EP1567262B1 - Hydroprocessing von schweren kohlenwasserstoffen mittels einer mischung von katalysatoren - Google Patents

Hydroprocessing von schweren kohlenwasserstoffen mittels einer mischung von katalysatoren Download PDF

Info

Publication number
EP1567262B1
EP1567262B1 EP03782317.6A EP03782317A EP1567262B1 EP 1567262 B1 EP1567262 B1 EP 1567262B1 EP 03782317 A EP03782317 A EP 03782317A EP 1567262 B1 EP1567262 B1 EP 1567262B1
Authority
EP
European Patent Office
Prior art keywords
catalyst
pore volume
pores
diameter
metal component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03782317.6A
Other languages
English (en)
French (fr)
Other versions
EP1567262A1 (de
Inventor
Frans Lodewijk Plantenga
Katsuhisa Fujita
Satoshi Abe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Albemarle Netherlands BV
Original Assignee
Albemarle Netherlands BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Albemarle Netherlands BV filed Critical Albemarle Netherlands BV
Priority to EP03782317.6A priority Critical patent/EP1567262B1/de
Publication of EP1567262A1 publication Critical patent/EP1567262A1/de
Application granted granted Critical
Publication of EP1567262B1 publication Critical patent/EP1567262B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G49/00Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00
    • C10G49/02Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used
    • C10G49/04Treatment of hydrocarbon oils, in the presence of hydrogen or hydrogen-generating compounds, not provided for in a single one of groups C10G45/02, C10G45/32, C10G45/44, C10G45/58 or C10G47/00 characterised by the catalyst used containing nickel, cobalt, chromium, molybdenum, or tungsten metals, or compounds thereof

Definitions

  • the present invention relates to a process for hydroprocessing a heavy hydrocarbon oil, in particular a process in which a mixture of two catalysts is used to obtain advantageous effects in the hydroprocessing of heavy hydrocarbon oils.
  • the present invention also relates to a mixture of catalysts suitable for use in such a process.
  • the present invention relates to a process suitable for the hydroprocessing of heavy hydrocarbon oils containing a large amount of impurities such as sulfur, metals, and asphaltene to effect hydrodesulfurisation (HDS), hydrodemetallisation (HDM), asphaltene reduction (HDAsp) and/or conversion into lighter products, while limiting the amount of sediment produced.
  • the feed may also contain other contaminants such as Conradson carbon residue (CCR) and nitrogen, and carbon residue reduction (HDCCR) and hydrodenitrification (HDN) may also be desired processes.
  • CCR Conradson carbon residue
  • HDCCR carbon residue reduction
  • HDN hydrodenitrification
  • Hydrocarbon oils containing 50 wt.% or more of components with a boiling point of 538°C or higher are called heavy hydrocarbon oils. These include atmospheric residue (AR) and vacuum residue (VR), which are produced in petroleum refining. It is desired to remove impurities such as sulfur from these heavy hydrocarbon oils by hydroprocessing, and to convert them into lighter oils, which have a higher economic value.
  • AR atmospheric residue
  • VR vacuum residue
  • hydroprocessing of heavy hydrocarbon oils is done in ebullating bed operation or in fixed bed operation.
  • Sediment can be determined by the Shell hot filtration solid test (SHFST). (see Van Kerkvoort et al., J. Inst. Pet., 37, pp. 596-604 (1951 )). Its ordinary content is said to be about 0.19 to 1 wt.% in product with a boiling point of 340°C or higher collected from the bottom of a flash drum.
  • SHFST Shell hot filtration solid test
  • Sediment formed during hydroprocessing operations may settle and deposit in such apparatuses as heat exchangers and reactors, and because it threatens to close off the passage, it can seriously hamper the operation of these apparatuses.
  • sediment formation is an important factor, and there is therefore need for a process for effecting efficient contaminant removal in combination with low sediment formation and high conversion.
  • US 5,100,855 describes a catalyst mixture for effecting hydrodemetallisation, hydrodesulphurisation, hydrodenitrogenation and hydroconversion of an asphaltene-containing feedstock, wherein one catalyst is a relatively small-pore catalyst and the other possesses a relatively large amount of macropore volume.
  • the catalyst mixture is preferably applied in an ebullating bed.
  • the first catalyst has less than 0.10 ml/g of pore volume in pores with a diameter above 200 A, less than 0.02 ml/g in pores with a diameter above 800 ⁇ , and a maximum average mesopore diameter of 130 ⁇ .
  • the second catalyst has more than 0.07 ml/g of pore volume in pores with a diameter of greater than 800 ⁇ .
  • US 6,086,749 describes a process and catalyst system for use in a moving bed, wherein a mixture of two types of catalysts is used, each designed for a different function such as hydrodemetallisation and hydrodenitrogenation, respectively.
  • At least one of the catalysts preferably has at least 75% of its pore volume in pores with a diameter of 100-300 ⁇ , and less than 20% of its pore volume in pores with a diameter below 100 ⁇ .
  • the object of the present invention is to provide an effective process for the hydroprocessing of a heavy hydrocarbon oil containing a large amount of impurities such as sulfur, Conradson carbon residue, metals, nitrogen, and asphaltene, especially a heavy oil containing 80% or more vacuum residue fractions, for adequately removing the impurities.
  • the process should show low sediment formation, high asphaltene removal, and high conversion. Further, it should possess high flexibility.
  • the first catalyst is specifically designed to decrease the impurities in the heavy hydrocarbon oil. In particular, it achieves demetallisation and efficient asphaltene removal, which is effective in preventing asphaltene precipitation.
  • the second catalyst is tailored to effect advanced desulfurisation and hydrogenation reactions while inhibiting sediment formation due to asphaltene precipitation, to allow stable operation.
  • the process according to the invention is a process for hydroprocessing a heavy hydrocarbon oil, comprising contacting a heavy hydrocarbon oil in the presence of hydrogen with a mixture of hydroprocessing catalyst I and hydroprocessing catalyst II, wherein
  • the present invention also pertains to a mixture of catalysts suitable for use in such a process, wherein the catalyst mixture comprises catalysts I and II defined above.
  • the catalysts used in the process according to the invention comprise catalytic materials on a porous carrier.
  • the catalytic materials present on the catalysts used in the process according to the invention comprise a Group VIB metal and optionally a Group VIII metal of the Periodic Table of Elements applied by Chemical Abstract Services (CAS system). It is preferred for a Group VIII metal to be present on the catalysts used in the process according to the invention.
  • the Group VIII metal used in this invention is at least one selected from nickel, cobalt, and iron. In view of performance and economy, cobalt and nickel are preferred. Nickel is especially preferred.
  • As the Group VIB metals which can be used molybdenum, tungsten, and chromium may be mentioned, but in view of performance and economy, molybdenum is preferred.
  • the combination of molybdenum and nickel is particularly preferred for the catalytic materials of the catalyst according to the invention.
  • the amounts of the respective catalytic materials used in the catalysts used in the process according to the invention are as follows.
  • the catalysts generally comprise 4-30 wt. % of Group VIB metal, calculated as trioxide, preferably 7-20 wt. %, more preferably 8-16 wt. %. If less than 4 wt. % is used, the activity of the catalyst is generally less than optimal. On the other hand, if more than 16 wt. %, in particular more than 20 wt. % is used, the catalytic performance is generally not improved further. Optimum activity is obtained when the Group VI metal content is selected to be within the cited preferred ranges.
  • the catalysts comprise a Group VIII metal component. If applied, this component is preferably present in an amount of 0.5-6 wt. %, more preferably 1-5 wt. %, of Group VIII metal, calculated as oxide. If the amount is less than 0.5 wt. %, the activity of the catalysts is less than optimal. If more than 6 wt. % is present, the catalyst performance will not be improved further.
  • the total pore volume of catalyst I and catalyst II is at least 0.55 ml/g, preferably at least 0.6 ml/g. It is preferred for it to be at most 1.0 ml/g, more preferably at most 0.9 ml/g.
  • the determination of the total pore volume and the pore size distribution is effected via mercury penetration at a contact angle of 140° with a surface tension of 480 dynes/cm, using, for example, a mercury porosimeter Autopore II (trade name) produced by Micrometrics.
  • Catalyst I has a specific surface area of 100-180 m 2 /g, preferably 150-170 m 2 /g. If the surface area is less than 100 m 2 /g, the catalytic activity will be too low. In the present specification the surface area is determined in accordance with the BET method based on N 2 adsorption.
  • Catalyst I has at least 50% of the total pore volume in pores with a diameter of at least 20 nm (200 ⁇ ), preferably at least 60%.
  • the percentage of pore volume in this range is preferably at most 80%. If the percentage of pore volume in this range is below 50%, the catalytic performance, especially the asphaltene cracking activity, will decrease. As a result thereof, sediment formation will increase.
  • the carrier of catalyst I preferably shows at least 43% of pore volume in this range, more preferably at least 47%.
  • the percentage of pore volume in this range for the carrier preferably is at most 75%, more preferably at most 70%.
  • Catalyst I has 10-30% of the total pore volume in pores with a diameter of at least 200 nm (2000 ⁇ ), preferably 15-25%. If the percentage of pores in this range is too low, the asphaltene removal capacity in the bottom of the reactor will decrease, therewith increasing sediment formation. If the percentage of pores in this range is too high, the mechanical strength of the catalyst will decrease, possibly to a value which may be unacceptable for commercial operation.
  • Catalyst I preferably has 0-5% of the total pore volume in pores with a diameter above 1000 nm (10000 ⁇ ), more preferably 0-1%.
  • Catalyst I when the feedstock contains a large amount of vacuum residue, that is, if the percentage of the feed boiling above 538°C is at least 70%, more preferably at least 80%, it is preferred for Catalyst I to have a %PV(10-120 nm) (%PV(100-1200 ⁇ )) of less than 85%, preferably less than 82%, still more preferably less than 80%. If the percentage of pore volume present in this range becomes too high, the percentage of pore volume in pores with a diameter above 200 nm (2000 ⁇ ) will decrease, and the residue cracking rate may be insufficient.
  • Catalyst I it is preferred for Catalyst I to have less than 0.2 ml/g of pore volume in pores with a diameter of 50-150 nm (500 to 1,500 ⁇ ). If more than 0.2 ml/g of pore volume is present in this range, the relative percentage of pore volume present in pores with a diameter below 30 nm (300 ⁇ ) will decrease, and the catalytic performance may decline. Additionally, since pores with a diameter below 30 nm (300 ⁇ ) are liable to closing by very heavy feedstock components, it is feared that the life of the catalyst may be shortened if the amount of pore volume present in this range is relatively too small.
  • Catalyst I it is preferred for Catalyst I to have less than 25% of its pore volume in pores with a diameter of 10 nm (100 ⁇ ) or less, more preferably less than 17%, still more preferably less than 10%. If the percentage of pore volume present in this range is above this value, sediment formation may increase due to increased hydrogenation of the non-asphaltenic feed constituents.
  • Catalyst I is based on a porous inorganic oxide carrier which generally comprises the conventional oxides, e.g., alumina, silica, silica-alumina, alumina with silica-alumina dispersed therein, silica-coated alumina, magnesia, zirconia, boria, and titania, as well as mixtures of these oxides. It is preferred for the carrier to consist for at least 80% of alumina, more preferably at least 90%, still more preferably at least 95%.
  • a carrier consisting essentially of alumina is preferred, the wording "consisting essentially of” being intended to mean that minor amounts of other components may be present, as long as they do not detrimentally affect the catalytic activity of the catalyst.
  • An example of a suitable catalyst I is the catalyst described in WO 01/100541 .
  • Catalyst II has a specific surface area of at least 100 m 2 /g, preferably at least 130 m 2 /g. If the surface area is below 100 m 2 /g, the catalytic activity will be insufficient.
  • Catalyst II will have at least 75% of the total pore volume in pores with a diameter of 10-120 nm (100-1200 ⁇ ), preferably at least 78%. If the percentage of pore volume in this range is insufficient, the hydrocracking and hydrodesulfurisation activity of the catalyst will be insufficient. Catalyst II has 0-2% of the total pore volume in pores with a diameter of at least 400 nm (4000 ⁇ ), and 0-1% of the total pore volume in pores with a diameter of at least 1000 nm (10000 ⁇ ). If these requirements are not met, the stability of the hydrodesulfurisation and hydrocracking activity of Catalyst II cannot be guaranteed.
  • Catalyst II has a %PV(>2000 ⁇ ) which is less than that of catalyst I. Preferably, it is less than 10%, more preferably it is less than 5 %, still more preferably it is less than 3%.
  • Catalyst II it is preferred for Catalyst II to have less than 25% of its pore volume in pores with a diameter of 10 nm (100 ⁇ ) or less, more preferably less than 17%, still more preferably less than 10%. If the percentage of pore volume present in this range is above this value, sediment formation may increase due to increased hydrogenation of the non-asphaltenic feed constituents.
  • Catalyst II is also based on a porous inorganic oxide carrier which generally comprises the conventional oxides, e.g., alumina, silica, silica-alumina, alumina with silica-alumina dispersed therein, silica-coated alumina, magnesia, zirconia, boria, and titania, as well as mixtures of these oxides. It is preferred for the carrier to consist for at least 70 wt.% of alumina, more preferably at least 88 wt.%, with the balance being made up of silica.
  • the first specific embodiment further indicated as Catalyst IIa, has a surface area of at least 100 m 2 /g. It is preferably between 100 and 180 m 2 /g, more preferably between 150 and 170 m 2 /g. It has at least 75% of the total pore volume in pores with a diameter of 10-120 nm (100-1200 ⁇ ), preferably at least 85%, more preferably at least 87%.
  • Catalyst IIa preferably has a %PV(>200 ⁇ of at least 50%, preferably 60-80%, a %PV(>1000 ⁇ ) of at least 5%, preferably 5-30%, more preferably 8-25%.
  • Catalyst IIa preferably is based on an alumina carrier.
  • alumina carrier in this embodiment, a carrier consisting essentially of alumina is preferred, the wording "consisting essentially of” being intended to mean that minor amounts of other components may be present, as long as they do not detrimentally affect the catalytic activity of the catalyst.
  • the carrier can contain at least one material selected, for example, from oxides of silicon, titanium, zirconium, boron, zinc, phosphorus, alkali metals and alkaline earth metals, zeolite, and clay minerals. These material are preferably present in an amount of less than 5 wt.%, based on the weight of the completed catalyst, preferably less than 2.5 wt.%, more preferably less than 1.5 wt.%, still more preferably less than 0.5 wt.%. Suitable catalysts meeting the requirements of catalyst IIa are described in WO 02/053286 .
  • the second specific embodiment further indicated as Catalyst IIb, has a surface area of at least 150 m 2 /g, preferably 185-250 m 2 /g. It has at least 75% of the total pore volume in pores with a diameter of 10-120 nm (100-1200 A), preferably at least 78%. It may be preferred for catalyst IIb to have less than 50% of its pore volume present in pores with a diameter of above 20.0 ⁇ , more preferably less than 40%.
  • Catalyst IIb is preferably based on a carrier comprising at least 3.5 wt.% of silica, calculated on the weight of the final catalyst, more preferably 3.5-30 wt.%, still more preferably 4-12 wt.%, even more preferably 4.5-10 wt.%.
  • the presence of at least 3.5 wt.% of silica has been found to increase the performance of Catalyst IIb.
  • the balance of the carrier of catalyst lib is generally made up of alumina, optionally containing other refractory oxides, such as titania, zirconia, etc. It is preferred that the balance of the carrier of catalyst lib is made up of at least 90% of alumina, more preferably at least 95%.
  • the carrier of the catalyst of the invention is preferred for consist essentially of silica and alumina, the wording "consists essentially of” being intended to mean that minor amounts of other components may be present, as long as they do not detrimentally affect the catalytic activity of the catalyst.
  • Catalyst IIb may also comprise a Group IA metal component.
  • Sodium and potassium may be mentioned as suitable materials. Sodium is preferred for reasons of performance and economy.
  • the amount of Group IA metal is 0.1-2 wt.%, preferably 0.2-1 wt.%, more preferably 0.1-0.5 wt.%, calculated as oxide.
  • catalyst IIb may additionally be preferred for catalyst IIb to comprise a compound of Group VA, more in particular one or more compounds selected from phosphorus, arsenic, antimony, and bismuth. Phosphorus is preferred.
  • the compound in this case preferably is present in an amount of 0.05-3 wt.%, more preferably 0.1-2 wt.%., still more preferably 0.1-1 wt.%, calculated as P 2 O 5 .
  • a particularly preferred embodiment of catalyst IIb comprises the combination of silica and a Group IA metal component, in particular sodium, as described above.
  • catalyst IIb comprises the combination of silica and phosphorus as described above.
  • Still another particularly preferred embodiment of catalyst IIb comprises the combination of silica, Group IA metal component, in particular sodium, and phosphorus as described above.
  • catalyst II of the present invention comprises a mixture of catalysts IIa and IIb. If a mixture of catalyst IIa and catalyst IIb is used, it is preferred for catalyst IIa to have at least 50% of its pore volume in pores with a diameter above 200 ⁇ , more preferably 60-80%, while for catalyst IIb it is preferred to have less than 50% of its pore volume present in pores with a diameter of above 200 ⁇ , more preferably less than 40%.
  • catalyst IIa will show good asphaltene cracking properties and low sediment formation and catalyst lib will show good hydrodesulfurisation activity and good hydrogenation activity, and the combination will lead to very good results.
  • the mixture has to comprise at least 1 wt.% of catalyst IIb, calculated on the total amount of catalysts IIa and IIb, preferably at least 10 wt.%.
  • the mixture preferably comprises up to 50 wt.% of catalyst IIb, preferably up to 30 wt.%.
  • catalyst II comprises a mixture of catalysts IIa and IIb
  • catalyst IIb it is particularly preferred for catalyst IIb to comprise a compound of Group VA, more in particular one or more compounds selected from phosphorus, arsenic, antimony, and bismuth, more in part phosphorus, as described above.
  • the present invention is directed to a mixture of catalyst I and catalyst II and its use in the hydroprocessing of heavy hydrocarbon feeds.
  • mixture is intended to refer to a catalyst system wherein, when the catalyst has been brought into the unit, both the top half of the catalyst volume and the bottom half of the catalyst volume contain at least 1% of both types of catalyst.
  • mixture is not intended to refer to a catalyst system wherein the feed is first contacted with one type of catalyst and then with the other type of catalyst.
  • catalyst volume is intended to refer to the volume of catalyst comprising both catalyst I and catalyst II. Optional following layers or units comprising other catalyst types are not included therein.
  • each part contains at least 1% of both types of catalyst. It is even more preferred for the mixture in the context of the present invention to be such that if the catalyst volume is horizontally divided into ten parts of equal volume, each part contains at least 1% of both types of catalyst.
  • At least 1% of both types of catalyst should be present in the indicated section, preferably at least 5%, more preferably at least 10%.
  • both the right-hand side and the left hand side of the catalyst volume contain at least 1% of both types of catalyst.
  • each part contains at least 1% of both types of catalyst. More preferably, if the catalyst volume is vertically divided into ten parts of equal volume, each part contains at least 1% of both types of catalyst.
  • at least 1% of both types of catalyst should be present in the indicated section, preferably at least 5%, more preferably at least 10%.
  • the first one which is inherent to ebullating bed operation and preferred for fixed bed operation, is a random mixture of the two types of catalyst particles.
  • the word random includes natural segregation taking place in the unit due to differences in density between the catalyst particles.
  • a further method applicable to fixed bed units would be to apply the two types of catalysts in (thin) alternating layers.
  • An additional method would be to sock-load the unit with socks of the two types of catalysts, wherein each sock contains one type of catalyst, but wherein the combination of socks results in a mixture of catalysts as defined above.
  • the mixture of catalysts I and II generally comprises 2-98 wt.% of catalyst I and 2-98 wt.% of catalyst II.
  • the mixture comprises 10-90 wt.% of catalyst I, more preferably 20-80 wt.% of catalyst I, still more preferably 30-70 wt.% of catalyst I.
  • the mixture preferably comprises 10-90 wt.% of catalyst II, more preferably 20-80 wt.% of catalyst II, still more preferably 30-70 wt.% of catalyst II.
  • the catalyst particles can have the shapes and dimensions common to the art.
  • the particles may be spherical, cylindrical, or polylobal and their diameter may range from 0.5 to 10 mm. Particles with a diameter of 0.5-3 mm, preferably 0.7-1.2 mm, for example 0.9-1 mm, and a length of 2-10 mm, for example 2.5-4.5 mm, are preferred.
  • polylobal particles are preferred, because they lead to a reduced pressure drop in hydrodemetallisation operations. Cylindrical particles are preferred for use in ebullating bed operations.
  • the carrier to be used in the catalysts to be used in the process according to the invention can be prepared by processes known in the art.
  • a typical production process for a carrier comprising alumina is coprecipitation of sodium aluminate and aluminium sulfate.
  • the resulting gel is dried, extruded, and calcined, to obtain an alumina-containing carrier.
  • other components such as silica may be added before, during, or after precipitation.
  • a process for preparing an alumina gel will be described below.
  • a tank containing tap water or warm water is charged with an alkali solution of sodium aluminate, aluminium hydroxide or sodium hydroxide, etc., and an acidic aluminium solution of aluminium sulfate or aluminium nitrate, etc. is added for mixing.
  • the hydrogen ion concentration (pH) of the mixed solution changes with the progression of the reaction. It is preferable that when the addition of the acidic aluminium solution is completed, the pH is 7 to 9, and that during mixing, the temperature is 60 to 75°C. The mixture is then kept at that temperature for, in general, 0.5-1.5 hours, preferably for 40-80 minutes.
  • an alkali solution such as sodium aluminate, ammonium hydroxide or sodium hydroxide is fed into a tank containing tap water or hot water, an acid solution of an aluminium source, e.g., aluminium sulfate or aluminium nitrate, is added, and the resulting mixture is mixed.
  • an aluminium source e.g., aluminium sulfate or aluminium nitrate
  • the pH of the mixture changes as the reaction progresses.
  • the pH is 7 to 9.
  • an alkali metal silicate such as a water glass or an organic silica solution is added as silica source.
  • silica source it can be fed into the tank together with the acid aluminium compound solution or after the aluminium hydrogel has been produced.
  • the silica-containing alumina carrier can, for another example, be produced by combining a silica source such as sodium silicate with an alumina source such as sodium aluminate or aluminium sulfate, or by mixing an alumina gel with a silica gel, followed by moulding, drying, and calcining.
  • the carrier can also be produced by causing alumina to precipitate in the presence of silica in order to form an aggregate mixture of silica and alumina. Examples of such processes are adding a sodium aluminate solution to a silica hydrogel and increasing the pH by the addition of, e.g., sodium hydroxide to precipitate alumina, and coprecipitating sodium silicate with aluminium sulfate.
  • a further possibility is to immerse the alumina carrier, before or after calcination, in an impregnation solution comprising a silicon source dissolved therein.
  • the gel is separated from the solution and a commercially used washing treatment, for example a washing treatment using tap water or hot water, is carried out to remove impurities, mainly salts, from the gel.
  • a commercially used washing treatment for example a washing treatment using tap water or hot water, is carried out to remove impurities, mainly salts, from the gel.
  • the gel is shaped into particles in a manner known in the art, e.g., by way of extrusion, beading or pelletising.
  • the shaped particles are dried and calcined.
  • the drying is generally carried out at a temperature from room temperature up to 200°C, generally in the presence of air.
  • the calcining is generally carried out at a temperature of 300 to 950°C, preferably 600 to 900°C, generally in the presence of air, for a period of 30 minutes to six hours. If so desired, the calcination may be carried out in the presence of steam to influence the crystal growth in the oxide.
  • a carrier having properties which will give a catalyst with the surface area, pore volume, and pore size distribution characteristics specified above.
  • the surface area, pore volume, and pore size distribution characteristics can be adjusted in a manner known to the skilled person, for example by the addition during the mixing or shaping stage of an acid, such as nitric acid, acetic acid or formic acid, or other compounds as moulding auxiliary, or by regulating the water content of the gel by adding or removing water.
  • the carriers of the catalysts to be used in the process according to the invention have a specific surface area, pore volume, and pore size distribution of the same order as those of the catalysts themselves.
  • the carrier of catalyst I preferably has a surface area of 100-200m 2 /g, more preferably 130-170 m 2 /g.
  • the total pore volume is preferably 0.5-1.2 ml/g, more preferably 0.7-1.1 ml/g.
  • the carrier of catalyst II preferably has a surface area of 180-300 m 2 /g, more preferably 185-250 m 2 /g, and a pore volume of 0.5-1.0 ml/g, more preferably 0.6-0.9 ml/g.
  • the Group VIB metal components, Group VIII metal components, and, where appropriate, Group IA metal components and compounds of Group V such as phosphorus, can be incorporated into the catalyst carrier in a conventional manner, e.g., by impregnation and/or by incorporation into the support material before it is shaped into particles.
  • the metal components can be incorporated into the catalyst composition in the form of suitable precursors, preferably by impregnating the catalyst with an acidic or basic impregnation solution comprising suitable metal precursors.
  • suitable precursors ammonium heptamolybdate, ammonium dimolybdate, and ammonium tungstenate may be mentioned as suitable precursors.
  • Other compounds, such as oxides, hydroxides, carbonates, nitrates, chlorides, and organic acid salts, may also be used.
  • suitable precursors include oxides, hydroxides, carbonates, nitrates, chlorides, and organic acid salts. Carbonates and nitrates are particularly suitable. Suitable Group IA metal precursors include nitrates and carbonates. For phosphorus, phosphoric acid may be used. The impregnation solution, if applied, may contain other compounds the use of which is known in the art, such as organic acids, e.g., citric acid, ammonia water, hydrogen peroxide water, gluconic acid, tartaric acid, malic acid or EDTA (ethylenediamine tetraacetic acid). It will be clear to the skilled person that there is a wide range of variations on this process.
  • organic acids e.g., citric acid, ammonia water, hydrogen peroxide water, gluconic acid, tartaric acid, malic acid or EDTA (ethylenediamine tetraacetic acid).
  • the impregnating solutions to be used containing one or more of the component precursors that are to be deposited, or a portion thereof.
  • impregnating techniques instead of impregnating techniques, dipping processes, spraying processes, etc. can be used. In the case of multiple impregnation, dipping, etc., drying and/or calcining may be carried out in between.
  • the metals After the metals have been incorporated into the catalyst composition, it is optionally dried, e.g., in air flow for about 0.5 to 16 hours at a temperature between room temperature and 200°C, and subsequently calcined, generally in air, for about 1 to 6 hours, preferably 1-3 hours at 200-800°C, preferably 450-600°C.
  • the drying is done to physically remove the deposited water.
  • the calcining is done to bring at least part, preferably all, of the metal component precursors to the oxide form.
  • the catalyst i.e., the Group VIB and Group VIII metal components present therein
  • This can be done in an otherwise conventional manner, e.g., by contacting the catalyst in the reactor at increasing temperature with hydrogen and a sulfur-containing feedstock, or with a mixture of hydrogen and hydrogen sulfide. Ex situ presulfiding is also possible.
  • the process of the present invention is particularly suitable for the hydroprocessing of heavy hydrocarbon feeds. It is particularly suitable for hydroprocessing heavy feedstocks of which at least 50 wt.%, preferably at least 80 wt.%, boils above 538°C (1000°F) and which comprise at least 2 wt.% of sulfur and at least 5 wt.% of Conradson carbon.
  • the sulfur content of the feedstock may be above 3 wt.%.
  • Its Conradson carbon content may be above 8 wt.%, preferably above 10 wt.%.
  • the feedstock may contain contaminant metals, such as nickel and vanadium.
  • these metals are present in an amount of at least 20 wtppm, calculated on the total of Ni and V, more particularly in an amount of at least 30 wtppm.
  • the asphaltene content of the feedstock is preferably between 3 and 15 wt.%, more preferably between 5 and 10 wt.%.
  • Suitable feedstocks include atmospheric residue, vacuum residue, residues blended with gas oils, particularly vacuum gas oils, crudes, shale oils, tar sand oils, solvent deasphalted oil, coal liquefied oil, etc. Typically they are atmospheric residue (AR), vacuum residue (VR), and mixtures thereof.
  • the process according to the invention can be carried out in a fixed bed, in a moving bed, or in an ebullated bed. Carrying out the process in an ebullating bed is particularly preferred.
  • the process according to the invention can be carried out in a single reactor or in multiple reactors. If multiple reactors are used, the catalyst mixture used in the two reactors may be the same or different. If two reactors are used, one may or may not one perform or more of intermediate phase separation, stripping, H 2 quenching, etc. between the two stages.
  • the process conditions for the process according to the invention may be as follows.
  • the temperature generally is 350-450°C, preferably 400-440°C.
  • the pressure generally is 5-25 MPA, preferably 14-19 MPA.
  • the liquid hourly space velocity generally is 0.1-3 h-1, preferably 0.3-2 h-1.
  • the hydrogen to feed ratio generally is 300-1,500 Nl/l, preferably 600-1000 Nl/l.
  • the process is carried out in the liquid phase.
  • a sodium aluminate solution and an aluminium sulfate solution were simultaneously added dropwise to a tank containing tap water, mixed at pH 8.5 at 77°C, and held for 70 minutes.
  • the thus produced alumina hydrate gel was separated from the solution and washed with warm water, to remove the impurities in the gel. Then, the gel was kneaded for about 20 minutes and extruded as cylindrical particles having a diameter of 0.9 to 1 mm and a length of 3.5 mm.
  • the extruded alumina particles were calcined at 800°C for 2 hours, to obtain an alumina carrier.
  • alumina carrier obtained as described above were immersed in 100 ml of a citric acid solution containing 17.5 g of ammonium molybdate tetrahydrate and 9.8 g of nickel nitrate hexahydrate at 25°C for 45 minutes, to obtain a carrier loaded with metallic components.
  • Catalyst A meets the requirements of Catalyst I of the present invention.
  • Catalyst A The preparation of Catalyst A was repeated, except for the following modifications: In the carrier preparation, the temperature during the alumina gel formation was 65°C. The carrier calcination temperature was 900°C. In the catalyst preparation the impregnation solution contained 16.4 g of ammonium molybdate tetrahydrate, and the catalyst calcination temperature was 600°C. The composition and properties of Catalyst B are given in Table 1. Catalyst B meets the requirements of Catalyst II of the present invention.
  • a sodium aluminate solution was supplied to a tank containing tap water, and an aluminium sulfate solution and a sodium silicate solution were added and mixed.
  • the mixture had a pH of 8.5.
  • the mixture was kept at 64°C for 1.5 hours.
  • the sodium silicate concentration was set at 1.6 wt.% of the alumina gel solution.
  • the silica-alumina gel was isolated by filtration and washed with hot water to remove impurities from the gel. It was then extruded into cylindrical grains with a diameter of 0.9-1 mm and a length of 3.5 mm. The resulting particles were dried in air at a temperature of 120°C for 16 hours and subsequently calcined in the presence of air for two hours at 800°C to obtain a silica-alumina carrier. The silica-content of the obtained carrier was 7 wt.%.
  • Catalyst composition and properties Catalyst Catalyst A Catalyst B Catalyst C carrier alumina alumina Al2O3 + 6% SiO2 Group VIB wt.% ox 13.1 11.9 11.5 Group VIII wt.% ox 2.0 2.0 2.1 Group IA wt.% ox 0 0 0.2 surface area m 2 /g 161 147 214 total pore volume ml/g 0.88 0.79 0.75 %PV(>200 ⁇ ) 63 74 25 %PV(>2000 ⁇ ) 24 1 1 %PV(>10000 ⁇ ) 0.1 0 0 %PV(100-1200 ⁇ ) 74 89 80 %PV(> 4000 ⁇ ) 16 1 0.3 %PV( ⁇ 100 ⁇ ) 0.4 0.4 14
  • Catalysts A through C were tested in various combinations in the hydroprocessing of a heavy hydrocarbon feedstock.
  • the feedstock used in these examples was a Middle East petroleum consisting of 90 wt.% of vacuum residue (VR) and 10 wt.% of atmospheric residue (AR).
  • the composition and properties of the feed are given in Table 2.
  • a mixture of at least two of Catalysts A through C were packed into a fixed bed reactor in the combinations given in Table 3 below.
  • the catalyst bed contained equal volume amounts of catalyst.
  • the feedstock was introduced into the unit in the liquid phase at a liquid hourly space velocity of 1.5 h-1, a pressure of 16.0 MPa, an average temperature of 427°C, with the ratio of supplied hydrogen to feedstock (H 2 /oil) being kept at 800 Nl/l.
  • the catalyst combinations according to the invention show high activities in HDS, HDM, and asphaltene removal in combination with a high residue cracking rate and low sediment formation.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Catalysts (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Claims (10)

  1. Prozess zur Hydroverarbeitung eines Öls mit schweren Kohlenwasserstoffen, umfassend das Inkontaktbringen eines Öls mit schweren Kohlenwasserstoffen in Gegenwart von Wasserstoff mit einem Gemisch aus unterschiedlichem Hydroverarbeitungskatalysator I und Hydroverarbeitungskatalysator II, wobei der Katalysator I eine Metallkomponente der Gruppe VIB und gegebenenfalls eine Metallkomponente der Gruppe VIII auf einem porösen anorganischen Träger umfasst, wobei der Katalysator eine spezifische Oberfläche von 100 bis 180 m2/g, ein Gesamtporenvolumen von mindestens 0,55 ml/g, mindestens 50 % des Gesamtporenvolumens in Poren mit einem Durchmesser von mindestens 20 nm (200 Å) und 10 bis 30 % des Gesamtporenvolumens in Poren mit einem Durchmesser von mindestens 200 nm (2.000 Å) aufweist, und wobei der Katalysator II eine Metallkomponente der Gruppe VIB und gegebenenfalls eine Metallkomponente der Gruppe VIII auf einem porösen anorganischen Träger umfasst, wobei der Katalysator eine spezifische Oberfläche von mindestens 100 m2/g, ein Gesamtporenvolumen von mindestens 0,55 ml/g, mindestens 75 % des Gesamtporenvolumens in Poren mit einem Durchmesser von 10 bis 120 nm (100 bis 1.200 Å), 0 bis 2 % des Gesamtporenvolumens in Poren mit einem Durchmesser von mindestens 400 nm (4.000 Å) und 0 bis 1 % des Gesamtporenvolumens in Poren mit einem Durchmesser von mindestens 1.000 nm (10.000 Å) aufweist, und wobei der Katalysator II ein Porenvolumen (%) in Poren mit einem Durchmesser von mindestens 200 nm (2.000 Å) aufweist, der geringer als jener des Katalysators I ist.
  2. Prozess nach Anspruch 1, wobei der Katalysator II einen Katalysator IIa, einen Katalysator IIb oder ein Gemisch davon umfasst, wobei der Katalysator IIa 7 bis 20 Gew.-% einer Metallkomponente der Gruppe VIB, berechnet als Trioxid bezogen auf das Gewicht des Katalysators, und 0,5 bis 6 Gew.-% einer Metallkomponente der Gruppe VIII, berechnet als Oxid bezogen auf das Gewicht des Katalysators, auf einem porösen anorganischen Träger umfasst, wobei der Katalysator eine spezifische Oberfläche von 100 bis 180 m2/g und mindestens 85 % des Gesamtporenvolumens in Poren mit einem Durchmesser von 10 bis 120 nm (100 bis 1.200 Å) aufweist, und wobei der Katalysator IIb 7 bis 20 Gew.-% einer Metallkomponente der Gruppe VIB, berechnet als Trioxid in Bezug auf das Gewicht des Katalysators, und 0,5 bis 6 Gew.-% einer Metallkomponente der Gruppe VIII, berechnet als Oxid in Bezug auf das Gewicht des Katalysators, auf einem porösen anorganischen Träger umfasst, vorzugsweise umfassend mindestens 3,5 Gew.-% Siliciumdioxid, berechnet bezogen auf das Gewicht des Endkatalysators, wobei der Katalysator eine spezifische Oberfläche von mindestens 150 m2/g aufweist.
  3. Prozess nach Anspruch 2, wobei der Katalysator IIb zusätzlich eine Metallkomponente der Gruppe IA und/oder eine Metallkomponente der Gruppe VA, insbesondere Phosphor, umfasst.
  4. Prozess nach Anspruch 2 oder 3, wobei ein Gemisch der Katalysatoren IIa und IIb angewendet wird, wobei der Katalysator IIa mindestens 50 % seines Porenvolumens in Poren mit einem Durchmesser über 200 Å aufweist und der Katalysator IIb höchstens 50 % seinen Porenvolumens in Poren mit einem Durchmesser über 200 Å aufweist.
  5. Prozess nach einem der vorhergehenden Ansprüche mit Beschickung von schweren Kohlenwasserstoffen, von denen mindestens 50 Gew.-%, vorzugsweise mindestens 80 Gew.-%, über 538 °C sieden und die mindestens 2 Gew.-% Schwefel und mindestens 5 Gew.-% Conradson-Kohlenstoff umfasst.
  6. Prozess nach einem der vorhergehenden Ansprüche, der in einem wallenden Bett durchgeführt wird.
  7. Gemisch aus unterschiedlichen Hydroverarbeitungskatalysatoren, umfassend einen Katalysator I, der eine Metallkomponente der Gruppe VIB und gegebenenfalls eine Metallkomponente der Gruppe VIII auf einem porösen anorganischen Träger umfasst, wobei der Katalysator eine spezifische Oberfläche von 100 bis 180 m2/g, ein Gesamtporenvolumen von mindestens 0,55 ml/g, mindestens 50 % des Gesamtporenvolumens in Poren mit einem Durchmesser von mindestens 20 nm (200 Å) und 10 bis 30 % des Gesamtporenvolumens in Poren mit einem Durchmesser von mindestens 200 nm (2.000 Å) aufweist, und einen Katalysator II, der eine Metallkomponente der Gruppe VIB und gegebenenfalls eine Metallkomponente der Gruppe VIII auf einem porösen anorganischen Träger umfasst, wobei der Katalysator eine spezifische Oberfläche von mindestens 100 m2/g, ein Gesamtporenvolumen von mindestens 0,55 ml/g, mindestens 75 % des Gesamtporenvolumens in Poren mit einem Durchmesser von 10 bis 120 nm (100 bis 1.200 Å), 0 bis 2 % des Gesamtporenvolumens in Poren mit einem Durchmesser von mindestens 400 nm (4.000 Å) und 0 bis 1 % des Gesamtporenvolumens in Poren mit einem Durchmesser von mindestens 1.000 nm (10.000 Å) aufweist, und wobei der Katalysator II ein Porenvolumen (%) in Poren mit einem Durchmesser von mindestens 200 nm (2.000 Å) aufweist, der geringer als jener des Katalysators I ist.
  8. Katalysatorgemisch nach Anspruch 7, wobei der Katalysator II einen Katalysator IIa, einen Katalysator IIb oder ein Gemisch davon umfasst, wobei der Katalysator IIa 7 bis 20 Gew.-% einer Metallkomponente der Gruppe VIB, berechnet als Trioxid bezogen auf das Gewicht des Katalysators, und 0,5 bis 6 Gew.-% einer Metallkomponente der Gruppe VIII, berechnet als Oxid bezogen auf das Gewicht des Katalysators, auf einem porösen anorganischen Träger umfasst, wobei der Katalysator eine spezifische Oberfläche von 100 bis 180 m2/g und mindestens 85 % des Gesamtporenvolumens in Poren mit einem Durchmesser von 10 bis 120 nm (100 bis 1.200 Å) aufweist, und wobei der Katalysator IIb 7 bis 20 Gew.-% einer Metallkomponente der Gruppe VIB, berechnet als Trioxid in Bezug auf das Gewicht des Katalysators, und 0,5 bis 6 Gew.-% einer Metallkomponente der Gruppe VIII, berechnet als Oxid in Bezug auf das Gewicht des Katalysators, auf einem porösen anorganischen Träger umfasst, vorzugsweise umfassend mindestens 3,5 Gew.-% Siliciumdioxid, berechnet bezogen auf das Gewicht des Endkatalysators, wobei der Katalysator eine spezifische Oberfläche von mindestens 150 m2/g aufweist.
  9. Katalysatorgemisch nach Anspruch 8, wobei der Katalysator IIb zusätzlich eine Metallkomponente der Gruppe IA und/oder eine Metallkomponente der Gruppe VA, insbesondere Phosphor, umfasst.
  10. Katalysatorgemisch nach Anspruch 8 oder 9, wobei ein Gemisch der Katalysatoren IIa und IIb angewendet wird, wobei der Katalysator IIa mindestens 50 % seines Porenvolumens in Poren mit einem Durchmesser über 200 Å aufweist und der Katalysator IIB höchstens 50 % seinen Porenvolumens in Poren mit einem Durchmesser über 200 Å aufweist.
EP03782317.6A 2002-12-06 2003-12-04 Hydroprocessing von schweren kohlenwasserstoffen mittels einer mischung von katalysatoren Expired - Lifetime EP1567262B1 (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP03782317.6A EP1567262B1 (de) 2002-12-06 2003-12-04 Hydroprocessing von schweren kohlenwasserstoffen mittels einer mischung von katalysatoren

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP02080141 2002-12-06
EP02080141 2002-12-06
EP03782317.6A EP1567262B1 (de) 2002-12-06 2003-12-04 Hydroprocessing von schweren kohlenwasserstoffen mittels einer mischung von katalysatoren
PCT/EP2003/013791 WO2004052534A1 (en) 2002-12-06 2003-12-04 Heavy feed hpc process using a mixture of catalysts

Publications (2)

Publication Number Publication Date
EP1567262A1 EP1567262A1 (de) 2005-08-31
EP1567262B1 true EP1567262B1 (de) 2021-02-03

Family

ID=32479753

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03782317.6A Expired - Lifetime EP1567262B1 (de) 2002-12-06 2003-12-04 Hydroprocessing von schweren kohlenwasserstoffen mittels einer mischung von katalysatoren

Country Status (8)

Country Link
EP (1) EP1567262B1 (de)
JP (1) JP4369871B2 (de)
CN (1) CN100444956C (de)
AU (1) AU2003289969A1 (de)
CA (1) CA2508605C (de)
ES (1) ES2859557T3 (de)
PL (1) PL213492B1 (de)
WO (1) WO2004052534A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4822705B2 (ja) * 2004-12-24 2011-11-24 日揮触媒化成株式会社 重質炭化水素油の水素化処理触媒組成物およびその製造方法
CN101942317B (zh) * 2009-07-09 2013-08-28 中国石油化工股份有限公司 一种沸腾床催化剂的级配方法
CN102443414B (zh) * 2010-10-13 2014-05-21 中国石油化工股份有限公司 重质原料油沸腾床加氢处理方法
CN102465010B (zh) * 2010-11-04 2014-05-21 中国石油化工股份有限公司 一种重质、劣质原料加氢处理方法
CN104114273B (zh) 2011-12-22 2018-05-15 先进炼制技术有限公司 含二氧化硅的氧化铝载体、由其制备的催化剂及其使用方法
CN104560138B (zh) * 2013-10-22 2016-10-26 中国石油化工股份有限公司 一种沸腾床重油加氢处理方法
TWI651406B (zh) * 2013-11-25 2019-02-21 蜆殼國際研究所 用於重烴進料之微碳殘留物之催化轉化方法及使用於其中之低表面積催化劑組合物
FR3022157B1 (fr) 2014-06-13 2017-09-01 Ifp Energies Now Catalyseur bimodal a phase active comalaxee, son procede de preparation et son utilisation en hydrotraitement de residus
FR3022236B1 (fr) 2014-06-13 2016-07-08 Ifp Energies Now Alumine mesoporeuse et macroporeuse amorphe a distribution poreuse optimisee et son procede de preparation
FR3022159B1 (fr) 2014-06-13 2018-04-27 IFP Energies Nouvelles Catalyseur mesoporeux et macroporeux d'hydroconversion de residus et methode de preparation
FR3037054B1 (fr) 2015-06-05 2021-08-27 Ifp Energies Now Procede de preparation d'une boehmite presentant des cristallites particulieres
US10604709B2 (en) 2017-02-12 2020-03-31 Magēmā Technology LLC Multi-stage device and process for production of a low sulfur heavy marine fuel oil from distressed heavy fuel oil materials
US11788017B2 (en) 2017-02-12 2023-10-17 Magëmã Technology LLC Multi-stage process and device for reducing environmental contaminants in heavy marine fuel oil
US20190233741A1 (en) 2017-02-12 2019-08-01 Magēmā Technology, LLC Multi-Stage Process and Device for Reducing Environmental Contaminates in Heavy Marine Fuel Oil
US20220410124A1 (en) * 2019-11-29 2022-12-29 Rhodia Operations Alumina with a particular pore profile
CN114761125A (zh) * 2019-11-29 2022-07-15 罗地亚经营管理公司 具有特定孔特性的氧化铝

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2528721B1 (fr) * 1982-06-17 1986-02-28 Pro Catalyse Ste Fse Prod Cata Catalyseur supporte presentant une resistance accrue aux poisons et son utilisation en particulier pour l'hydrotraitement de fractions petrolieres contenant des metaux
US4534852A (en) * 1984-11-30 1985-08-13 Shell Oil Company Single-stage hydrotreating process for converting pitch to conversion process feedstock
US5100855A (en) * 1990-03-30 1992-03-31 Amoco Corporation Mixed catalyst system for hyproconversion system
CN1030328C (zh) * 1991-09-05 1995-11-22 中国石油化工总公司石油化工科学研究院 加氢催化剂的制备方法
US6086749A (en) * 1996-12-23 2000-07-11 Chevron U.S.A. Inc. Catalyst and method for hydroprocessing a hydrocarbon feed stream in a reactor containing two or more catalysts
JP4612229B2 (ja) * 2001-06-08 2011-01-12 日本ケッチェン株式会社 重質炭化水素油の水素化処理用触媒並びに水素化処理方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
None *

Also Published As

Publication number Publication date
JP2006509084A (ja) 2006-03-16
AU2003289969A8 (en) 2004-06-30
PL213492B1 (pl) 2013-03-29
CN1735456A (zh) 2006-02-15
CA2508605A1 (en) 2004-06-24
JP4369871B2 (ja) 2009-11-25
EP1567262A1 (de) 2005-08-31
CA2508605C (en) 2011-11-29
ES2859557T3 (es) 2021-10-04
CN100444956C (zh) 2008-12-24
PL377092A1 (pl) 2006-01-23
AU2003289969A1 (en) 2004-06-30
WO2004052534A1 (en) 2004-06-24

Similar Documents

Publication Publication Date Title
US7922894B2 (en) HPC process using a mixture of catalysts
EP1347832B1 (de) Hydroverfahrenskatalysator und dessen anwendung
EP1567617B1 (de) Hydroprocessing von kohlenwasserstoff mittels einer mischung von katalysatoren
US5616530A (en) Hydroconversion process employing catalyst with specified pore size distribution
CA2360121C (en) Hydroprocessing catalyst and use thereof
EP1567262B1 (de) Hydroprocessing von schweren kohlenwasserstoffen mittels einer mischung von katalysatoren
EP1392800B1 (de) Zweistufiges hydrobehandlungsverfahren für schweröle
EP1392431B1 (de) Weitporiger hydroverfahrenskatalysator und dessen anwendung
EP1392798B1 (de) Zweistufiges kohlenwasserstoffumwandlungsverfahren
US8012343B2 (en) Heavy feed HPC process using a mixture of catalysts

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050523

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NIPPON KETJEN CO., LTD

Owner name: ALBEMARLE NETHERLANDS B.V.

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NIPPON KETJEN CO., LTD

Owner name: ALBEMARLE NETHERLANDS B.V.

17Q First examination report despatched

Effective date: 20110419

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALBEMARLE NETHERLANDS B.V.

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: GRANT OF PATENT IS INTENDED

INTG Intention to grant announced

Effective date: 20200724

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE PATENT HAS BEEN GRANTED

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: AT

Ref legal event code: REF

Ref document number: 1360210

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210215

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 60352615

Country of ref document: DE

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: FI

Ref legal event code: FGE

REG Reference to a national code

Ref country code: NL

Ref legal event code: MP

Effective date: 20210203

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK05

Ref document number: 1360210

Country of ref document: AT

Kind code of ref document: T

Effective date: 20210203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210504

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210503

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210604

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2859557

Country of ref document: ES

Kind code of ref document: T3

Effective date: 20211004

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 60352615

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20211104

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 60352615

Country of ref document: DE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211204

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211204

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20220701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20211231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20221227

Year of fee payment: 20

Ref country code: FI

Payment date: 20221227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20221227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20230102

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT; INVALID AB INITIO

Effective date: 20031204

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20221221

Year of fee payment: 20

P01 Opt-out of the competence of the unified patent court (upc) registered

Effective date: 20230518

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20210203

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20231203

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20240102

REG Reference to a national code

Ref country code: BE

Ref legal event code: MK

Effective date: 20231204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231205

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231203

Ref country code: ES

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20231205