EP1228268B1 - Procede de filage par fusion - Google Patents

Procede de filage par fusion Download PDF

Info

Publication number
EP1228268B1
EP1228268B1 EP00964056A EP00964056A EP1228268B1 EP 1228268 B1 EP1228268 B1 EP 1228268B1 EP 00964056 A EP00964056 A EP 00964056A EP 00964056 A EP00964056 A EP 00964056A EP 1228268 B1 EP1228268 B1 EP 1228268B1
Authority
EP
European Patent Office
Prior art keywords
zone
filaments
cooling
coolant
yarns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00964056A
Other languages
German (de)
English (en)
Other versions
EP1228268A1 (fr
Inventor
Klaus Schäfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Barmag AG
Barmag Barmer Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag AG, Barmag Barmer Maschinenfabrik AG filed Critical Barmag AG
Publication of EP1228268A1 publication Critical patent/EP1228268A1/fr
Application granted granted Critical
Publication of EP1228268B1 publication Critical patent/EP1228268B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes

Definitions

  • the invention relates to a method for melt spinning a multifilament String of threads from a polymer melt according to the preamble of claim 1.
  • the coulter becomes a Forms a variety of filaments that are extruded through die holes.
  • the coulter is pulled out of the spinning zone by a pulling agent. After the filaments of the thread sheet emerge from the nozzle bores are cooled in a cooling zone until the yarn sheet solidifies of filaments.
  • blowing is preferred used, as are known for example from DE 35 03 818. Doing so in a cooling shaft below the nozzle holes a coolant in the essentially blown radially against the thread sheet. Immediately below the A cooling shaft is formed in the cooling shaft.
  • the stretching shaft has one venturi-like deformation to one to stretch the thread sheet to generate accelerated air flow.
  • the stretching shaft is on one Vacuum source connected. In this process, the thread group cooled intensively so that the pulling force generated by the stretching does not leads to the tearing of the filaments.
  • the thread sheet In the case in which the thread sheet consists of a ring-shaped arrangement Row of nozzle bores is spun, the thread sheet is cooled also by a radially directed coolant flow, such as from EP 0 536 497 is known.
  • the filament cluster is immediately after Exit from the nozzle bores with a radial from the inside out directed cooling air flow cooled.
  • the thread sheet In the known methods, the thread sheet is cooled intensively inside the cooling zone. This gives the filaments of the thread group one crystalline pre-orientation, which the subsequent stretching and thus the determine the physical properties of the thread group.
  • An increase in Production speed in the known method thus leads inevitably changes in physical properties or insufficient cooling to filament breaks.
  • WO 00/05439 and WO 99/67450 describe a spinning device for spinning a synthetic thread, which by combining one of a plurality of individual Filaments existing filament bundle is formed.
  • WO 95/15409 describes a melt spinning process and a device for melt spinning with a cooling zone for cooling the melt at which the speed of the air flow is the surface speed of the thread is adjusted so that between the thread and the adjacent Insignificant frictional forces arise in the air layer.
  • the object is achieved by a method with the features according to claim 1 solved.
  • the invention is based on the knowledge that the solidification of the filaments the coulter of threads from the exit from the nozzle bores to solidification two mutually influencing effects is determined. It is known that when a polymer melt cools down, it starts to melt from a certain point Solidified temperature. This process depends solely on the temperature and is referred to here as thermal crystallization. When melt spinning a set of threads pulls the set of threads out of the spinneret. there pulling forces act on the filaments of the thread sheet, one cause tension-induced crystallization in the filaments. At the Melt spinning a sheet of threads thus undergo thermal crystallization and the stress-induced crystallization overlays and leads together to Solidification of the filaments.
  • the invention now provides a method in which the Filaments of the thread family are cooled in such a way that both effects Achieve higher production speeds with the same good ones physical properties can be influenced.
  • the filaments of the Thread group initially in the cooling zone, which is referred to here as the pre-cooling zone, pre-cooled without solidification of the polymer melt.
  • the Thread coulter directly into a below the pre-cooling zone and in front of a pull-off agent trained second cooling zone, which is referred to here as a post-cooling zone.
  • the filaments of the thread group are placed under the post-cooling zone Exposure to a cooling medium flow directed in the thread course until solidification cooled further, the cooling medium flow being a predetermined one Has flow rate to influence the thread friction.
  • the withdrawal tension acting on the filaments can be influenced in such a way that the voltage-induced crystallization takes place with a delay. Because the filaments the thread sheet in the pre-cooling zone essentially only in the peripheral zones are solidified, no significant withdrawal voltages from the Filaments are recorded. This means that none occurs in the pre-cooling zone essential stress-induced crystallization but only one thermally induced crystallization.
  • the thread group can be in one linear row arrangement or in a circular row arrangement spin out of the nozzle holes of several or one spinneret.
  • the cooling medium flow to influence the thread friction in an acceleration section within the post-cooling zone accelerated to the predetermined flow rate.
  • the acceleration path is preferably immediately before Solidification area of the filaments of the thread sheet is formed. So that the Post-cooling in the post-cooling zone regardless of the pre-cooling in the Influence and control the pre-cooling zone. Secondly, it is guaranteed that the accelerated cooling medium flow in one phase on the filaments of the thread family in which the filaments attack an external air friction endured without breaking the filaments.
  • the flow rate of the Coolant flow before the solidification area of the filaments at least the same or slightly higher than the running speed of the filaments.
  • the Flow rate of the cooling medium flow differs from that Filament speed preferably by a factor of 0.3 to 2.
  • the particularly advantageous method variant according to claim 4 is in particular suitable for threads with small, medium or large thread titers with higher Production speed and uniform physical properties manufacture.
  • the influencing of the voltage-induced Crystallization under essentially constant conditions performed.
  • Pre-cooling of the filaments of the thread sheet after exiting the cooling effect of the nozzle bores within the cooling zone is such adjustable that the position of the solidification area of the filaments of the thread sheet be kept within a predetermined target range within the post-cooling zone can.
  • the filaments of the thread sheet solidify in the post-cooling zone thus essentially always in the same place, so that a uniform Treatment of the filaments to influence the tension-induced Crystallization is granted.
  • the through the Cooling medium in the pre-cooling zone cooling effects can be changed be executed.
  • the filaments of the Thread group before entering the post-cooling zone a certain stability, in particular in the outer peripheral layers, must already have the Bear the cooling medium flow in the post-cooling zone undamaged.
  • the cooling medium before entry is tempered in the pre-cooling zone.
  • the cooling medium can its temperature before entering the pre-cooling zone preferably to a value be heated in the range of 20 ° C to 300 ° C.
  • a Spinning threads with relatively small filament titles becomes the cooling medium preheated to a high temperature by, for example, a heater. This is the one that starts immediately after exiting the nozzle bores thermal crystallization influenced in such a way that the filaments of the thread sheet before Entry into the post-cooling zone are not frozen.
  • Cooling medium flow possible, which solidifies the filaments of the thread sheet in leads the target area of the post-cooling zone.
  • the cooling medium is on a lower temperature set in the pre-cooling zone, so that the thermal Crystallization is so far formed before entering the after-cooling zone that the Filaments of the thread sheet have sufficient stability when the cooling medium flow is attacked exhibit.
  • a blower can be used for this purpose, for example be controllable by which the volume flow blown into the pre-cooling zone is.
  • the method according to the invention is independent of whether the cooling medium flow in the post-cooling zone by suction or by blowing is produced.
  • the process variant in which a suction flow in the After cooling zone prevails, has the advantage that the thermal crystallization in the pre-cooling zone and the stress-induced crystallization in the after-cooling zone can be influenced essentially independently of one another.
  • the process variant is to obtain adequate cooling in the post-cooling zone according to claim 10 particularly advantageous.
  • the cooling medium flow is switched off the cooling medium emerging from the pre-cooling zone and one immediately before Cooling medium supplied to the inlet of the post-cooling zone. Through that additionally supplied cooling medium is achieved that the voltage-induced Crystallization is also adjustable within wide limits and thus another Optimization of the physical properties is possible.
  • Pre-cooling of the filaments in the pre-cooling zone can also be done by an in airflow blown into the pre-cooling zone or through an air stream into the pre-cooling zone sucked in air flow.
  • the inventive method is due to its flexibility Melt spinning a thread sheet suitable after the solidification of the filaments is deposited to form a spunbond.
  • the thread group is in one line-shaped row arrangement is withdrawn from the nozzle bores and on placed a sieve belt.
  • the following are preferred as the trigger means Trigger nozzles used.
  • the method is also particularly well suited for following a family of threads the solidification of the filaments to form a tow that Jug is deposited for the production of staple fibers.
  • the Thread group preferably from an annular nozzle in a circular Row arrangement spun and through the pre-cooling zone and post-cooling zone guided. After leaving the post-cooling zone, the thread group becomes the tow merged.
  • the tow could also in a subsequent process step can be cut or torn immediately into staple fiber and then subsequently to be pressed into a bale.
  • the thread sheet can be made from a polymer melt based on Spinning polyester, polyamide or polypropylene.
  • Fig. 1 is a first embodiment of an apparatus for performing of the method for producing a spunbonded nonwoven.
  • the device has a heated spinning head 1, which is connected to a melt feed (not here shown) is connected.
  • a melt feed (not here shown) is connected.
  • spinnerets 2 arranged in a row in a spinning line.
  • the spinnerets 2 have a plurality of nozzle bores 3 on their undersides.
  • a pre-cooling shaft 8 is formed, which has a pre-cooling zone 5 forms through which a thread sheet 10 is guided.
  • the pre-cooling shaft 8 has a gas-permeable side wall on the opposite long sides 34 through which a cooling medium preferably cooling air into the pre-cooling zone 5 is directed.
  • the pre-cooling shaft 8 is through at the ends of the spinning head 1 Cross walls closed. Below the pre-cooling shaft 8 is a After-cooling shaft 9 arranged. In the after-cooling shaft 9 Post-cooling zone 6 is formed, which is also passed through by the thread sheet. The Pre-cooling shaft 8 and the after-cooling shaft 9 are in one level arranged so that the thread sheet without deflection through the pre-cooling zone 5 and the post-cooling zone 6 are performed. On the underside of the after-cooling shaft 9 a suction device 11 is connected. The suction device 11 has on two sides each a suction shaft 12.1 and 12.2, with at least a vacuum source (not shown here) are connected.
  • the side walls 35.1 and 35.2 are in the longitudinal direction of the after-cooling shaft 9 Shaped to each other so that a Acceleration path 7 with a closest distance between the side walls 35.1 and 35.2 to each other.
  • Above and below the acceleration section 7 are the side walls 35.1 and 35.2 of the after-cooling shaft 9 with a larger one Distance preferably with a continuously increasing distance arranged to each other.
  • At the ends of the spinning head 1 is the after-cooling shaft 9 closed by transverse walls.
  • the trigger 14 is formed here by an exhaust nozzle 31.
  • the trigger nozzle 31 has the Inlet side of the thread coulter on an injector 15 with a compressed air supply connected is.
  • a fleece depositing device 16 is located below the extraction nozzle arranged.
  • the fleece storage device 16 consists of a screen belt 17, the is guided over rollers 20.
  • the thread sheet 10 is in shape on the sieve belt 17 a spunbonded 19 deposited.
  • a suction device 18 is located below the sieve belt 17 arranged, which receives the air stream emerging from the exhaust nozzle 31.
  • a thermoplastic material is added melted a polymer melt and fed to the spinning head 1.
  • About the A large number of the nozzle bores 3 of the spinnerets 2 are a large number of Filaments 4 extruded into a sheet 10.
  • the one formed from the filaments String of threads is pulled off the pulling means 14.
  • the thread sheet then enters the after-cooling shaft 9 and passes through the after-cooling zone 6.
  • In the after-cooling shaft 9 is through Effect of a negative pressure generator a negative pressure in the after-cooling zone 2 generated.
  • the Air flow leads to a pre-cooling of the filaments 4 of the thread sheet 10.
  • the air flow is conducted into the after-cooling shaft 9. there there is a formation in the acceleration path 7 Coolant flow, which flows in the direction of the thread sheet 10.
  • the cooling medium flow is at a speed accelerates that are at least equal to or greater than the filament speed is.
  • the thread sheet 10 is continuously cooled until the filaments 4 of the thread group 10 are completely frozen.
  • the solidification area of the filaments 4 is adjusted by the air flow so that the filaments below or in lower region of the acceleration path 7 solidify.
  • the coulter is through the take-off nozzle 31 as spunbond 19 on the Sieve belt 17 deposited.
  • filament speeds of 6,000 to 10,000 m / min preferably 6,000 to 8,000 m / min reached.
  • the String of filaments with a single titer of 0.3 to 10 dpf, preferably 0.5 to 5 dpf.
  • the one generated in the acceleration section Cooling media flow is reduced to a ratio of filament speed Flow rate accelerated from 0.3 to 2 times the filament speed.
  • the device shown in Fig. 1 for performing the invention The procedure is exemplary. Here is between the pre-cooling shaft 8 and the Spinning head 1 provided a heater 30 to delay thermal To be able to adjust crystallization. It is also possible to use the cooling air in the Blow in pre-cooling shaft 8.
  • the main idea of the invention is that the solidification of the filaments of the thread group only within the post-cooling zone takes place in order to positively influence the physical properties to get increased production speeds.
  • the device has a spinning head 1 on, which is connected to a melt feed (not shown here).
  • a melt feed (not shown here).
  • the ring nozzle 21 has a plurality of nozzle bores 3 which are arranged in a ring are.
  • a pre-cooling shaft 8 is arranged below the spinning head 1.
  • the Pre-cooling shaft 8 is designed with a gas-permeable wall 33 is arranged enveloping to the ring nozzle 21.
  • the pre-cooling shaft 8 forms the Pre-cooling zone 5 directly below the ring nozzle 21.
  • a blowing 32 projects lancet-shaped from the underside of the spinning head 1 centrically to the ring nozzle 21 into the cooling zone 5. Through the blowing 32 a cooling medium is passed radially from the inside out into the cooling zone 5.
  • the after-cooling shaft 9 is preferably tubular formed, being between the inlet side and the outlet side in the After cooling shaft 9 an acceleration section 7 with a narrowest cross section is trained. On both sides of the acceleration path 7 is the After-cooling shaft 9 with preferably continuously increasing Flow cross section formed.
  • Post-cooling zone 6 is formed.
  • the suction device 11 has a vacuum source 22 which is connected to an outlet chamber 29 via a suction shaft 12. On the outlet chamber 29 is connected to the after-cooling shaft 9 on one side. On on the opposite side, the outlet chamber 29 has an outlet 34.
  • a screen cylinder 28 is coaxial with that After-cooling shaft 9 arranged.
  • a draw-off means 14 is connected downstream of the cooling device in the thread running direction.
  • the trigger means 14 is formed from several godets 25 and 26.
  • a roller 24 is located between the take-off godet 25 and the cooling device provided to bring together a family of threads to form a tow 23.
  • the trigger means 14 is followed by a can deposit 27.
  • a polymer melt through the Nozzle bores 3 of the ring nozzle 21 are extruded into a family of threads 10.
  • the Thread cluster 10 is formed from individual filaments 4.
  • the thread cluster 10 first enters the pre-cooling zone 5.
  • the Filaments 4 of the thread sheet 10 through a cooling medium flow of the blowing 32 cooled.
  • the group of threads 10 arranged in a ring is arranged radially from the inside acted upon externally with the coolant flow.
  • a second Coolant flow enters through wall 33 radially from the outside inwards into the cooling zone.
  • the filaments 4 of the thread sheet 10 are in the Pre-cooling zone 5 only cooled until the edge zones solidified.
  • the thread sheet 10 is cooled by the post-cooling zone 6 of the After cooling shaft 9 performed. Due to the fact that in the post-cooling zone 6 prevailing negative pressure, the cooling medium introduced into the pre-cooling zone 5 sucked into the post-cooling zone 6. When passing the acceleration section 7 a flow of cooling media is accelerated to a flow rate that is greater or is equal to the running speed of the thread sheet 10. It is achieved that the filaments 4 of the thread sheet 10 are supported in their movement. Those acting on the thread sheet 10 through the pulling means 14 Deduction voltages take effect only after a delay. With that the stress-induced crystallization occurs with a delay.
  • the pre-cooling and the Aftercooling is set such that the filaments 4 of the thread group 10 preferably below the acceleration path 7 or in the lower half the acceleration path 7 finally solidify.
  • the thread cluster 10 leaves the cooling device through the outlet 34.
  • the accompanying Cooling medium flow previously discharged by means of the outlet chamber.
  • the thread sheet 10 is closed by the roller 24 a tow 23 merged and through the trigger 14 to one Can shelf 27 out.
  • the tow 23 is located in the can shelf 27 for example stored in a round jug.
  • the device shown in Fig. 2 is exemplary. So it is possible that for Treatment of the tow several drafting devices or heating devices of the Can rack are upstream or for post-treatment of the tow Devices such as a fiber cutter with a Baler for the production of staple fibers are connected downstream.
  • Training of the cooling device exemplary. The procedure is not on that limited that the cooling medium flow through a negative pressure in the Post-cooling zone 6 is generated. It is essential that a pressure drop between the Pre-cooling zone 5 and the post-cooling zone 6 is present to the one Movement of the filaments and thus influencing the withdrawal tension To generate cooling media flow. Cooling air is preferably used as the cooling medium used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Claims (15)

  1. Procédé de filage par fusion d'une portée multifile de fils (10) à partir d'un polymère fondu, dans lequel la portée de fils (10) est formée à partir d'une multiplicité de filaments (4) extrudés à travers des orifices de buses (3) et est levée au moyen d'un agent de levée (14) sous l'effet d'une tension de levée, dans lequel après la sortie des filaments (4) hors des orifices de buses (3) et avant l'agent de levée (14), la portée de fils (10) est guidée en agencement aligné à travers une zone de refroidissement (5, 6) et est refroidie par un médium de refroidissement, caractérisé en ce que les filaments (4) de la portée de fils (10) sont refroidis préliminairement dans la zone de refroidissement (zone de refroidissement préliminaire) sans solidification du polymère fondu, en ce que la portée de fils est guidée en agencement aligné dans une deuxième zone de refroidissement (6) (zone de refroidissement postérieur) réalisée en dessous de la zone de refroidissement préliminaire (5) et en amont de l'agent de levée (14), portée de fils dont le refroidissement est poursuivi de telle manière à l'intérieur de la zone de refroidissement postérieur (6) sous l'effet d'un flux de médium de refroidissement dirigé dans le trajet de fil que les filaments (4) de la portée de fils (10) se solidifient dans une région de solidification à l'intérieur de la zone de refroidissement postérieur (5), le flux de médium de refroidissement ayant une vitesse d'écoulement prédéterminée pour influencer le frottement du fil.
  2. Procédé selon la revendication 1, caractérisé en ce que le flux de médium de refroidissement est accéléré sur la vitesse d'écoulement dans un parcours d'accélération à l'intérieur de la zone de refroidissement postérieur (6) et en ce que la région de solidification des filaments (4) se trouve à l'intérieur ou directement en dessous du parcours d'accélération de la zone de refroidissement postérieur (6)
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce qu'en amont de la région de solidification des filaments (4) la vitesse d'écoulement du flux de médium de refroidissement est sensiblement égale à la vitesse de course des filaments (4) ou est plus élevée que celle-ci.
  4. Procédé selon l'une des revendications 1 à 3, caractérisé en ce que le refroidissement des filaments (4) par le médium de refroidissement à l'intérieur de la zone de refroidissement préliminaire (5) est ajusté de telle manière que la position de la région de solidification des filaments (4) à l'intérieur de la zone de refroidissement postérieur (6) est maintenue dans une région désirée prédéterminée de la zone de refroidissement postérieur (6).
  5. Procédé selon la revendication 4, caractérisé en ce que la température du médium de refroidissement peut être modifiée avant l'entrée dans la zone de refroidissement préliminaire (5).
  6. Procédé selon la revendication 4 ou 5, caractérisé en ce que le flux de volume du médium de refroidissement peut être modifié avant l'entrée dans la zone de refroidissement préliminaire (5).
  7. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le flux de médium de refroidissement dans la zone de refroidissement postérieur (6) est généré par un effet de succion.
  8. Procédé selon l'une des revendications 1 à 6, caractérisé en ce que le flux de médium de refroidissement dans la zone de refroidissement postérieur (6) est généré par un effet de souffle.
  9. Procédé selon l'une des revendications précitées, caractérisé en ce que le flux de médium de refroidissement est généré à partir du médium de refroidissement sortant de la zone de refroidissement (5, 6).
  10. Procédé selon l'une des revendications 1 à 9, caractérisé en ce que le flux de médium de refroidissement est généré à partir du médium de refroidissement sortant de la zone de refroidissement préliminaire (5) et à partir d'un médium de refroidissement amené en dessous de la zone de refroidissement préliminaire (5).
  11. Procédé selon l'une des revendications précitées, caractérisé en ce que dans la zone de refroidissement préliminaire (5) le médium de refroidissement est amené jusqu'aux filaments (4) au moyen d'un effet de succion ou au moyen d'un effet de souffle.
  12. Procédé selon l'une des revendications précitées, caractérisé en ce qu'après la solidification des filaments (4) la portée de fils (10) est déposée en un tissu non-tissé (19).
  13. Procédé selon l'une des revendications 1 à 11, caractérisé en ce qu'après la solidification des filaments (4) la portée de fils (10) est réunie en un « tow » (23) et est déposée dans un pot (27) ou est comprimée en tant que fibres coupées en une balle.
  14. Procédé selon l'une des revendications 1 à 11, caractérisé en ce qu'après la solidification des filaments (4) la portée de fils (10) est divisée en plusieurs fils individuels et est enroulée sur des bobines.
  15. Procédé selon l'une des revendications précitées, caractérisé en ce que le polymère fondu est constitué à base de polyester, de polyamide ou de polypropylène.
EP00964056A 1999-09-07 2000-08-29 Procede de filage par fusion Expired - Lifetime EP1228268B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19942518 1999-09-07
DE19942518 1999-09-07
PCT/EP2000/008416 WO2001018288A1 (fr) 1999-09-07 2000-08-29 Procede de filage par fusion

Publications (2)

Publication Number Publication Date
EP1228268A1 EP1228268A1 (fr) 2002-08-07
EP1228268B1 true EP1228268B1 (fr) 2004-02-18

Family

ID=7920996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00964056A Expired - Lifetime EP1228268B1 (fr) 1999-09-07 2000-08-29 Procede de filage par fusion

Country Status (4)

Country Link
US (1) US6824717B2 (fr)
EP (1) EP1228268B1 (fr)
DE (1) DE50005349D1 (fr)
WO (1) WO2001018288A1 (fr)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006505705A (ja) * 2002-11-09 2006-02-16 ザウラー ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト 多数の合成フィラメントを溶融紡糸し、冷却するための方法及び装置
US20050184429A1 (en) * 2002-11-09 2005-08-25 Saurer Gmbh & Co. Kg Method and apparatus for melt spinning and cooling a plurality of synthetic filaments
EP1467005A1 (fr) * 2003-04-12 2004-10-13 Saurer GmbH & Co. KG Procédé et dispositif pour le filage au fondu et refroidissement d'un faisceau de filaments
JP4795243B2 (ja) 2003-05-20 2011-10-19 ヒルズ, インコーポレイテッド 繊維押出し成形システムにおいて気流を制御するための方法および装置
CN101636529B (zh) * 2007-01-19 2011-05-11 欧瑞康纺织有限及两合公司 用于铺放合成纤维以形成无纺织网的设备和方法
JP5455902B2 (ja) * 2007-07-21 2014-03-26 ディオレン インドゥストリアル ファイバース ベスローテン フェノートシャップ 紡糸法
JP5925657B2 (ja) * 2012-10-03 2016-05-25 Tmtマシナリー株式会社 溶融紡糸装置
CN104755667B (zh) * 2012-10-27 2016-11-09 欧瑞康纺织有限及两合公司 用于制造纺粘型无纺织物的设备
US9410270B2 (en) 2014-08-22 2016-08-09 Nike, Inc. Thread structure composition and method of making
US9889606B2 (en) 2015-11-09 2018-02-13 Nike, Inc. Tack and drag printing
FR3046147B1 (fr) 2015-12-23 2019-07-26 Compagnie Generale Des Etablissements Michelin Dispositif de convoyage d’ensembles container/plateau de fabrication additive
FR3046093B1 (fr) 2015-12-23 2018-01-26 Compagnie Generale Des Etablissements Michelin Atelier de fabrication additive
CN112760729B (zh) * 2020-12-31 2022-04-15 江苏恒科新材料有限公司 一种熔融纺丝基态冷却装置
CN112853515B (zh) * 2020-12-31 2022-04-15 江苏恒科新材料有限公司 一种轻量吸汗速干仿醋酸聚酯纤维及其制备方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3503818C1 (de) 1985-02-05 1986-04-30 Reifenhäuser GmbH & Co Maschinenfabrik, 5210 Troisdorf Vorrichtung zum Verstrecken von Monofilfadenbuendeln
US5178814A (en) 1991-08-09 1993-01-12 The Bouligny Company Quenching method and apparatus
US5976431A (en) 1993-12-03 1999-11-02 Ronald Mears Melt spinning process to produce filaments
TW268054B (fr) * 1993-12-03 1996-01-11 Rieter Automatik Gmbh
TW476818B (en) * 1998-02-21 2002-02-21 Barmag Barmer Maschf Method and apparatus for spinning a multifilament yarn
EP1090170B1 (fr) * 1998-06-22 2004-08-18 Saurer GmbH & Co. KG Dispositif de filage pour filer un fil synthetique
CN1117186C (zh) * 1998-07-23 2003-08-06 巴马格股份公司 用于纺合成长丝的纺丝装置和方法
EP1079008A1 (fr) * 1999-08-26 2001-02-28 B a r m a g AG Procédé et dispositif pour le filage d'un fil multifilament

Also Published As

Publication number Publication date
US6824717B2 (en) 2004-11-30
US20020121724A1 (en) 2002-09-05
EP1228268A1 (fr) 2002-08-07
WO2001018288A1 (fr) 2001-03-15
DE50005349D1 (de) 2004-03-25

Similar Documents

Publication Publication Date Title
EP1192301B1 (fr) Procede et dispositif pour produire des fils fins sensiblement continus
EP2283174B1 (fr) Procédé de filage à l'état fondu, d'étirage et d'enroulement d'un fil multifilament, et dispositif destiné à la réalisation du procédé
DE3781313T3 (de) Verfahren und Vorrichtung.
EP0937791B1 (fr) Procédé et dispositif pout le filage d'un fil multifilament
EP1090170B1 (fr) Dispositif de filage pour filer un fil synthetique
EP1228268B1 (fr) Procede de filage par fusion
EP1102878B1 (fr) Dispositif et procede permettant de filer un fil synthetique
EP1079008A1 (fr) Procédé et dispositif pour le filage d'un fil multifilament
EP2318577B1 (fr) Procédé de filage par fusion, d'étirage et d'enroulement un fil multifilament et dispositif de mise en oeuvre de ce procédé
EP1045930B1 (fr) Procede et dispositif pour la production d'un fil hautement oriente
WO2006018240A1 (fr) Dispositif et procede de filage par fusion, de levee, de traitement et d'enroulement de plusieurs fils synthetiques
EP0957187A2 (fr) Dispositif et procédé pour la fabrication de fils microfilaments avec haute regularité de titre à base de polymères thermoplastiques
EP2567008B1 (fr) Procédé et dispositif de filage à chaud, d'étirage et d'enroulement de plusieurs fils synthétiques
DE3941824C2 (fr)
DE19653451C2 (de) Verfahren zur Herstellung eines Polyester-Multifilamentgarnes
DE19705113C2 (de) Verstreckvorrichtung und Verfahren zur Herstellung verstreckter Kunststoffilamente
DE10116294A1 (de) Verfahren zm Schmelzspinnen eines Verbundfadens und Spinnvorrichtung
EP1819854B1 (fr) Procede et dispositif de guidage et de tourbillonnement d'un fil multifilament
EP1486592B1 (fr) Installation pour filage et traitement de filaments synthétiques
WO2016058873A1 (fr) Procédé et dispositif de production d'un fil multifilamentaire à partir d'une masse fondue de polyamide
DE10005664A1 (de) Verfahren und Vorrichtung zum Spinnen eines synthetischen Fadens
DE19909073A1 (de) Vorrichtung und Verfahren zum Verstrecken eines synthetischen Fadens
DE4120460A1 (de) Verfahren und vorrichtung fuer die herstellung von polypropylengarn
DE19705116A1 (de) Verstreckvorrichtung und Verfahren zur Herstellung verstreckter Kunststoffilamente

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50005349

Country of ref document: DE

Date of ref document: 20040325

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SAURER GMBH & CO. KG

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041119

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100830

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121001

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50005349

Country of ref document: DE

Effective date: 20140301