EP1560952A1 - Procede et dispositif de filage par fusion et de refroidissement d'une pluralite de filaments synthetiques - Google Patents

Procede et dispositif de filage par fusion et de refroidissement d'une pluralite de filaments synthetiques

Info

Publication number
EP1560952A1
EP1560952A1 EP03810948A EP03810948A EP1560952A1 EP 1560952 A1 EP1560952 A1 EP 1560952A1 EP 03810948 A EP03810948 A EP 03810948A EP 03810948 A EP03810948 A EP 03810948A EP 1560952 A1 EP1560952 A1 EP 1560952A1
Authority
EP
European Patent Office
Prior art keywords
filaments
cooling
jacket
air flow
blow candle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP03810948A
Other languages
German (de)
English (en)
Other versions
EP1560952B1 (fr
Inventor
Horst Kropat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Saurer GmbH and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Saurer GmbH and Co KG filed Critical Saurer GmbH and Co KG
Publication of EP1560952A1 publication Critical patent/EP1560952A1/fr
Application granted granted Critical
Publication of EP1560952B1 publication Critical patent/EP1560952B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes

Definitions

  • the invention relates to a method for melt spinning and cooling a plurality of synthetic filaments according to the preamble of claim 1 and to an apparatus for carrying out the method according to the preamble of claim 6.
  • a generic method and a generic device are known for example from DE 36 29 731 AI.
  • the fibers are previously extruded from a polymer melt using a spinneret with a large number of nozzle bores as strand-like filaments.
  • the short spinning processes low take-off speeds and low hole throughputs are set, so that cooling of the freshly extruded filament strands is possible within a short distance.
  • spinnerets are used which have a very large number of nozzle bores, so that a relatively dense filament curtain is produced and has to be cooled.
  • cooling devices are used, for example, as is known from US Pat. No. 5,178,814. A very short length of cooling air flow is generated below the spinneret and penetrates the filament curtain radially from the inside to the outside.
  • blow candles which have a form an even blowing section on its jacket of a radially emerging jacket air flow.
  • the filaments are extruded through ring-shaped nozzle bores in the spinneret.
  • the blow candle is arranged below the spinneret.
  • the blow candle has a porous sheath, which consists, for example, of a sintered material, so that the cooling air introduced into the inside of the blow candle by an air supply radially emerges from the sheath of the blow candle and cools the filament strands that are guided past the blow candle as a sheathed air stream.
  • the blow candle has a closable annular gap at the free end, which is opened for pivoting and moving the blow candle, so that the filament strands cannot stick to the blow candle while the blow candle is being moved into an operating position. As soon as the blow candle has reached its operating position below the spinneret, the annular gap is closed. The filaments are cooled exclusively by the jacket air flow.
  • the problem could not be solved by setting a blow profile on the blow candle, as is known for example from DE 37 08 168 AI.
  • the invention has for its object to develop a method and an apparatus of the type mentioned in such a way that a plurality of extruded filaments with relatively fine titers, which are guided in an annular arrangement, can be cooled uniformly.
  • the invention has the advantage that cooling of the filaments begins immediately after the filaments emerge from the spinneret. For this purpose, an additional coolant between the spinneret and the blow candle generates a pre-cooling air flow which is directed towards the filaments for pre-cooling. This results in greater flexibility in cooling the filaments.
  • the intensive pre-cooling of the filaments showed the possibility, particularly in the production of staple fibers, to produce particularly fine titers.
  • the effect could also be improved in that, in the method according to the invention, the pre-cooling air stream and the jacket air stream hit the filaments in the same direction, the flow rate of the pre-cooling air stream being higher than the flow rate of the jacket air stream.
  • the subsequent further cooling of the filaments by the jacket air flow along the blow candle enables in particular a uniform solidification of the filaments even at higher take-off speeds.
  • annular gap nozzle has an annular nozzle opening formed at a distance from the filaments.
  • the device according to the invention has an additional coolant between the spinneret and the blow candle, by means of which an additional pre-cooling air flow for pre-cooling the filaments is generated.
  • the flow rate of the pre-cooling air can be influenced in that the nozzle opening is variable in its gap height.
  • the additional coolant can be firmly connected either directly below the spinneret or directly to the blow candle.
  • Fig. 1 shows schematically a cross-sectional view of a first embodiment of the device according to the invention.
  • Fig. 2 schematically shows a cross-sectional view of another
  • FIG. 1 schematically shows a first exemplary embodiment of the invention
  • the device shown in a cross-sectional view.
  • the device has a spinneret 1, which is arranged within a heated spinning beam 2.
  • a coolant 6 in the form of a blowing is arranged on the underside of the spinning beam 2.
  • the blowing 6 has an annular blowing chamber 8 and a blowing wall 10 covering the blowing chamber 8 towards the outside.
  • the blowing 6 is dimensioned such that there is a distance between the filament sheet 18 extruded through the spinneret 1 and the blowing wall 10.
  • the coolant 6 is connected to a first air supply 7, which penetrates the spinning beam 2 and the spinneret 1.
  • the air supply 7 is connected to the blow chamber 8 via air distribution lines 9.
  • a blow candle 12 is arranged below the coolant 6 and bears against a coolant 6 at its upper end via a centering stop 11. At the opposite end abuts the coolant 6 via a centering stop 11.
  • the blow candle 12 is connected to a holding device 13 at the opposite end.
  • the blow candle 12 has a porous jacket 15, which can be produced, for example, from a nonwoven, foam, sieve fabric or a sintered material.
  • the holding device 13 is connected to a second air supply 14, the interior of the blow candle 12 being coupled to the air supply 14 via the holding device 13.
  • the holding device 13 is preferably designed to be movable in order to guide the blow candle 12 out of or into the spinning line for maintenance or cleaning or replacement.
  • the holding device 13 has, below the blow candle 12, a preparation ring 17 which is contacted by the filament sheet 18 in order to apply a preparation agent to the filaments.
  • a polymer melt is supplied under pressure by the spinning pump 4 during operation of the spinneret 1.
  • strand-like filaments emerge on the underside from the nozzle bores of the spinneret 1, which form a filament family 18.
  • the filament sheet 18 is guided in a ring and drawn off from the spinneret 1 together by a drawing mechanism (not shown here).
  • a pre-cooling air flow 19 is blown radially from the inside out through the filament sheet 18 by the coolant 6 designed as a blowing.
  • the intensity of the pre-cooling air flow 19 can be regulated directly via the air supply 7.
  • the pre-cooling air flow 19 is set in such a way that each of the filaments guided within the filament array is given a uniform cooling effect.
  • the filament curtain is widened, so that the individual filaments in the filament curtain can be flushed uniformly by the following jacket air stream.
  • the flow rate of the pre-cooling air stream is set higher than the flow rate of the jacket air stream.
  • the distance between the blowing wall 10 and the filament sheet 18 is set to be substantially smaller than the distance between the jacket 15 and the filament sheet 18.
  • the method according to the invention is preferably carried out with a device such as that shown in FIG. 2.
  • the device such as that shown in FIG. 2.
  • annular gap nozzle 20 An additional coolant designed as an annular gap nozzle 20 is arranged below the spinneret 1.
  • the annular gap nozzle 20 is firmly connected to the blow candle 12.
  • the blow candle 12 has a head plate 25 at the free end.
  • the annular gap nozzle 20 is collar-shaped at the free end of the blow candle 12 and firmly connected to the head plate 25.
  • the circumferential annular nozzle opening 21 of the annular gap nozzle 20 is formed between a perforated plate 23 and a cover plate 24, which are braced against one another via a sealing ring 22.
  • the gap height of the nozzle opening 21 is determined by the thickness of the sealing ring 22.
  • any gap height of the nozzle opening 21 on the annular gap nozzle 20 can be set by exchanging and changing the sealing ring 22.
  • the nozzle opening 21 is connected to the interior of the blow candle 12 via bores in the perforated plate 23 and the top plate 25.
  • the annular gap nozzle 20 and the blow candle 12 are fed via a common air supply 14.
  • the annular gap nozzle 20 and the blow candle 12 are held by a holding device 13 with a centering stop 11 on the underside of the spinning beam 2.
  • the blow candle 12 is designed to be axially displaceable relative to the holding device 13, the blow candle 12 being held in an operating position by a force sensor 27 acting in the axial direction.
  • a force sensor 27 acting in the axial direction.
  • the blow candle 12 is held at its lower end on a connector 26 which is slidably guided in a centering opening 28 of the holding device 13.
  • the force transmitter 27 is designed as a compression spring which enables the blow candle to be axially displaced for replacement.
  • the further structure of the device according to FIG. 2 is identical to the structure of the device according to FIG. 1, so that reference is made to the previous exemplary embodiment.
  • a cooling air flow is supplied to the blow candle 12 via the air supply 14 and the holding device 13. Part of the cooling air flow reaches the annular gap nozzle 20 directly at the free end via the bores of the top plate 25. A relatively sharp pre-cooling air flow then emerges from the nozzle opening 21, which emerges at a short distance from the filament sheet 18 and penetrates the filament sheet 18. At the same time, a radially directed jacket air flow emerges from the porous jacket 15 of the blow candle 12. In experiments it was found that with a common air supply, an exit speed of the pre-cooling air of approx. 10 m / sec. compared to an exit velocity of the jacket air flow of 3 m / sec. established.
  • FIG. 3 shows a further exemplary embodiment of a device according to the invention for carrying out the method according to the invention.
  • the exemplary embodiment in FIG. 3 is essentially identical to the previous exemplary embodiment according to FIG. 2. In this respect, reference is made to the preceding description and only the differences are shown at this point.
  • An air supply line 29 is arranged within the blow candle 12 and has one end connected to the bores in the top plate 25. At the other end, the air supply line 29 is connected to the air supply 7.
  • the annular gap nozzle 20 can thus be supplied independently of the cooling air supply to the blow candle 12 with a cooling air flow.
  • the blow candle 12 is coupled to the air supply 14 via the holding device 13.
  • the pre-cooling air flow and the jacket air flow for cooling the filaments can thus be set independently of one another.
  • different cooling media or different compositions of the cooling air could also be used to cause the filaments to solidify.
  • FIG. 4 Another embodiment of the device according to the invention is shown schematically in FIG. 4.
  • the exemplary embodiment differs essentially in that a blow candle 12 is held on the underside of a spinning beam 2, as is known, for example, from EP 1 247 883 A2.
  • a blow candle 12 is held on the underside of a spinning beam 2, as is known, for example, from EP 1 247 883 A2.
  • annular spinneret 1 is coupled to a spinning pump 4 via melt distribution lines 31.
  • the spinning pump 4 is driven by the drive shaft 33.
  • the spinning pump 4, the distribution lines 31 and the spinneret 1 are arranged in a heated spinning beam 2.
  • An annular gap nozzle 20 is arranged below the spinneret 1 as an additional coolant.
  • the annular gap nozzle 20 is firmly connected to a blow candle 12 on its underside.
  • the annular gap nozzle 20 and the blow candle 12 are coupled to the side facing the spinning beam 2 on an air supply.
  • a first air supply 7 is formed by an inner air supply line 29 which penetrates the spinning beam 2 and projects into the blow candle 12.
  • the inner air supply line 29 is encased by an outer air supply line 32, which is coupled to the annular gap nozzle 20.
  • a second air supply 14 is fed to the annular gap nozzle 20 in this way.
  • the annular gap nozzle 20 is formed by a perforated plate 23 and a top plate 25 arranged below the perforated plate.
  • the perforated plate 23 has an inlet which is connected to the nozzle opening 21 between the perforated plate 23 and the top plate 25.
  • the blow candle 12 connects to the top plate 25.
  • a preparation device in the form of a preparation ring 17 is formed below the blow candle 12, which preparation ring 17 encloses a filament sheet 18 extruded through the spinneret 1.
  • the filament sheet 18 is guided along an inner contact surface of the preparation ring 17.
  • the filaments of the filament sheet 18 freshly extruded through the spinneret 1 are first cooled after exiting the spinneret 1 by the pre-cooling air flow 19 which is generated by the annular gap nozzle 20. After intensive pre-cooling, the filament sheet 18 is then further cooled by the jacket air flow 16, which is generated by the jacket 15 of the blow candle 12.
  • the gap height of the nozzle opening 21 of the annular gap nozzle 20 can be changed in order to be able to adjust the intensity of the pre-cooling of the filament sheet 18 to certain conditions.
  • the devices shown in the exemplary embodiments according to FIGS. 1 to 4 are exemplary in their construction and can be combined optionally.
  • a coolant designed as an annular gap nozzle could be arranged directly below the spinning beam, as shown in the exemplary embodiment in FIG. 1.
  • the coolant it is also possible to design the coolant with a plurality of annular nozzle openings which are arranged one behind the other at short intervals. It is essential for the invention that an intensive pre-cooling air flow for pre-cooling the filaments can be generated just below the spinneret and that a longer cooling of the filaments ensues due to a blow candle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)

Abstract

L'invention concerne un procédé et un dispositif de filage par fusion et de refroidissement d'une pluralité de filaments synthétiques. Selon le procédé susmentionné, les filaments sont extrudés au moyen d'une filière (1) à configuration annulaire, puis ils sont guidés le long d'un dispositif de soufflage (12) en forme de bougie et refroidis par un flux d'air périphérique sortant radialement de l'enveloppe de ce dispositif de soufflage. L'invention se caractérise en ce que les filaments sont refroidis préalablement, à des fins de fixage et avant le refroidissement par l'intermédiaire du flux d'air périphérique, par un flux d'air supplémentaire de prérefroidissement (7) qui est produit par un moyen de refroidissement (6) disposé entre la filière (1) et le dispositif de soufflage (12).
EP03810948A 2002-11-09 2003-10-24 Procede et dispositif de filage par fusion et de refroidissement d'une pluralite de filaments synthetiques Expired - Lifetime EP1560952B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10252169 2002-11-09
DE10252169 2002-11-09
PCT/EP2003/011807 WO2004044282A1 (fr) 2002-11-09 2003-10-24 Procede et dispositif de filage par fusion et de refroidissement d'une pluralite de filaments synthetiques

Publications (2)

Publication Number Publication Date
EP1560952A1 true EP1560952A1 (fr) 2005-08-10
EP1560952B1 EP1560952B1 (fr) 2008-10-01

Family

ID=32308503

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03810948A Expired - Lifetime EP1560952B1 (fr) 2002-11-09 2003-10-24 Procede et dispositif de filage par fusion et de refroidissement d'une pluralite de filaments synthetiques

Country Status (5)

Country Link
EP (1) EP1560952B1 (fr)
JP (1) JP2006505705A (fr)
CN (1) CN1711375A (fr)
DE (1) DE50310587D1 (fr)
WO (1) WO2004044282A1 (fr)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101845674B (zh) * 2010-06-07 2011-09-28 扬州华美丙纶纺织有限公司 二层环吹风纤维喷丝头
CN106521648B (zh) * 2016-12-21 2019-02-19 王维列 一种粘胶纤维纺丝机

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH673659A5 (fr) * 1987-03-05 1990-03-30 Inventa Ag
US4712988A (en) * 1987-02-27 1987-12-15 E. I. Du Pont De Nemours And Company Apparatus for quenching melt sprun filaments
EP1228268B1 (fr) * 1999-09-07 2004-02-18 Barmag Ag Procede de filage par fusion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004044282A1 *

Also Published As

Publication number Publication date
DE50310587D1 (de) 2008-11-13
EP1560952B1 (fr) 2008-10-01
JP2006505705A (ja) 2006-02-16
WO2004044282A1 (fr) 2004-05-27
CN1711375A (zh) 2005-12-21

Similar Documents

Publication Publication Date Title
EP0937791B1 (fr) Procédé et dispositif pout le filage d'un fil multifilament
EP3692188B1 (fr) Dispositif permettant l'extrusion de filaments et la fabrication de non-tissés meltspun
EP1090170B1 (fr) Dispositif de filage pour filer un fil synthetique
WO1993019230A1 (fr) Procede de fabrication d'elements moules cellulosiques et dispositif de mise en oeuvre dudit procede
EP1102878B1 (fr) Dispositif et procede permettant de filer un fil synthetique
DE19821778B4 (de) Vorrichtung und Verfahren zur Herstellung von Mikrofilamenten von hoher Titer-Gleichmäßigkeit aus thermoplastischen Polymeren
EP1725702B1 (fr) Dispositif de filage par fusion et de refroidissement
WO2016173828A1 (fr) Procédé et dispositif de filage à chaud et de refroidissement de fils multibrins
DE102005052857A1 (de) Verfahren zur Herstellung von Kern-Mantel-Stapelfasern mit einer dreidimensionalen Kräuselung sowie eine derartige Kern-Mantel-Stapelfaser
DE102016112394A1 (de) Vorrichtung zum Schmelzspinnen und Abkühlen einer Filamentschar
EP1735484B1 (fr) Procede et dispositif de filage a chaud de plusieurs fils multibrins
EP1288349B1 (fr) Dispositif pour le filage au fondu et refroidissement de faisceaux de filaments
EP1560952B1 (fr) Procede et dispositif de filage par fusion et de refroidissement d'une pluralite de filaments synthetiques
EP1275756B1 (fr) Dispositif pour le filage au fondu et refroidissement de faisceaux de filaments
EP1608801A1 (fr) Procede et dispositif pour fabriquer des fils continus gonflants
EP3209820B1 (fr) Dispositif et procédé de filage à chaud et de refroidissement d'un ensemble de filaments
EP1467005A1 (fr) Procédé et dispositif pour le filage au fondu et refroidissement d'un faisceau de filaments
EP3631060B1 (fr) Procédé et dispositif de filage de fusion pour la préparation d'un fil composite multicoloré frisé
DE102005048334A1 (de) Vorrichtung zum Schmelzspinnen und Kühlen einer synthetischen Filamentschar
DE102006053718A1 (de) Verfahren und Vorrichtung zum Schmelzspinnen, Abkühlen und Präparieren eines mutifilen Fadens
WO2005014900A1 (fr) Dispositif de filature par fusion, refroidissement et d'enroulement
DE102005042891A1 (de) Vorrichtung und Verfahren zum Schmelzspinnen und Abkühlen eines multifilen Fadens
DE102013014572A1 (de) Vorrichtung zum Schmelzspinnen und Abkühlen synthetischer Filamente
DE10053731A1 (de) Vorrichtung zum Schmelzspinnen
DE10323532A1 (de) Schmelzspinnvorrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050429

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RBV Designated contracting states (corrected)

Designated state(s): CH DE IT LI

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON TEXTILE GMBH & CO. KG

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON TEXTILE GMBH & CO. KG

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE IT LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 50310587

Country of ref document: DE

Date of ref document: 20081113

Kind code of ref document: P

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20081027

Year of fee payment: 6

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20081022

Year of fee payment: 6

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20090702

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20091029

Year of fee payment: 7

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091024

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50310587

Country of ref document: DE

Effective date: 20110502

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110502