, Ir. Ruthenium oxide will be preferred for further its adequate resistivity.
  • the junction material therefore also has properties adapted to the method of its deposition on the ends 21 of the spacers.
  • the material must have a viscosity at room temperature of less than 50 Pa.s.
  • Pine oil such as terpineol, can be used as solvent which allows viscosity to be controlled. The proportion of solvent used will affect the viscosity.
  • This resin disappears after a first annealing.
  • first step the sealing of a first substrate with the spacers is done in an open medium, and in a second step, the sealing is carried out in a closed environment, that is to say that said substrate provided with spacers is hermetically sealed with another element such as another substrate ( Figure 3).
  • the joining material is deposited by any suitable means on the ends 21 of the spacers, the ends being maintained in a periodic network in the same plane; the substrate is then added against the spacers and an annealing operation at approximately 550 ° C. under vacuum of the assembly is carried out to ensure the consolidation of the bonding, the evacuation of the solvents and of the resin, possibly polluting, being carried out by all adapted means.
  • the evacuation of solvents and resin is useful at this stage in an open environment because otherwise, if the entire structure for an FED screen was sealed in a single step and therefore in a closed environment, the solvents and the resin volatilized by heating the junction material could concentrate over time in the hermetic medium between the two substrates, which could pollute screen elements such as phosphors or electron emitting elements, degrading the performance of the screen.
  • the deposition of the junction material on the spacers can for example be carried out by depositing a layer of the material on a plate of size at least substantially equivalent to the distribution surface of the spacers. While the spacers are held in position by a device with a multitude of clamps for example, the plate coated with the material is temporarily applied with a slight pressure if necessary against the ends of the spacers to obtain a deposit. As a variant, the spacers held in position are brought at their end in a glue bath to deposit.
  • the material of the invention by its tackiness even before a first annealing makes it possible to ensure, when the substrate is associated with the spacers provided with the material, that the spacers are held in place without the risk of involuntarily moving them. Indeed, a positioning deviation could cause in the use of the substrate with spacers untimely functioning problems such as the unwanted activation of certain phosphors in an emissive screen.
  • the adhesive is distributed homogeneously over the ends of the spacers, which makes it possible to obtain a balanced and homogeneous electrical conduction at the end of the spacers by which electrical charges are intended to be removed for application in an emissive screen.
  • the field lines generated by the accumulation of charges in a place would generate the deflection of the electrons emitted by the cathode which would thus come to light phosphors which one does not wish to activate.
  • another substrate 40 is attached against the other free end 22 of the spacers that have possibly been previously covered with a bonding material 50, such as the junction material of the invention for example, a means sealing (glass frit or material of the invention) being also arranged in the manner of a frame on the entire periphery of one of the substrates.
  • a bonding material 50 such as the junction material of the invention for example, a means sealing (glass frit or material of the invention) being also arranged in the manner of a frame on the entire periphery of one of the substrates.
  • an annealing will be carried out just after the deposition of the junction material against the ends of the spacers, and before the association of the substrate (s) with said spacers, so as to remove solvents and resin.
  • the screen is sealed by at least one annealing at a temperature below 500 ° C for example, and simultaneously a vacuum is created inside the screen. In this way, the joint material softens and under the effect of atmospheric pressure acting against the outer faces of the screen, the joint material at the ends 21 and / or 22 of the spacers is crushed against the and / or the substrates, thus ensuring a better conductive bond.
  • the inventors For optimal discharge of the charges, the inventors have shown that it is necessary for the contact resistance of the joint material located between a spacer and a substrate to be negligible compared to the resistance of the spacer.
  • negligible means at least a factor of ten less.
  • the inventors have shown that it is sufficient to measure the resistance of an entire structure composed of the spacers, the junction material and the substrates coated with a conductive layer to constitute electrodes and compare it to the total resistance of the spacers expected or calculated knowing their number, their geometry and the resistivity of the material or materials which constitute them.
  • the resistance of the structure is deduced by applying a variable voltage between the two substrates of the structure and by measuring the current. When the measured resistance of the structure is substantially equivalent to the expected resistance of the spacers, the contact resistance is effectively considered to be negligible.
  • spacers bonded with the junction material of the invention can be envisaged in any application requiring keeping a spacing between two substrates constant.
  • the applications can be field emission screens, plasma screens, flat lamps, double vacuum glazing or thermochromic glazing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Ceramic Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Joining Of Glass To Other Materials (AREA)
  • Manufacture Of Electron Tubes, Discharge Lamp Vessels, Lead-In Wires, And The Like (AREA)
  • Vessels, Lead-In Wires, Accessory Apparatuses For Cathode-Ray Tubes (AREA)

Abstract

Matériau de jonction (30) entre au moins un espaceur (20) à base de céramique ou de verre et un substrat verrier (10), caractérisé en ce qu'il comprend un émail mélangé à au moins un oxyde de métal se présentant sous forme de particules.

Description

MATERIAU DE JONCTION ENTRE DES ESPACEURS ET UN SUBSTRAT
VERRIER.
L'invention concerne un matériau de jonction entre au moins un espaceur à base de céramique ou de verre, et un substrat verrier.
On utilise des espaceurs solidarisés à un substrat en verre dans la réalisation par exemple d'écrans plats émissifs, tels que des écrans à émission de champs (FED), composés par deux substrats entre lesquels est maintenu un espace d'épaisseur limitée au moyen desdits espaceurs.
Un écran FED comporte une cathode et une anode constituées par deux substrats plans en verre se faisant face. Sur la cathode sont déposés des éléments émetteurs d'électrons, comme par exemple des micropointes métalliques ou des nanotubes de carbone, et sur l'anode sont notamment déposées des matériaux luminophores émetteurs de lumières correspondant aux couleurs verte, rouge et bleue. Des électrons sont extraits de la cathode grâce à une tension d'extraction appliquée entre la cathode et des électrodes appelées "gâte électrodes" disposées sur le même substrat. Ces électrons émis depuis la cathode sont alors accélérés grâce au champ électrique généré par l'application d'une tension entre l'anode et la cathode. Ils atteignent les luminophores de l'anode qui excités, émettent leur couleur et engendrent une image. Un espace bien défini, typiquement de 0,1 à 5 mm sépare les deux substrats scellés entre eux, cet espace dans lequel règne le vide étant nommé gap. Du fait du vide entre les deux substrats, la différence de pression avec l'extérieur crée une force qui tend à écraser les substrats. Aussi, afin de résister à la pression atmosphérique pour que l'écran n'implose pas, on agence entre les deux substrats des pièces d'écartement, que sont les espaceurs, qui permettent de maintenir une distance entre les deux substrats en verre. L'utilisation d'espaceurs solidarisés avec au moins un substrat verrier ne se limite bien entendu pas à cette application d'écrans FED, et d'autres utilisations pour lesquelles il est aussi nécessaire de maintenir un écartement constant entre deux substrats, peuvent être envisagées telles que par exemple des écrans plasma, des lampes planes, des doubles vitrages sous vide ou encore des vitrages thermochromes. L'expression lampes planes doit être comprise comme englobant des lampes pouvant présenter une courbure sur au moins une partie de leur surface, quelle que soit par ailleurs la technologie de ces lampes.
D'une manière générale, l'utilisation qui est faite de ces espaceurs sert à constituer des pièces d'écartement, des pièces de séparation entre deux substrats.
La solidarisation d'espaceurs à un substrat verrier peut être réalisée de différentes manières.
Une solution proposée est celle décrite dans le brevet US 6 042 445. Dans ce document, une extrémité de l'espaceur est revêtue d'un matériau métallique par des techniques de dépôt connues, du type dépôt sous vide, et le substrat est également recouvert d'un revêtement métallique par des techniques connues, du type également dépôt sous vide. Les matériaux métalliques utilisés sont de préférence de l'or, mais peuvent être choisis aussi parmi l'aluminium, le cuivre ou le nickel. Les espaceurs recouverts de métal sont appliqués contre le substrat métallisé, et une source de chaleur telle qu'un laser est dirigée sur l'ensemble afin d'assurer une soudure des deux éléments métallisés.
Le brevet US 5 561 343 propose une autre solution, un collage par ultrasons. Ce document montre qu'une extrémité des espaceurs est pourvue d'un métal comprenant de l'or ou de l'aluminium apte à subir une soudure par ultrasons, et le substrat comporte des zones métallisées contre lesquelles sont destinées à être appliquées les extrémités d'espaceurs. La soudure est obtenue à l'aide d'ultrasons délivrés par un dispositif adapté.
Mais ces opérations de métallisation parfois difficiles à mettre en œuvre, et/ou coûteuses, et pouvant nécessiter des étapes supplémentaires à un simple collage vont dans un sens contraire à l'amélioration toujours souhaitée des coûts de production.
Par ailleurs, dans une utilisation pour écrans émissifs, notamment pour les écrans FED, pour lesquels des échanges de charges ont lieu entre la cathode et l'anode afin d'activer les luminophores, il peut apparaître à la surface des espaceurs des charges qui risquent d'influer de manière parasite sur des luminophores adjacents à ceux activés et qu'on ne souhaite par contre pas activer. Par ailleurs, pour ce type d'application d'écrans émissifs, il convient de fournir des moyens de collage et éventuellement un procédé de collage qui assurent un positionnement parfait des espaceurs afin qu'ils assurent une tenue mécanique durable, sans implosion de l'écran. En outre, le positionnement des espaceurs à l'endroit souhaité dans le plan du substrat et selon une direction parfaitement perpendiculaire au plan du substrat, et de manière répétée pour l'ensemble des espaceurs sur la totalité du substrat est également important lorsqu'il s'agit de fabriquer un écran pour lequel les luminophores sont agencés après et en fonction de la disposition desdits espaceurs.
L'invention a donc pour but de proposer des moyens de solidarisation qui n'engendrent pas les inconvénients cités, et qui peuvent assurer un positionnement adéquat des espaceurs ainsi qu'assurer la fonction d'évacuation des charges apparaissant à la surface des espaceurs afin d'empêcher la création de charges parasites qui activeraient de manière intempestive les luminophores.
L'invention y parvient grâce à un matériau de jonction qui est caractérisé en ce qu'il comprend un émail mélangé à au moins un oxyde de métal se présentant sous forme de particules. Avantageusement, l'oxyde de métal est stable dans le temps et en température jusqu'à 600°C au plus. Il contient un ou plusieurs des éléments suivants : Zr, V, AI, Cr, Mn, Fe, Ca, Si, Co, Ni, Zn, Ti, Ni, Nb, W, Sb, Pb, Sn, Cu, Ru, Ir. De préférence, il s'agit d'oxyde de ruthénium.
Selon une caractéristique, le matériau présente une résistivité comprise entre 105 et 1010 Ω.cm.
Selon une autre caractéristique, le matériau comporte au moins un solvant et de la résine. Et avantageusement, le matériau présente à température ambiante une viscosité au plus égale à 50 Pa.s.
Le matériau de l'invention permet de réaliser une structure comportant deux substrats verriers maintenus écartés à l'aide d'espaceurs, les espaceurs étant solidarisés par l'une de leurs extrémités avec au moins un substrat grâce audit matériau de jonction.
Selon une caractéristique d'une telle structure, l'extrémité opposée des espaceurs reposant contre l'autre substrat est revêtue d'au moins un matériau de liaison qui peut comporter le matériau de jonction. Avantageusement, le matériau de jonction peut constituer un moyen adapté à combler une différence de hauteur entre une extrémité d'espaceur et un substrat.
Dans une telle structure, les espaceurs sont conducteurs ou non conducteurs d'électricité. Avantageusement, la résistance de contact du matériau de jonction localisé entre un espaceur et un substrat est négligeable par rapport à la résistance de l'espaceur.
Le procédé de solidarisation d'espaceurs et d'un substrat verrier au moyen du matériau de l'invention est caractérisé en ce que les espaceurs sont maintenus en position fixe et sont recouverts sur l'une de leurs extrémités du matériau de jonction, et le substrat verrier est rapporté contre lesdites extrémités des espaceurs recouverts du matériau de jonction, l'ensemble de la structure, substrat et espaceurs, subissant ensuite un recuit. On définit comme température de recuit, une température au plus égale à 600°C. Avantageusement, l'extrémité opposée des espaceurs assemblés au substrat comme expliqué ci-dessus, sera recouverte d'un matériau de liaison et un autre substrat sera rapporté contre lesdites extrémités opposées des espaceurs, l'ensemble des deux substrats et des espaceurs subissant ensuite un dernier recuit. Dans une variante du procédé, les espaceurs revêtus du matériau de jonction sur l'une et/ou l'autre de leurs extrémités sont recuits préalablement à leur association avec le substrat.
Enfin, le matériau de l'invention peut être utilisé dans la fabrication d'écrans émissifs, du type écrans plasma ou écrans FED, de lampes planes, de vitrages isolant sous vide, de vitrages thermochromes.
D'autres caractéristiques et avantages de l'invention apparaîtront à la lecture de la description qui suit, en regard des dessins annexés sur lesquels : la figure 1 illustre le matériau de jonction entre un substrat et des espaceurs; - la figure 2 illustre le dispositif de mesure de la résistivité du matériau de jonction; la figure 3 montre la structure de la figure 1 à laquelle est associée un autre substrat. Les figures ne sont pas réalisées à l'échelle pour en faciliter la compréhension.
La figure 1 illustre un substrat 10 sur lequel sont collés des espaceurs 20 grâce à un matériau de jonction 30. Le substrat 10 est en verre, et présente du côté du collage des espaceurs une surface plane.
Les espaceurs 20 sont à base de verre ou de céramique, ils sont conducteurs ou non conducteur d'électricité, et peuvent présenter diverses formes, dont la section peut être notamment circulaire, rectangulaire ou en forme de croix.
Ils sont solidarisés avec le substrat 10 par l'une de leur extrémité 21.
Le matériau de jonction 30, lorsqu'il est en place et assure sa fonction de collage, couvre de manière homogène l'extrémité 21 des espaceurs. Il présente une épaisseur de l'ordre de 1 à 100 μm dans une application d'écran FED. Le matériau de jonction 30 comprend un émail mélangé à au moins un élément conducteur électrique, en particulier un oxyde de métal se présentant sous forme de particules.
L'émail est à base de verre dont la composition est choisie parmi les compositions de fritte de scellement habituellement utilisées dans l'industrie verrière. Le scellement implique un chauffage à une température au plus de 600°C. Pour une utilisation dans un écran émissif, la température de scellement est de préférence comprise entre 400 et 550°C. Dans d'autres utilisations, par exemple pour la solidarisation d'espaceurs en tant que pièces d'écartement pour un vitrage isolant du type sous vide, il pourra s'agir de plus basses températures de l'ordre de 200°C qui permettent ainsi d'éviter la détrempe des vitrages et/ou de réduire le coût du scellement.
Les particules d'oxyde de métal assure au matériau de jonction d'être électriquement conducteur de sorte que le matériau peut assurer outre son rôle de collage, une fonction d'évacuation de charges électriques contenues éventuellement à la surface des espaceurs.
Le matériau doit être suffisamment conducteur pour évacuer lesdites charges électriques. Sa résistivité électrique doit cependant rester suffisamment grande de manière à éviter l'effet d'émission parasite. L'émission parasite est par exemple mise en évidence dans un écran à émission de champs lorsque seule est appliquée une tension entre la cathode et l'anode sans fournir une tension d'extraction. Dans ces conditions, la cathode n'émet pas d'électrons. Cependant, du fait du champ électrique créé par la tension appliquée entre la cathode et l'anode, des électrons sont extraits depuis le matériau de jonction conducteur et viennent exciter les luminophores de manière intempestive ce qui constitue une émission parasite observée tout autour de l'espaceur.
De façon à simultanément évacuer les charges électriques des espaceurs et limiter le risque d'émission parasite, le matériau présente une résistivité p comprise entre 105 Ω.cm et 1010 Ω.cm. Cette valeur est donnée pour un matériau ayant déjà subi divers traitements thermiques qui correspondent aux traitements que subirait le matériau lors de la fabrication d'un écran émissif de type FED.
La résistivité est mesurée à température ambiante sur un échantillon du matériau 30 présentant une surface S, par exemple 1 cm2, et une épaisseur e, par exemple 15 μm. L'échantillon est solidaire de deux substrats 10 revêtus d'une couche conductrice 11 (figure 2) pour constituer deux électrodes entre lesquelles on applique une tension, l'ensemble des substrats et de l'échantillon ayant subi les traitements thermiques nécessaires pour la fabrication d'un écran émissif. En faisant varier la tension entre 0 et 200V par exemple, on mesure le courant pour en déduire une valeur de résistance qui rapportée à l'épaisseur e et à la surface S de l'échantillon permet d'en déduire la résistivité p.
L'oxyde de métal présent sous forme de particules dans le matériau de jonction doit présenter, après avoir subi un recuit, les propriétés suivantes : être stable dans le temps et en température, c'est-à-dire que l'oxyde ne se dissout pas dans l'émail, et en particulier dans une gamme de températures pour laquelle le matériau de jonction résiste à plusieurs recuits jusqu'à 600°C, notamment sous vide, sous air ou sous gaz inerte, en vue de résister au procédé de scellement des espaceurs sur le substrat ainsi qu'au procédé de fabrication, par exemple d'écrans émissifs, utilisant un substrat de ce type pourvu d'espaceurs ; - ne pas générer d'émission parasite visible autour des espaceurs.
C'est la raison pour laquelle on préfère un oxyde de métal plutôt qu'un métal pour assurer la propriété de conductivité électrique du matériau de jonction. En effet, les inventeurs ont mis en évidence que, du fait qu'un métal présente un travail de sortie électronique plus faible que le travail de sortie électronique des oxydes de métaux, l'extraction des électrons sous un champ électrique sera moins facile pour les oxydes de métaux, ce qui limitera encore davantage le risque d'émission parasite. - pouvoir être réparti de manière homogène dans l'émail du matériau, de façon que l'évacuation des charges puisse se faire sur l'ensemble de la répartition du matériau de jonction et éviter une accumulation de charges électriques en certains points du matériau de jonction ce qui créerait sinon une forte perturbation du champ électrique existant dans le gap séparant l'anode et la cathode. Ce champ perturbé dévierait de leur chemin idéal les électrons émis par la cathode, ce qui pourrait alors exciter intempestivement les luminophores.
Les particules d'oxyde de métal consistent en un ou plusieurs des éléments suivants qui ne se dissolvent pas dans l'émail aux températures décrites plus haut, en particulier jusqu'à 600°C : Zr, V, Al, Cr, Mn, Fe, Ca, Si, Co, Ni, Zn, Ti, Ni, Nb, W, Sb, Pb, Sn, Cu, Ru, Ir. L'oxyde de ruthénium sera préféré pour en outre sa résistivité adéquate.
Le matériau de jonction présente donc également des propriétés adaptées au procédé de son dépôt sur les extrémités 21 des espaceurs. Ainsi, le matériau doit présenter à température ambiante une viscosité inférieure à 50 Pa.s. On pourra utiliser comme solvant qui permet de contrôler la viscosité, de l'huile de pin, telle que du terpineol. La proportion de solvant utilisée influera sur la viscosité.
On choisira également un matériau qui présente un pouvoir collant dès son application sur les espaceurs avant tout traitement lié au procédé de collage tel qu'une reticuiation sous ultra-violets ou recuit. Ce pouvoir collant est obtenu grâce à la résine contenue dans le matériau de jonction, telle que de l'éthylcellulose.
Cette résine disparaît après un premier recuit.
Nous allons à présent décrire le procédé de collage d'espaceurs contre un substrat à l'aide du matériau de jonction de l'invention en vue par exemple de la fabrication d'une structure avec substrats écartés par des espaceurs telle qu'un écran FED.
Dans une première étape, le scellement d'un premier substrat avec les espaceurs est fait en milieu ouvert, et dans une seconde étape, le scellement est effectué en milieu fermé, c'est-à-dire que ledit substrat pourvu des espaceurs est scellé hermétiquement avec un autre élément tel qu'un autre substrat (figure 3).
Au cours de la première étape, le matériau de jonction est déposé par tous moyens adaptés sur les extrémités 21 des espaceurs, les extrémités étant maintenues selon un réseau périodique dans un même plan ; le substrat est ensuite rapporté contre les espaceurs et une opération de recuit à environ 550°C sous vide de l'ensemble est effectuée pour assurer la consolidation du collage, l'évacuation des solvants et de la résine, éventuellement polluants, étant effectuée par tous moyens adaptés. L'évacuation des solvants et de la résine est utile à ce stade en milieu ouvert car sinon, si toute la structure pour un écran FED était scellée en une seule étape et donc en milieu fermé, les solvants et la résine volatilisés par le chauffage du matériau de jonction pourraient se concentrer au cours du temps dans le milieu hermétique entre les deux substrats, ce qui pourrait polluer des éléments de l'écran tels que les luminophores ou les éléments émetteurs d'électrons, dégradant les performances de l'écran.
A noter que le dépôt du matériau de jonction sur les espaceurs peut par exemple être réalisé en déposant une couche du matériau sur une plaque de grandeur au moins sensiblement équivalente à la surface de répartition des espaceurs. Tandis que les espaceurs sont maintenus en position par un dispositif avec une multitude de pinces par exemple, on vient appliquer temporairement la plaque revêtue du matériau avec une légère pression si nécessaire contre les extrémités des espaceurs pour obtenir un dépôt. En variante, les espaceurs maintenus en position sont amenés au niveau de leur extrémité dans un bain de colle pour effectuer le dépôt. Le matériau de l'invention par son pouvoir collant avant même un premier recuit permet d'assurer lors de l'association du substrat aux espaceurs pourvus du matériau un maintien en place des espaceurs sans risque de les déplacer involontairement. En effet, un écart de positionnement pourrait provoquer dans l'utilisation du substrat avec espaceurs des problèmes de fonctionnement intempestif tel que l'activation non désiré de certains luminophores dans un écran émissif.
De plus, par sa viscosité adaptée, la colle est répartie de manière homogène sur les extrémités des espaceurs ce qui permet d'obtenir une conduction électrique équilibrée et homogène à l'extrémité des espaceurs par laquelle les charges électriques sont destinées à être évacuées quant à l'application dans un écran émissif. En effet, en cas d'irrégularité de conduction électrique, les lignes de champs générées par l'accumulation de charges en un endroit engendreraient la déviation des électrons émis par la cathode qui viendraient ainsi allumer des luminophores qu'on ne souhaite pas activer.
Dans la seconde étape, on rapporte un autre substrat 40 contre l'autre extrémité libre 22 des espaceurs qu'on a éventuellement recouverte préalablement d'un matériau de liaison 50, tel que le matériau de jonction de l'invention par exemple, un moyen de scellement (fritte de verre ou matériau de l'invention) étant par ailleurs agencé à la manière d'un cadre sur l'ensemble de la périphérie de l'un des substrats. A l'aide d'un ou de plusieurs recuits de l'ensemble selon sa destination et d'une pression exercée sur le second substrat, on procède au scellement de l'ensemble.
Avantageusement, dans le cas d'un écran FED et pour les première et/ou seconde étapes, on effectuera un recuit juste après le dépôt du matériau de jonction contre les extrémités des espaceurs, et avant l'association du ou des substrats auxdits espaceurs, de façon à éliminer les solvants et la résine. En dernier lieu, on réalise le scellement de l'écran par au moins un recuit à une température inférieure à 500°C par exemple, et simultanément le vide est fait à l'intérieur de l'écran. De cette manière, le matériau de jonction se ramollit et sous l'effet de la pression atmosphérique s'exerçant contre les faces extérieures de l'écran, le matériau de jonction au niveau des extrémités 21 et/ou 22 des espaceurs s'écrase contre le et/ou les substrats, assurant ainsi une meilleure liaison conductrice. Pour une évacuation des charges optimales, les inventeurs ont mis en évidence qu'il est nécessaire que la résistance de contact du matériau de jonction localisé entre un espaceur et un substrat soit négligeable par rapport à la résistance de l'espaceur. On entend par négligeable, inférieur d'au moins un facteur dix. Afin de s'assurer de cette caractéristique, les inventeurs ont montré qu'il suffisait de mesurer la résistance de l'ensemble d'une structure composée par les espaceurs, le matériau de jonction et les substrats revêtus d'une couche conductrice pour constituer des électrodes et de la comparer à la résistance totale des espaceurs attendue ou calculée connaissant leur nombre, leur géométrie et la résistivité du ou des matériaux qui les constituent. La résistance de la structure est déduite en appliquant une tension variable entre les deux substrats de la structure et en mesurant le courant. Lorsque la résistance mesurée de la structure est sensiblement équivalente à la résistance attendue des espaceurs, la résistance de contact est effectivement considérée comme négligeable.
Un avantage supplémentaire est donné par l'utilisation du matériau de jonction comme moyen de solidarisation des espaceurs avec le substrat, en autorisant l'emploi d'espaceurs de dimension sensiblement inférieure à la taille exigée et correspondante à l'écartement par exemple de deux substrats. En effet, s'il arrive que quelques espaceurs aient en sortie de fabrication une hauteur inférieure à la taille voulue, ils pourront tout de même être utilisés comme pièces d'écartement car le matériau rattrapera l'écart de hauteur lors de l'association des espaceurs aux deux substrats.
Il est à noter que l'utilisation d'espaceurs collés avec le matériau de jonction de l'invention peut être envisagée dans toute application nécessitant de maintenir constant un écartement entre deux substrats. Et à titre non limitatif, les applications peuvent être des écrans à émission de champs, des écrans plasma, des lampes planes, des doubles vitrages sous vide ou encore des vitrages thermochromes.

Claims

REVENDICATIONS
1. Matériau de jonction (30) entre au moins un espaceur (20) à base de céramique ou de verre et un substrat verrier (10), caractérisé en ce qu'il comprend un émail mélangé à au moins un oxyde de métal se présentant sous forme de particules.
2. Matériau selon la revendication 1 , caractérisé en ce qu'il présente une résistivité comprise entre 105 et 1010 Ω.cm.
3. Matériau selon la revendication 1 ou 2, caractérisé en ce que les particules d'oxyde de métal sont stables dans le temps et en température jusqu'à 600°C au plus.
4. Matériau selon l'une des revendications précédentes, caractérisé en ce que les particules d'oxyde de métal consistent en un ou plusieurs des éléments suivants : Zr, V, Al, Cr, Mn, Fe, Ca, Si, Co, Ni, Zn, Ti, Ni, Nb, W, Sb, Pb, Sn, Cu, Ru, Ir.
5. Matériau selon l'une des revendications précédentes, caractérisé en ce que l'oxyde de métal est de l'oxyde de ruthénium.
6. Matériau selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il présente une viscosité au plus égale à 50 Pa.s.
7. Matériau selon l'une quelconque des revendications précédentes, caractérisé en ce qu'il comporte au moins un solvant et de la résine.
8. Structure comportant deux substrats (10, 40) verriers maintenus écartés à l'aide d'espaceurs (20), les espaceurs étant solidarisés par l'une de leurs extrémités (21 ) avec au moins un substrat (10) grâce au matériau de jonction (30) selon l'une quelconque des revendications précédentes.
9. Structure selon la revendication 8, caractérisée en ce que l'extrémité (22) opposée des espaceurs reposant contre l'autre substrat (40) est revêtue d'au moins un matériau de liaison (50).
10. Structure selon la revendication 9, caractérisée en ce que le matériau de liaison (50) comporte le matériau de jonction (30).
11. Structure selon l'une des revendications 8 à 10, caractérisée en ce que le matériau de jonction (30) constitue un moyen adapté à combler une différence de hauteur entre une extrémité d'espaceur et un substrat.
12. Structure selon _ne des revendications 8 à 11 , caractérisée en ce que les espaceurs sont conducteurs ou non conducteurs d'électricité.
13. Structure selon l'une des revendications 8 à 12, caractérisée en ce que la résistance de contact du matériau de jonction localisé entre un espaceur et un substrat est négligeable par rapport à la résistance de l'espaceur.
14. Procédé de solidarisation entre des espaceurs (20) et un substrat verrier (10) au moyen du matériau de jonction selon l'une des revendications 1 à 7, caractérisé en ce que les espaceurs (20) sont maintenus en position fixe et sont recouverts sur l'une de leurs extrémités (21) du matériau de jonction (30), et le substrat verrier (10) est rapporté contre lesdites extrémités (21) des espaceurs recouverts du matériau de jonction, l'ensemble de la structure, substrat et espaceurs, subissant ensuite un recuit.
15. Procédé selon la revendication 14, caractérisé en ce que l'extrémité opposée (22) des espaceurs (20) assemblés au substrat est recouverte d'un, matériau de liaison (50) et un autre substrat (40) est rapporté contre lesdites extrémités (22) des espaceurs, l'ensemble des deux substrats et des espaceurs subissant ensuite un recuit.
16. Procédé selon la revendication 14 ou 15, caractérisé en ce que les espaceurs (20) revêtus du matériau de jonction (30) sur l'une et/ou l'autre de leurs extrémités (21 , 22) sont recuits préalablement à leur association avec le substrat.
17. Utilisation du matériau de jonction selon l'une des revendications 1 à 7 à la fabrication d'écrans émissifs, du type écrans plasma ou écrans FED, de lampes planes, de vitrages isolants sous vide, de vitrages thermochromes.
EP03786023A 2002-12-04 2003-11-19 Materiau de jonction entre des espaceurs et un substrat verrier Withdrawn EP1567461A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FR0215256A FR2848333B1 (fr) 2002-12-04 2002-12-04 Materiau de jonction entre des espaceurs et un substrat verrier
FR0215256 2002-12-04
PCT/FR2003/003424 WO2004060826A1 (fr) 2002-12-04 2003-11-19 Materiau de jonction entre des espaceurs et un substrat verrier

Publications (1)

Publication Number Publication Date
EP1567461A1 true EP1567461A1 (fr) 2005-08-31

Family

ID=32319960

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03786023A Withdrawn EP1567461A1 (fr) 2002-12-04 2003-11-19 Materiau de jonction entre des espaceurs et un substrat verrier

Country Status (8)

Country Link
US (1) US20050271837A1 (fr)
EP (1) EP1567461A1 (fr)
JP (1) JP2006508889A (fr)
KR (1) KR20050084063A (fr)
CN (1) CN100354223C (fr)
AU (1) AU2003295029A1 (fr)
FR (1) FR2848333B1 (fr)
WO (1) WO2004060826A1 (fr)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2895427B1 (fr) * 2005-12-23 2009-06-12 Saint Gobain Paroi en verre
US8133270B2 (en) 2007-01-08 2012-03-13 California Institute Of Technology In-situ formation of a valve
DK1978199T3 (en) * 2007-04-05 2016-09-05 Grenzebach Maschb Gmbh The vacuum insulating glass construction element as well as method and device for its production,
WO2013132868A1 (fr) * 2012-03-07 2013-09-12 パナソニック株式会社 Bi-verre
CN103848557A (zh) * 2012-11-30 2014-06-11 北京新立基真空玻璃技术有限公司 真空玻璃的支撑物以及使用该支撑物的真空玻璃
KR101447693B1 (ko) * 2013-02-22 2014-10-06 고려대학교 산학협력단 박막물질을 이용한 기판의 접합방법 및 이에 의해 제조된 접합 구조체
JP6450916B2 (ja) * 2014-01-15 2019-01-16 美ツ和商事株式会社 スクリーン印刷版の製造方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4818730A (en) * 1984-09-19 1989-04-04 Olin Corporation Sealing glass composite
HU202011B (en) * 1988-09-07 1991-01-28 Tungsram Reszvenytarsasag Soldering enamel for end-sealing of the ceramic discharge-bulb of discharge lamps
GB2276270A (en) 1993-03-18 1994-09-21 Ibm Spacers for flat panel displays
FR2730724B1 (fr) * 1995-02-21 1997-04-04 Saint Gobain Vitrage Vitrage pour vehicule automobile
US5721802A (en) * 1996-06-13 1998-02-24 Corning Incorporated Optical device and fusion seal
FR2752012B3 (fr) * 1996-07-31 1998-08-21 Saint Gobain Vitrage Procede pour realiser le vide entre deux feuilles de verre et vitrage isolant
US6212852B1 (en) * 1999-03-15 2001-04-10 Industrial Technology Research Institute Evacuated glazing containing a thermally insulating vacuum
US6336984B1 (en) * 1999-09-24 2002-01-08 Guardian Industries Corporation Vacuum IG window unit with peripheral seal at least partially diffused at temper
US6042445A (en) 1999-06-21 2000-03-28 Motorola, Inc. Method for affixing spacers in a field emission display
US6701749B2 (en) * 2000-09-27 2004-03-09 Guardian Industries Corp. Vacuum IG window unit with edge seal at least partially diffused at temper and completed via microwave curing, and corresponding method of making the same
DE20117475U1 (de) * 2001-10-25 2002-04-18 Poesl Rudolf Anordnung zum randseitigen Verbinden von Scheiben

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004060826A1 *

Also Published As

Publication number Publication date
WO2004060826A1 (fr) 2004-07-22
US20050271837A1 (en) 2005-12-08
KR20050084063A (ko) 2005-08-26
AU2003295029A1 (en) 2004-07-29
CN1720204A (zh) 2006-01-11
FR2848333B1 (fr) 2005-04-01
JP2006508889A (ja) 2006-03-16
FR2848333A1 (fr) 2004-06-11
CN100354223C (zh) 2007-12-12

Similar Documents

Publication Publication Date Title
CN1913076B (zh) 电子发射器件、使用它的电子源和显示设备及其制造方法
FR2710781A1 (fr) Dispositif formant cathode d'émission de champ.
TWI629251B (zh) 以焊接附接使用磷光體構件的高光學功率光轉換裝置
EP0234989A1 (fr) Procédé de fabrication d'un dispositif de visualisation par cathodoluminescence excitée par émission de champ
FR2634059A1 (fr) Microcomposant electronique autoscelle sous vide, notamment diode, ou triode, et procede de fabrication correspondant
FR2690273A1 (fr) Dispositif de cathode à décharge et procédé pour sa fabrication.
EP1567461A1 (fr) Materiau de jonction entre des espaceurs et un substrat verrier
EP0738420B1 (fr) PROCEDE et installation d'ASSEMBLAGE D'UN ECRAN PLAT DE VISUALISATION
EP1543535B1 (fr) Procédé de réalisation des microcommutateurs a actuation electrostatique a faible temps de reponse et a commutation de puissance
FR2763173A1 (fr) Element a emission de champ
FR2764435A1 (fr) Element a emission de champ
FR2909484A1 (fr) Systeme et procede pour limiter les effets d'arcs dans des matrices d'emetteurs de champs
EP0412868A1 (fr) Cathode de tube à rayons X et tube ainsi obtenu
FR2742578A1 (fr) Cathode a emission de champ et son procede de fabrication
EP0802559B1 (fr) Ecran plat de visualisation à source d'hydrogène
FR2748347A1 (fr) Anode d'ecran plat de visualisation a anneau de protection
EP2721659A1 (fr) Delo encapsulée en colle pleine plaque avec un capot troué
FR2765391A1 (fr) Dispositif d'affichage a cathodes a emission de champ
FR2750533A1 (fr) Cathode froide a emission de champ et tube a rayons cathodiques comportant celle-ci
EP1301937B1 (fr) Dalle en verre munie d'electrodes en un materiau conducteur
EP0884753A1 (fr) Procédé de fabrication d'espaceurs pour écran plat de visualisation
EP0513005A1 (fr) Dispositif d'affichage cathodoluminescent utilisant des electrons guides et son procede de commande
FR2460035A1 (fr) Canon electronique pour tubes a rayons cathodiques et son procede de fabrication
FR2759202A1 (fr) Dispositif emetteur d'electrons et dispositif d'affichage pourvu d'un tel dispositif
FR2474239A1 (fr) Lentilles electroniques pour canons a electrons, notamment pour tubes images de television

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050527

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RIN1 Information on inventor provided before grant (corrected)

Inventor name: BENARDAIS, ALBANE

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20100601