EP1228268B1 - Method for fusion spinning - Google Patents

Method for fusion spinning Download PDF

Info

Publication number
EP1228268B1
EP1228268B1 EP00964056A EP00964056A EP1228268B1 EP 1228268 B1 EP1228268 B1 EP 1228268B1 EP 00964056 A EP00964056 A EP 00964056A EP 00964056 A EP00964056 A EP 00964056A EP 1228268 B1 EP1228268 B1 EP 1228268B1
Authority
EP
European Patent Office
Prior art keywords
zone
filaments
cooling
coolant
yarns
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00964056A
Other languages
German (de)
French (fr)
Other versions
EP1228268A1 (en
Inventor
Klaus Schäfer
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oerlikon Textile GmbH and Co KG
Original Assignee
Barmag AG
Barmag Barmer Maschinenfabrik AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Barmag AG, Barmag Barmer Maschinenfabrik AG filed Critical Barmag AG
Publication of EP1228268A1 publication Critical patent/EP1228268A1/en
Application granted granted Critical
Publication of EP1228268B1 publication Critical patent/EP1228268B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes
    • D01D5/092Cooling filaments, threads or the like, leaving the spinnerettes in shafts or chimneys
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/08Melt spinning methods
    • D01D5/088Cooling filaments, threads or the like, leaving the spinnerettes

Definitions

  • the invention relates to a method for melt spinning a multifilament String of threads from a polymer melt according to the preamble of claim 1.
  • the coulter becomes a Forms a variety of filaments that are extruded through die holes.
  • the coulter is pulled out of the spinning zone by a pulling agent. After the filaments of the thread sheet emerge from the nozzle bores are cooled in a cooling zone until the yarn sheet solidifies of filaments.
  • blowing is preferred used, as are known for example from DE 35 03 818. Doing so in a cooling shaft below the nozzle holes a coolant in the essentially blown radially against the thread sheet. Immediately below the A cooling shaft is formed in the cooling shaft.
  • the stretching shaft has one venturi-like deformation to one to stretch the thread sheet to generate accelerated air flow.
  • the stretching shaft is on one Vacuum source connected. In this process, the thread group cooled intensively so that the pulling force generated by the stretching does not leads to the tearing of the filaments.
  • the thread sheet In the case in which the thread sheet consists of a ring-shaped arrangement Row of nozzle bores is spun, the thread sheet is cooled also by a radially directed coolant flow, such as from EP 0 536 497 is known.
  • the filament cluster is immediately after Exit from the nozzle bores with a radial from the inside out directed cooling air flow cooled.
  • the thread sheet In the known methods, the thread sheet is cooled intensively inside the cooling zone. This gives the filaments of the thread group one crystalline pre-orientation, which the subsequent stretching and thus the determine the physical properties of the thread group.
  • An increase in Production speed in the known method thus leads inevitably changes in physical properties or insufficient cooling to filament breaks.
  • WO 00/05439 and WO 99/67450 describe a spinning device for spinning a synthetic thread, which by combining one of a plurality of individual Filaments existing filament bundle is formed.
  • WO 95/15409 describes a melt spinning process and a device for melt spinning with a cooling zone for cooling the melt at which the speed of the air flow is the surface speed of the thread is adjusted so that between the thread and the adjacent Insignificant frictional forces arise in the air layer.
  • the object is achieved by a method with the features according to claim 1 solved.
  • the invention is based on the knowledge that the solidification of the filaments the coulter of threads from the exit from the nozzle bores to solidification two mutually influencing effects is determined. It is known that when a polymer melt cools down, it starts to melt from a certain point Solidified temperature. This process depends solely on the temperature and is referred to here as thermal crystallization. When melt spinning a set of threads pulls the set of threads out of the spinneret. there pulling forces act on the filaments of the thread sheet, one cause tension-induced crystallization in the filaments. At the Melt spinning a sheet of threads thus undergo thermal crystallization and the stress-induced crystallization overlays and leads together to Solidification of the filaments.
  • the invention now provides a method in which the Filaments of the thread family are cooled in such a way that both effects Achieve higher production speeds with the same good ones physical properties can be influenced.
  • the filaments of the Thread group initially in the cooling zone, which is referred to here as the pre-cooling zone, pre-cooled without solidification of the polymer melt.
  • the Thread coulter directly into a below the pre-cooling zone and in front of a pull-off agent trained second cooling zone, which is referred to here as a post-cooling zone.
  • the filaments of the thread group are placed under the post-cooling zone Exposure to a cooling medium flow directed in the thread course until solidification cooled further, the cooling medium flow being a predetermined one Has flow rate to influence the thread friction.
  • the withdrawal tension acting on the filaments can be influenced in such a way that the voltage-induced crystallization takes place with a delay. Because the filaments the thread sheet in the pre-cooling zone essentially only in the peripheral zones are solidified, no significant withdrawal voltages from the Filaments are recorded. This means that none occurs in the pre-cooling zone essential stress-induced crystallization but only one thermally induced crystallization.
  • the thread group can be in one linear row arrangement or in a circular row arrangement spin out of the nozzle holes of several or one spinneret.
  • the cooling medium flow to influence the thread friction in an acceleration section within the post-cooling zone accelerated to the predetermined flow rate.
  • the acceleration path is preferably immediately before Solidification area of the filaments of the thread sheet is formed. So that the Post-cooling in the post-cooling zone regardless of the pre-cooling in the Influence and control the pre-cooling zone. Secondly, it is guaranteed that the accelerated cooling medium flow in one phase on the filaments of the thread family in which the filaments attack an external air friction endured without breaking the filaments.
  • the flow rate of the Coolant flow before the solidification area of the filaments at least the same or slightly higher than the running speed of the filaments.
  • the Flow rate of the cooling medium flow differs from that Filament speed preferably by a factor of 0.3 to 2.
  • the particularly advantageous method variant according to claim 4 is in particular suitable for threads with small, medium or large thread titers with higher Production speed and uniform physical properties manufacture.
  • the influencing of the voltage-induced Crystallization under essentially constant conditions performed.
  • Pre-cooling of the filaments of the thread sheet after exiting the cooling effect of the nozzle bores within the cooling zone is such adjustable that the position of the solidification area of the filaments of the thread sheet be kept within a predetermined target range within the post-cooling zone can.
  • the filaments of the thread sheet solidify in the post-cooling zone thus essentially always in the same place, so that a uniform Treatment of the filaments to influence the tension-induced Crystallization is granted.
  • the through the Cooling medium in the pre-cooling zone cooling effects can be changed be executed.
  • the filaments of the Thread group before entering the post-cooling zone a certain stability, in particular in the outer peripheral layers, must already have the Bear the cooling medium flow in the post-cooling zone undamaged.
  • the cooling medium before entry is tempered in the pre-cooling zone.
  • the cooling medium can its temperature before entering the pre-cooling zone preferably to a value be heated in the range of 20 ° C to 300 ° C.
  • a Spinning threads with relatively small filament titles becomes the cooling medium preheated to a high temperature by, for example, a heater. This is the one that starts immediately after exiting the nozzle bores thermal crystallization influenced in such a way that the filaments of the thread sheet before Entry into the post-cooling zone are not frozen.
  • Cooling medium flow possible, which solidifies the filaments of the thread sheet in leads the target area of the post-cooling zone.
  • the cooling medium is on a lower temperature set in the pre-cooling zone, so that the thermal Crystallization is so far formed before entering the after-cooling zone that the Filaments of the thread sheet have sufficient stability when the cooling medium flow is attacked exhibit.
  • a blower can be used for this purpose, for example be controllable by which the volume flow blown into the pre-cooling zone is.
  • the method according to the invention is independent of whether the cooling medium flow in the post-cooling zone by suction or by blowing is produced.
  • the process variant in which a suction flow in the After cooling zone prevails, has the advantage that the thermal crystallization in the pre-cooling zone and the stress-induced crystallization in the after-cooling zone can be influenced essentially independently of one another.
  • the process variant is to obtain adequate cooling in the post-cooling zone according to claim 10 particularly advantageous.
  • the cooling medium flow is switched off the cooling medium emerging from the pre-cooling zone and one immediately before Cooling medium supplied to the inlet of the post-cooling zone. Through that additionally supplied cooling medium is achieved that the voltage-induced Crystallization is also adjustable within wide limits and thus another Optimization of the physical properties is possible.
  • Pre-cooling of the filaments in the pre-cooling zone can also be done by an in airflow blown into the pre-cooling zone or through an air stream into the pre-cooling zone sucked in air flow.
  • the inventive method is due to its flexibility Melt spinning a thread sheet suitable after the solidification of the filaments is deposited to form a spunbond.
  • the thread group is in one line-shaped row arrangement is withdrawn from the nozzle bores and on placed a sieve belt.
  • the following are preferred as the trigger means Trigger nozzles used.
  • the method is also particularly well suited for following a family of threads the solidification of the filaments to form a tow that Jug is deposited for the production of staple fibers.
  • the Thread group preferably from an annular nozzle in a circular Row arrangement spun and through the pre-cooling zone and post-cooling zone guided. After leaving the post-cooling zone, the thread group becomes the tow merged.
  • the tow could also in a subsequent process step can be cut or torn immediately into staple fiber and then subsequently to be pressed into a bale.
  • the thread sheet can be made from a polymer melt based on Spinning polyester, polyamide or polypropylene.
  • Fig. 1 is a first embodiment of an apparatus for performing of the method for producing a spunbonded nonwoven.
  • the device has a heated spinning head 1, which is connected to a melt feed (not here shown) is connected.
  • a melt feed (not here shown) is connected.
  • spinnerets 2 arranged in a row in a spinning line.
  • the spinnerets 2 have a plurality of nozzle bores 3 on their undersides.
  • a pre-cooling shaft 8 is formed, which has a pre-cooling zone 5 forms through which a thread sheet 10 is guided.
  • the pre-cooling shaft 8 has a gas-permeable side wall on the opposite long sides 34 through which a cooling medium preferably cooling air into the pre-cooling zone 5 is directed.
  • the pre-cooling shaft 8 is through at the ends of the spinning head 1 Cross walls closed. Below the pre-cooling shaft 8 is a After-cooling shaft 9 arranged. In the after-cooling shaft 9 Post-cooling zone 6 is formed, which is also passed through by the thread sheet. The Pre-cooling shaft 8 and the after-cooling shaft 9 are in one level arranged so that the thread sheet without deflection through the pre-cooling zone 5 and the post-cooling zone 6 are performed. On the underside of the after-cooling shaft 9 a suction device 11 is connected. The suction device 11 has on two sides each a suction shaft 12.1 and 12.2, with at least a vacuum source (not shown here) are connected.
  • the side walls 35.1 and 35.2 are in the longitudinal direction of the after-cooling shaft 9 Shaped to each other so that a Acceleration path 7 with a closest distance between the side walls 35.1 and 35.2 to each other.
  • Above and below the acceleration section 7 are the side walls 35.1 and 35.2 of the after-cooling shaft 9 with a larger one Distance preferably with a continuously increasing distance arranged to each other.
  • At the ends of the spinning head 1 is the after-cooling shaft 9 closed by transverse walls.
  • the trigger 14 is formed here by an exhaust nozzle 31.
  • the trigger nozzle 31 has the Inlet side of the thread coulter on an injector 15 with a compressed air supply connected is.
  • a fleece depositing device 16 is located below the extraction nozzle arranged.
  • the fleece storage device 16 consists of a screen belt 17, the is guided over rollers 20.
  • the thread sheet 10 is in shape on the sieve belt 17 a spunbonded 19 deposited.
  • a suction device 18 is located below the sieve belt 17 arranged, which receives the air stream emerging from the exhaust nozzle 31.
  • a thermoplastic material is added melted a polymer melt and fed to the spinning head 1.
  • About the A large number of the nozzle bores 3 of the spinnerets 2 are a large number of Filaments 4 extruded into a sheet 10.
  • the one formed from the filaments String of threads is pulled off the pulling means 14.
  • the thread sheet then enters the after-cooling shaft 9 and passes through the after-cooling zone 6.
  • In the after-cooling shaft 9 is through Effect of a negative pressure generator a negative pressure in the after-cooling zone 2 generated.
  • the Air flow leads to a pre-cooling of the filaments 4 of the thread sheet 10.
  • the air flow is conducted into the after-cooling shaft 9. there there is a formation in the acceleration path 7 Coolant flow, which flows in the direction of the thread sheet 10.
  • the cooling medium flow is at a speed accelerates that are at least equal to or greater than the filament speed is.
  • the thread sheet 10 is continuously cooled until the filaments 4 of the thread group 10 are completely frozen.
  • the solidification area of the filaments 4 is adjusted by the air flow so that the filaments below or in lower region of the acceleration path 7 solidify.
  • the coulter is through the take-off nozzle 31 as spunbond 19 on the Sieve belt 17 deposited.
  • filament speeds of 6,000 to 10,000 m / min preferably 6,000 to 8,000 m / min reached.
  • the String of filaments with a single titer of 0.3 to 10 dpf, preferably 0.5 to 5 dpf.
  • the one generated in the acceleration section Cooling media flow is reduced to a ratio of filament speed Flow rate accelerated from 0.3 to 2 times the filament speed.
  • the device shown in Fig. 1 for performing the invention The procedure is exemplary. Here is between the pre-cooling shaft 8 and the Spinning head 1 provided a heater 30 to delay thermal To be able to adjust crystallization. It is also possible to use the cooling air in the Blow in pre-cooling shaft 8.
  • the main idea of the invention is that the solidification of the filaments of the thread group only within the post-cooling zone takes place in order to positively influence the physical properties to get increased production speeds.
  • the device has a spinning head 1 on, which is connected to a melt feed (not shown here).
  • a melt feed (not shown here).
  • the ring nozzle 21 has a plurality of nozzle bores 3 which are arranged in a ring are.
  • a pre-cooling shaft 8 is arranged below the spinning head 1.
  • the Pre-cooling shaft 8 is designed with a gas-permeable wall 33 is arranged enveloping to the ring nozzle 21.
  • the pre-cooling shaft 8 forms the Pre-cooling zone 5 directly below the ring nozzle 21.
  • a blowing 32 projects lancet-shaped from the underside of the spinning head 1 centrically to the ring nozzle 21 into the cooling zone 5. Through the blowing 32 a cooling medium is passed radially from the inside out into the cooling zone 5.
  • the after-cooling shaft 9 is preferably tubular formed, being between the inlet side and the outlet side in the After cooling shaft 9 an acceleration section 7 with a narrowest cross section is trained. On both sides of the acceleration path 7 is the After-cooling shaft 9 with preferably continuously increasing Flow cross section formed.
  • Post-cooling zone 6 is formed.
  • the suction device 11 has a vacuum source 22 which is connected to an outlet chamber 29 via a suction shaft 12. On the outlet chamber 29 is connected to the after-cooling shaft 9 on one side. On on the opposite side, the outlet chamber 29 has an outlet 34.
  • a screen cylinder 28 is coaxial with that After-cooling shaft 9 arranged.
  • a draw-off means 14 is connected downstream of the cooling device in the thread running direction.
  • the trigger means 14 is formed from several godets 25 and 26.
  • a roller 24 is located between the take-off godet 25 and the cooling device provided to bring together a family of threads to form a tow 23.
  • the trigger means 14 is followed by a can deposit 27.
  • a polymer melt through the Nozzle bores 3 of the ring nozzle 21 are extruded into a family of threads 10.
  • the Thread cluster 10 is formed from individual filaments 4.
  • the thread cluster 10 first enters the pre-cooling zone 5.
  • the Filaments 4 of the thread sheet 10 through a cooling medium flow of the blowing 32 cooled.
  • the group of threads 10 arranged in a ring is arranged radially from the inside acted upon externally with the coolant flow.
  • a second Coolant flow enters through wall 33 radially from the outside inwards into the cooling zone.
  • the filaments 4 of the thread sheet 10 are in the Pre-cooling zone 5 only cooled until the edge zones solidified.
  • the thread sheet 10 is cooled by the post-cooling zone 6 of the After cooling shaft 9 performed. Due to the fact that in the post-cooling zone 6 prevailing negative pressure, the cooling medium introduced into the pre-cooling zone 5 sucked into the post-cooling zone 6. When passing the acceleration section 7 a flow of cooling media is accelerated to a flow rate that is greater or is equal to the running speed of the thread sheet 10. It is achieved that the filaments 4 of the thread sheet 10 are supported in their movement. Those acting on the thread sheet 10 through the pulling means 14 Deduction voltages take effect only after a delay. With that the stress-induced crystallization occurs with a delay.
  • the pre-cooling and the Aftercooling is set such that the filaments 4 of the thread group 10 preferably below the acceleration path 7 or in the lower half the acceleration path 7 finally solidify.
  • the thread cluster 10 leaves the cooling device through the outlet 34.
  • the accompanying Cooling medium flow previously discharged by means of the outlet chamber.
  • the thread sheet 10 is closed by the roller 24 a tow 23 merged and through the trigger 14 to one Can shelf 27 out.
  • the tow 23 is located in the can shelf 27 for example stored in a round jug.
  • the device shown in Fig. 2 is exemplary. So it is possible that for Treatment of the tow several drafting devices or heating devices of the Can rack are upstream or for post-treatment of the tow Devices such as a fiber cutter with a Baler for the production of staple fibers are connected downstream.
  • Training of the cooling device exemplary. The procedure is not on that limited that the cooling medium flow through a negative pressure in the Post-cooling zone 6 is generated. It is essential that a pressure drop between the Pre-cooling zone 5 and the post-cooling zone 6 is present to the one Movement of the filaments and thus influencing the withdrawal tension To generate cooling media flow. Cooling air is preferably used as the cooling medium used.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Textile Engineering (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

Die Erfindung betrifft ein Verfahren zum Schmelzspinnen einer multifilen Fadenschar aus einer Polymerschmelze gemäß dem Oberbegriff des Anspruchs 1.The invention relates to a method for melt spinning a multifilament String of threads from a polymer melt according to the preamble of claim 1.

Zur Herstellung eines synthetischen Spinnvlies oder zur Herstellung eines synthetischen Tow zur Stapelfasererzeugung ist es erforderlich, aus einer Polymerschmelze eine Fadenschar zu spinnen. Die Fadenschar wird aus einer Vielzahl von Filamenten gebildet, die durch Düsenbohrungen extrudiert werden. Die Fadenschar wird dabei durch ein Abzugsmittel aus der Spinnzone abgezogen. Nachdem die Filamente der Fadenschar aus den Düsenbohrungen herausgetreten sind, erfolgt in einer Kühlzone eine Abkühlung der Fadenschar bis zur Erstarrung der Filamente.For the production of a synthetic spunbond or for the production of a Synthetic tow for staple fiber production is required from a Polymer melt to spin a thread sheet. The coulter becomes a Forms a variety of filaments that are extruded through die holes. The coulter is pulled out of the spinning zone by a pulling agent. After the filaments of the thread sheet emerge from the nozzle bores are cooled in a cooling zone until the yarn sheet solidifies of filaments.

Bei der Herstellung von Spinnvlies werden hierbei bevorzugt Anblasungen eingesetzt, wie sie beispielsweise aus der DE 35 03 818 bekannt sind. Dabei wird in einem Kühlschacht unterhalb der Düsenbohrungen ein Kühlmittel im wesentlichen radial gegen die Fadenschar geblasen. Unmittelbar unterhalb des Kühlschachtes ist ein Streckschacht ausgebildet. Der Streckschacht weist eine venturidüsenartige Verformung auf, um einen zur Verstreckung der Fadenschar beschleunigten Luftstrom zu erzeugen. Hierzu ist der Streckschacht an einer Unterdruckquelle angeschlossen. Bei diesem Verfahren wird die Fadenschar intensiv abgekühlt , damit die durch die Verstreckung erzeugte Abzugskraft nicht zum Reißen der Filamente führt.In the production of spunbonded fabrics, blowing is preferred used, as are known for example from DE 35 03 818. Doing so in a cooling shaft below the nozzle holes a coolant in the essentially blown radially against the thread sheet. Immediately below the A cooling shaft is formed in the cooling shaft. The stretching shaft has one venturi-like deformation to one to stretch the thread sheet to generate accelerated air flow. For this purpose, the stretching shaft is on one Vacuum source connected. In this process, the thread group cooled intensively so that the pulling force generated by the stretching does not leads to the tearing of the filaments.

In dem Fall, bei welchem die Fadenschar aus einer ringförmig angeordneten Düsenbohrungsreihe gesponnen wird, erfolgt die Kühlung der Fadenschar ebenfalls durch einen radial gerichteten Kühlmittelstrom, wie beispielsweise aus der EP 0 536 497 bekannt ist. Dabei wird die Filamentschar unmittelbar nach Austritt aus den Düsenbohrungen mit einem radial von innen nach außen gerichteten Kühlluftstrom abgekühlt. Bei den bekannten Verfahren erfolgt eine intensive Abkühlung der Fadenschar innerhalb der Kühlzone. Damit erhalten die Filamente der Fadenschar eine kristalline Vororientierung, welche die nachfolgende Verstreckung und damit die physikalischen Eigenschaften der Fadenschar bestimmen. Eine Erhöhung der Produktionsgeschwindigkeit bei dem bekannten Verfahren führt somit zwangsläufig zu veränderten physikalischen Eigenschaften bzw. bei unzureichender Kühlung zu Filamentbrüchen.In the case in which the thread sheet consists of a ring-shaped arrangement Row of nozzle bores is spun, the thread sheet is cooled also by a radially directed coolant flow, such as from EP 0 536 497 is known. The filament cluster is immediately after Exit from the nozzle bores with a radial from the inside out directed cooling air flow cooled. In the known methods, the thread sheet is cooled intensively inside the cooling zone. This gives the filaments of the thread group one crystalline pre-orientation, which the subsequent stretching and thus the determine the physical properties of the thread group. An increase in Production speed in the known method thus leads inevitably changes in physical properties or insufficient cooling to filament breaks.

Die WO 00/05439 und die WO 99/67450 beschreiben eine Spinnvorrichtung zum Spinnen eines synthetischen Fadens, welcher durch Zusammenfassen eines aus einer Vielzahl von einzelnen Filamenten bestehenden Filamentbündels gebildet ist. Die WO 95/15409 beschreibt ein Schmelzspinnverfahren sowie eine Vonichtung zum Schmelzspinnen mit einer Kühlzone zum Abkühlen der Schmelze, bei dem die Geschwindigkeit des Luftstromes der Oberflächengeschwindigkeit des Fadens angepasst ist, so dass zwischen dem Faden und der ihm angrenzenden Luftschicht unwesentliche Reibungskräfte entstehen.WO 00/05439 and WO 99/67450 describe a spinning device for spinning a synthetic thread, which by combining one of a plurality of individual Filaments existing filament bundle is formed. WO 95/15409 describes a melt spinning process and a device for melt spinning with a cooling zone for cooling the melt at which the speed of the air flow is the surface speed of the thread is adjusted so that between the thread and the adjacent Insignificant frictional forces arise in the air layer.

Demgemäß ist es Aufgabe der Erfindung, ein Verfahren der eingangs genannten Art derart weiterzubilden, daß eine Fadenschar mit höheren Produktionsgeschwindigkeiten bei gleichbleibenden guten physikalischen. Eigenschaften gesponnen werden können.Accordingly, it is an object of the invention, a method of the aforementioned Kind in such a way that a thread group with higher Production speeds with good physical properties. Properties can be spun.

Die Aufgabe wird durch ein Verfahren mit den Merkmalen gemäß Anspruch 1 gelöst.The object is achieved by a method with the features according to claim 1 solved.

Weitere vorteilhafte Verfahrensvarianten sind in den Unteransprüchen definiert.Further advantageous process variants are defined in the subclaims.

Der Erfindung liegt die Erkenntnis zugrunde, daß die Verfestigung der Filamente der Fadenschar vom Austritt aus den Düsenbohrungen bis zur Erstarrung durch zwei sich gegenseitig beeinflussende Effekte bestimmt ist. Es ist bekannt, daß beim Abkühlen einer Polymerschmelze sich diese ab einer bestimmten Temperatur verfestigt. Dieser Vorgang ist allein von der Temperatur abhängig und wird hier als thermische Kristallisation bezeichnet. Beim Schmelzspinnen einer Fadenschar wird die Fadenschar aus der Spinndüse abgezogen. Dabei wirken an den Filamenten der Fadenschar Abzugskräfte, die eine spannungsinduzierte Kristallisation in den Filamenten bewirken. Beim Schmelzspinnen einer Fadenschar treten somit die thermische Kristallisation und die spannungsinduzierte Kristallisation überlagert auf und führen gemeinsam zur Erstarrung der Filamente. The invention is based on the knowledge that the solidification of the filaments the coulter of threads from the exit from the nozzle bores to solidification two mutually influencing effects is determined. It is known that when a polymer melt cools down, it starts to melt from a certain point Solidified temperature. This process depends solely on the temperature and is referred to here as thermal crystallization. When melt spinning a set of threads pulls the set of threads out of the spinneret. there pulling forces act on the filaments of the thread sheet, one cause tension-induced crystallization in the filaments. At the Melt spinning a sheet of threads thus undergo thermal crystallization and the stress-induced crystallization overlays and leads together to Solidification of the filaments.

Durch die Erfindung wird nun ein Verfahren bereitgestellt, bei welchem die Filamente der Fadenschar derart abgekühlt werden, daß beide Effekte zur Erzielung höherer Produktionsgeschwindigkeiten bei gleichbleibenden guten physikalischen Eigenschaften beeinflußbar sind. Hierzu werden die Filamente der Fadenschar zunächst in der Kühlzone, die hier als Vorkühlzone bezeichnet ist, ohne Erstarrung der Polymerschmelze vorgekühlt. Anschließend wird die Fadenschar direkt in eine unterhalb der Vorkühlzone und vor einem Abzugsmittel ausgebildete zweite Kühlzone, die hier als Nachkühlzone bezeichnet ist, geführt. Innerhalb der Nachkühlzone werden die Filamente der Fadenschar unter Einwirkung eines in Fadenlauf gerichteten Kühlmedienstroms bis zur Erstarrung weiter gekühlt, wobei der Kühlmedienstrom eine vorgegebene Fließgeschwindigkeit zur Beeinflussung der Fadenreibung aufweist. Hierdurch läßt sich die an den Filamenten wirkende Abzugsspannung derart beeinflussen, daß die spannungsinduzierte Kristallisation verzögert stattfindet. Da die Filamente der Fadenschar in der Vorkühlzone im wesentlichen nur in den Randzonen verfestigt sind, können keine nennenswerten Abzugsspannungen von den Filamenten aufgenommen werden. Somit tritt in der Vorkühlzone keine wesentliche spannungsinduzierte Kristallisation sondern ausschließlich eine thermisch bedingte Kristallisation auf. Die Fadenschar läßt sich dabei in einer linienförmigen Reihenanordnung oder in einer kreisförmigen Reihenanordnung aus den Düsenbohrungen mehrerer oder einer Spinndüse ausspinnen.The invention now provides a method in which the Filaments of the thread family are cooled in such a way that both effects Achieve higher production speeds with the same good ones physical properties can be influenced. The filaments of the Thread group initially in the cooling zone, which is referred to here as the pre-cooling zone, pre-cooled without solidification of the polymer melt. Then the Thread coulter directly into a below the pre-cooling zone and in front of a pull-off agent trained second cooling zone, which is referred to here as a post-cooling zone. The filaments of the thread group are placed under the post-cooling zone Exposure to a cooling medium flow directed in the thread course until solidification cooled further, the cooling medium flow being a predetermined one Has flow rate to influence the thread friction. hereby the withdrawal tension acting on the filaments can be influenced in such a way that the voltage-induced crystallization takes place with a delay. Because the filaments the thread sheet in the pre-cooling zone essentially only in the peripheral zones are solidified, no significant withdrawal voltages from the Filaments are recorded. This means that none occurs in the pre-cooling zone essential stress-induced crystallization but only one thermally induced crystallization. The thread group can be in one linear row arrangement or in a circular row arrangement spin out of the nozzle holes of several or one spinneret.

Bei einer besonders vorteilhaften Verfahrensvariante wird der Kühlmedienstrom zur Beeinflussung der Fadenreibung in einer Beschleunigungsstrecke innerhalb der Nachkühlzone auf die vorbestimmte Fließgeschwindigkeit beschleunigt. Dabei ist die Beschleunigungsstrecke vorzugsweise unmittelbar vor dem Erstarrungsbereich der Filamente der Fadenschar ausgebildet. Damit läßt sich die Nachkühlung in der Nachkühlzone unabhängig von der Vorkühlung in der Vorkühlzone beeinflussen und steuern. Zum andern wird gewährleistet, daß der beschleunigte Kühlmedienstrom in einer Phase an den Filamenten der Fadenschar angreift, in welcher die die Filamente eine äußerliche angreifende Luftreibung ertragen, ohne daß die Filamente brechen.In a particularly advantageous process variant, the cooling medium flow to influence the thread friction in an acceleration section within the post-cooling zone accelerated to the predetermined flow rate. The acceleration path is preferably immediately before Solidification area of the filaments of the thread sheet is formed. So that the Post-cooling in the post-cooling zone regardless of the pre-cooling in the Influence and control the pre-cooling zone. Secondly, it is guaranteed that the accelerated cooling medium flow in one phase on the filaments of the thread family in which the filaments attack an external air friction endured without breaking the filaments.

Zur Beeinflussung der an die Fadenschar angreifenden Abzugskräfte ist nach einer besonders vorteilhaften Verfahrensvariante die Fließgeschwindigkeit des Kühlmedienstroms vor dem Erstarrungsbereich der Filamente zumindest gleich oder etwas größer als die Laufgeschwindigkeit der Filamente. Die Fließgeschwindigkeit des Kühlmedienstroms unterscheidet sich von der Laufgeschwindigkeit der Filamente vorzugsweise um den Faktor 0,3 bis 2.To influence the pulling forces acting on the thread sheet is after a particularly advantageous process variant, the flow rate of the Coolant flow before the solidification area of the filaments at least the same or slightly higher than the running speed of the filaments. The Flow rate of the cooling medium flow differs from that Filament speed preferably by a factor of 0.3 to 2.

Die besonders vorteilhafte Verfahrensvariante gemäß Anspruch 4 ist insbesondere geeignet, um Fäden mit kleinen, mittleren oder großen Fadentitern mit höherer Produktionsgeschwindigkeit und gleichmäßigen physikalischen Eigenschaften herzustellen. Hierbei wird die Beeinflussung der spannungsinduzierten Kristallisation unter im wesentlichen gleichbleibenden Bedingungen vorgenommen. Die Vorkühlung der Filamente der Fadenschar nach Austritt aus den Düsenbohrungen innerhalb der Kühlzone ist in ihrer Kühlwirkung derart einstellbar, daß die Lage des Erstarrungsbereiches der Filamente der Fadenschar innerhalb der Nachkühlzone in einen vorgegebenen Sollbereich gehalten werden können. Die Erstarrung der Filamente der Fadenschar in der Nachkühlzone erfolgt somit im wesentlichen immer an gleicher Stelle, so daß eine gleichmäßige Behandlung der Filamente zur Beeinflussung der spannungsinduzierten Kristallisation gewährt ist.The particularly advantageous method variant according to claim 4 is in particular suitable for threads with small, medium or large thread titers with higher Production speed and uniform physical properties manufacture. Here the influencing of the voltage-induced Crystallization under essentially constant conditions performed. Pre-cooling of the filaments of the thread sheet after exiting the cooling effect of the nozzle bores within the cooling zone is such adjustable that the position of the solidification area of the filaments of the thread sheet be kept within a predetermined target range within the post-cooling zone can. The filaments of the thread sheet solidify in the post-cooling zone thus essentially always in the same place, so that a uniform Treatment of the filaments to influence the tension-induced Crystallization is granted.

Um die thermische Kristallisation zu beeinflussen, müssen die durch das Kühlmedium in der Vorkühlzone wirkenden Abkühleffekte veränderbar ausgeführt sein. Dabei ist es jedoch erforderlich, daß die Filamente der Fadenschar vor Eintritt in die Nachkühlzone eine gewisse Stabilität, insbesondere in den äußeren Randschichten, bereits aufweisen müssen, um den Kühlmedienstrom in der Nachkühlzone ungeschädigt zu ertragen. In order to influence the thermal crystallization, the through the Cooling medium in the pre-cooling zone cooling effects can be changed be executed. However, it is necessary that the filaments of the Thread group before entering the post-cooling zone a certain stability, in particular in the outer peripheral layers, must already have the Bear the cooling medium flow in the post-cooling zone undamaged.

Eine besonders vorteilhafte Variante zur Steuerung der Kühlung ist durch die Weiterbildung der Erfindung gegeben, bei welcher das Kühlmedium vor Eintritt in die Vorkühlzone temperiert wird. In diesem Fall kann das Kühlmedium in seiner Temperatur vor Eintritt in die Vorkühlzone auf einen Wert vorzugsweise im Bereich von 20°C bis 300°C erwärmt werden. Um beispielsweise eine Fadenschar mit relativ kleinen Filamenttitern zu spinnen, wird das Kühlmedium durch beispielsweise eine Heizeinrichtung auf eine hohe Temperatur vorgewärmt. Damit wird die unmittelbar nach Austreten aus den Düsenbohrungen einsetzende thermische Kristallisation derart beeinflußt, daß die Filamente der Fadenschar vor Eintritt in die Nachkühlzone nicht erstarrt sind. Somit ist eine vorteilhafte Spannungsbehandlung durch einen parallel zu der Fadenschar gerichteten Kühlmedienstrom möglich, der zum Erstarren der Filamente der Fadenschar in den Sollbereich der Nachkühlzone Führt. In dem Fall, daß eine Fadenschar mit großem Filamenttiter gesponnen werden soll, wird das Kühlmedium auf eine niedrigere Temperatur in der Vorkühlzone eingestellt, so daß die thermische Kristallisation soweit vor Eintritt in die Nachkühlzone ausgebildet ist, daß die Filamente der Fadenschar genügend Stabilität bei Angriff des Kühlmedienstroms aufweisen.A particularly advantageous variant for controlling the cooling is the Further development of the invention given in which the cooling medium before entry is tempered in the pre-cooling zone. In this case, the cooling medium can its temperature before entering the pre-cooling zone preferably to a value be heated in the range of 20 ° C to 300 ° C. For example, a Spinning threads with relatively small filament titles becomes the cooling medium preheated to a high temperature by, for example, a heater. This is the one that starts immediately after exiting the nozzle bores thermal crystallization influenced in such a way that the filaments of the thread sheet before Entry into the post-cooling zone are not frozen. So is an advantageous one Tension treatment by a parallel to the thread sheet Cooling medium flow possible, which solidifies the filaments of the thread sheet in leads the target area of the post-cooling zone. In the event that a group of threads with large filament titer is to be spun, the cooling medium is on a lower temperature set in the pre-cooling zone, so that the thermal Crystallization is so far formed before entering the after-cooling zone that the Filaments of the thread sheet have sufficient stability when the cooling medium flow is attacked exhibit.

Zur Einstellung der Kühlung in der Vorkühlzone wird gemäß einer weiteren vorteilhaften Weiterbildung der Erfindung vorgeschlagen, den Volumenstrom des Kühlmediums zu verändern. Hierzu kann beispielsweise ein Gebläse eingesetzt sein, durch welches der in die Vorkühlzone eingeblasene Volumenstrom steuerbar ist.To set the cooling in the pre-cooling zone according to another advantageous development of the invention proposed the volume flow of To change the cooling medium. A blower can be used for this purpose, for example be controllable by which the volume flow blown into the pre-cooling zone is.

Das erfindungsgemäße Verfahren ist unabhängig davon, ob der Kühlmedienstrom in der Nachkühlzone durch eine Saugwirkung oder durch eine Blaswirkung erzeugt wird. Die Verfahrensvariante, bei welcher eine Saugströmung in der Nachkühlzone herrscht, besitzt den Vorteil, daß die thermische Kristallisation in der Vorkühlzone und die spannungsinduzierte Kristallisation in der Nachkühlzone im wesentlichen unabhängig voneinander beeinflußbar sind. The method according to the invention is independent of whether the cooling medium flow in the post-cooling zone by suction or by blowing is produced. The process variant in which a suction flow in the After cooling zone prevails, has the advantage that the thermal crystallization in the pre-cooling zone and the stress-induced crystallization in the after-cooling zone can be influenced essentially independently of one another.

Zur Erzeugung eines Kühlmedienstroms durch Blaswirkung ist es möglich, das Kühlmedium in die Vorkühlzone einzublasen und entsprechend in die Spannungszone zu leiten oder ein unterhalb der Vorkühlzone zugeführtes Kühlmedium direkt in die Nachkühlzone einzublasen.To generate a flow of cooling media by blowing, it is possible that Blow cooling medium into the pre-cooling zone and accordingly into the Conduct tension zone or one supplied below the pre-cooling zone Blow cooling medium directly into the post-cooling zone.

Um insbesondere bei einer Fadenschar mit großen Filamenttitern eine ausreichende Kühlung in der Nachkühlzone zu erhalten, ist die Verfahrensvariante gemäß Anspruch 10 besonders vorteilhaft. Dabei wird der Kühlmedienstrom aus dem aus der Vorkühlzone austretenden Kühlmedium und einem unmittelbar vor Einlaß der Nachkühlzone zugeführten Kühlmedium erzeugt. Durch das zusätzlich zugeführte Kühlmedium wird erreicht, daß zudem die spannungsinduzierte Kristallisation ebenfalls in weiten Grenzen einstellbar ist und damit eine weitere Optimierung der physikalischen Eigenschaften möglich ist.In particular, for a group of threads with large filament titles The process variant is to obtain adequate cooling in the post-cooling zone according to claim 10 particularly advantageous. The cooling medium flow is switched off the cooling medium emerging from the pre-cooling zone and one immediately before Cooling medium supplied to the inlet of the post-cooling zone. Through that additionally supplied cooling medium is achieved that the voltage-induced Crystallization is also adjustable within wide limits and thus another Optimization of the physical properties is possible.

Die Vorkühlung der Filamente in der Vorkühlzone kann ebenfalls durch einen in die Vorkühlzone eingeblasenen Luftstrom oder durch einen in die Vorkühlzone eingesaugten Luftstrom erfolgen.Pre-cooling of the filaments in the pre-cooling zone can also be done by an in airflow blown into the pre-cooling zone or through an air stream into the pre-cooling zone sucked in air flow.

Das erfindungsgemäße Verfahren ist aufgrund seiner Flexibilität zum Schmelzspinnen einer Fadenschar geeignet, die nach dem Erstarren der Filamente zu einem Spinnvlies abgelegt wird. Dabei wird die Fadenschar in einer linienförmigen Reihenanordnung von den Düsenbohrungen abgezogen und auf ein Siebband abgelegt. Als Abzugsmittel werden hierbei vorzugsweise Abzugsdüsen eingesetzt.The inventive method is due to its flexibility Melt spinning a thread sheet suitable after the solidification of the filaments is deposited to form a spunbond. The thread group is in one line-shaped row arrangement is withdrawn from the nozzle bores and on placed a sieve belt. The following are preferred as the trigger means Trigger nozzles used.

Das Verfahren ist jedoch auch besonders gut geeignet, um eine Fadenschar nach dem Erstarren der Filamente zu einem Tow zusammenzuführen, das in eine Kanne für die Herstellung von Stapelfasern abgelegt wird. Hierbei wird die Fadenschar vorzugsweise aus einer Ringdüse in einer kreisförmigen Reihenanordnung ausgesponnen und durch die Vorkühlzone und Nachkühlzone geführt. Nach Austreten aus der Nachkühlzone wird die Fadenschar zu dem Tow zusammengeführt. Das Tow könnte jedoch in einem folgenden Prozeßschritt auch unmittelbar zu Stapelfaser geschnitten oder gerissen werden, um anschließend zu einem Ballen gepreßt zu werden.However, the method is also particularly well suited for following a family of threads the solidification of the filaments to form a tow that Jug is deposited for the production of staple fibers. Here, the Thread group preferably from an annular nozzle in a circular Row arrangement spun and through the pre-cooling zone and post-cooling zone guided. After leaving the post-cooling zone, the thread group becomes the tow merged. However, the tow could also in a subsequent process step can be cut or torn immediately into staple fiber and then subsequently to be pressed into a bale.

Es ist jedoch auch möglich, die Fadenschar nach dem Erstarren der Filamente zu mehreren Einzelfäden aufzuteilen, die auf Spulen aufgewickelt werden.However, it is also possible to close the thread sheet after the filaments have solidified to split several individual threads that are wound on bobbins.

Die Fadenschar läßt sich dabei aus einer Polymerschmelze auf Basis von Polyester, Polyamid oder Polypropylene spinnen.The thread sheet can be made from a polymer melt based on Spinning polyester, polyamide or polypropylene.

Anhand der beigefügten Zeichnungen werden vorteilhafte Auswirkungen des erfindungsgemäßen Verfahrens anhand von Vorrichtungsausführungsbeispielen näher beschrieben.Advantageous effects of the The method according to the invention based on exemplary embodiments of the device described in more detail.

Es stellen dar:

Fig. 1
schematisch eine Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens zur Herstellung eines Spinnvlies;
Fig. 2
schematisch ein weiteres Ausführungsbeispiel einer Vorrichtung zur Durchführung des Verfahrens zur Herstellung eines Tows.
They represent:
Fig. 1
schematically shows a device for performing the method according to the invention for producing a spunbond;
Fig. 2
schematically shows another embodiment of an apparatus for performing the method for producing a tow.

In Fig. 1 ist ein erstes Ausführungsbeispiel einer Vorrichtung zur Durchführung des Verfahrens zur Herstellung eines Spinnvlies gezeigt. Die Vorrichtung weist einen beheizten Spinnkopf 1 auf, der an einer Schmelzezuführung (hier nicht dargestellt) angeschlossen ist. Auf der Unterseite des Spinnkopfes 1 sind mehrere Spinndüsen 2 in einer Spinnlinie reihenförmig angeordnet. Die Spinndüsen 2 weisen auf ihren Unterseiten eine Vielzahl von Düsenbohrungen 3 auf. Unterhalb des Spinnkopfes 1 ist ein Vorkühlschacht 8 ausgebildet, der eine Vorkühlzone 5 bildet, durch welche eine Fadenschar 10 geführt wird. Der Vorkühlschacht 8 weist an den gegenüberliegenden Längsseiten jeweils eine gasdurchlässige Seitenwand 34 auf, durch welche ein Kühlmedium vorzugsweise Kühlluft in die Vorkühlzone 5 geleitet wird. Der Vorkühlschacht 8 ist an den Enden des Spinnkopfes 1 durch Querwände verschlossen. Unterhalb des Vorkühlschachts 8 ist ein Nachkühlschacht 9 angeordnet. In dem Nachkühlschacht 9 wird eine Nachkühlzone 6 gebildet, die ebenfalls von der Fadenschar durchlaufen wird. Der Vorkühlschacht 8 und der Nachkühlschacht 9 sind hierbei in einer Ebene angeordnet, so daß die Fadenschar ohne Auslenkung durch die Vorkühlzone 5 und die Nachkühlzone 6 geführt werden. Auf der Unterseite des Nachkühlschachtes 9 ist eine Absaugeinrichtung 11 angeschlossen. Die Absaugeinrichtung 11 besitzt auf zwei Seiten jeweils einen Absaugschacht 12.1 und 12.2, die mit zumindest einer Unterdruckquelle (hier nicht dargestellt) verbunden sind.In Fig. 1 is a first embodiment of an apparatus for performing of the method for producing a spunbonded nonwoven. The device has a heated spinning head 1, which is connected to a melt feed (not here shown) is connected. There are several on the underside of the spinning head 1 Spinnerets 2 arranged in a row in a spinning line. The spinnerets 2 have a plurality of nozzle bores 3 on their undersides. Below of the spinning head 1, a pre-cooling shaft 8 is formed, which has a pre-cooling zone 5 forms through which a thread sheet 10 is guided. The pre-cooling shaft 8 has a gas-permeable side wall on the opposite long sides 34 through which a cooling medium preferably cooling air into the pre-cooling zone 5 is directed. The pre-cooling shaft 8 is through at the ends of the spinning head 1 Cross walls closed. Below the pre-cooling shaft 8 is a After-cooling shaft 9 arranged. In the after-cooling shaft 9 Post-cooling zone 6 is formed, which is also passed through by the thread sheet. The Pre-cooling shaft 8 and the after-cooling shaft 9 are in one level arranged so that the thread sheet without deflection through the pre-cooling zone 5 and the post-cooling zone 6 are performed. On the underside of the after-cooling shaft 9 a suction device 11 is connected. The suction device 11 has on two sides each a suction shaft 12.1 and 12.2, with at least a vacuum source (not shown here) are connected.

Die Seitenwände 35.1 und 35.2 in Längsrichtung des Nachkühlschachtes 9 sind derart zueinander geformt, daß sich in Fadenlaufrichtung eine Beschleunigungsstrecke 7 mit einem engsten Abstand der Seitenwände 35.1 und 35.2 zueinander entsteht. Oberhalb und unterhalb der Beschleunigungsstrecke 7 sind die Seitenwände 35.1 und 35.2 des Nachkühlschachtes 9 mit größerem Abstand vorzugsweise mit einem kontinuierlich größer werdenden Abstand zueinander angeordnet. An den Enden des Spinnkopfes 1 ist der Nachkühlschacht 9 durch Querwände verschlossen.The side walls 35.1 and 35.2 are in the longitudinal direction of the after-cooling shaft 9 Shaped to each other so that a Acceleration path 7 with a closest distance between the side walls 35.1 and 35.2 to each other. Above and below the acceleration section 7 are the side walls 35.1 and 35.2 of the after-cooling shaft 9 with a larger one Distance preferably with a continuously increasing distance arranged to each other. At the ends of the spinning head 1 is the after-cooling shaft 9 closed by transverse walls.

In der Spinnlinie ist unterhalb der Kühleinrichtung ein Abzugsmittel 14 zum Abziehen der Fadenschar 10 aus der Spinnzone vorgesehen. Das Abzugsmittel 14 wird hierbei durch eine Abzugsdüse 31 gebildet. Die Abzugsdüse 31 weist auf der Einlaufseite der Fadenschar eine Injektor 15 auf, der mit einer Druckluftzufuhr verbunden ist. Unterhalb der Abzugsdüse ist eine Vliesablageeinrichtung 16 angeordnet. Die Vliesablageeinrichtung 16 besteht aus einem Siebband 17, das über Rollen 20 geführt ist. Auf dem Siebband 17 wird die Fadenschar 10 in Form eines Spinnvlies 19 abgelegt. Unterhalb des Siebbandes 17 ist eine Absaugung 18 angeordnet, die den aus der Abzugsdüse 31 austretenden Luftstrom aufnimmt. In the spinning line below the cooling device there is an extraction means 14 for Pulling off the thread sheet 10 provided from the spinning zone. The trigger 14 is formed here by an exhaust nozzle 31. The trigger nozzle 31 has the Inlet side of the thread coulter on an injector 15 with a compressed air supply connected is. A fleece depositing device 16 is located below the extraction nozzle arranged. The fleece storage device 16 consists of a screen belt 17, the is guided over rollers 20. The thread sheet 10 is in shape on the sieve belt 17 a spunbonded 19 deposited. A suction device 18 is located below the sieve belt 17 arranged, which receives the air stream emerging from the exhaust nozzle 31.

Bei der in Fig. 1 gezeigten Vorrichtung wird ein thermoplastisches Material zu einer Polymerschmelze aufgeschmolzen und dem Spinnkopf 1 zugeführt. Über die Vielzahl der Düsenbohrungen 3 der Spinndüsen 2 werden eine Vielzahl von Filamenten 4 zu einer Fadenschar 10 extrudiert. Die aus den Filamenten gebildete Fadenschar wird von dem Abzugsmittel 14 abgezogen. Dabei durchläuft die Fadenschar mit zunehmender Geschwindigkeit die Vorkühlzone 5 innerhalb des Vorkühlschachtes 8. Anschließend tritt die Fadenschar in den Nachkühlschacht 9 ein und durchläuft die Nachkühlzone 6. In dem Nachkühlschacht 9 wird durch Wirkung eines Unterdruckerzeugers ein Unterdruck in der Nachkühlzone 2 erzeugt. Aufgrund des Unterdruckes und aufgrund eines durch die Fadenscharbewegung erzeugten Selbstansaugungseffektes wird in der Vorkühlzone 5 von außen ein Luftstrom in die Vorkühlzone 5 eingesogen. Die Seitenwände 34.1 und 34.2 der Vorkühlzone sind gasdurchlässig ausgebildet. Der Luftstrom führt zu einer Vorkühlung der Filamente 4 der Fadenschar 10. Durch die Bewegung der Fadenschar 10 und durch die Wirkung des Unterdruckes im Nachkühlschacht 9 wird der Luftstrom in den Nachkühlschacht 9 geleitet. Dabei erfolgt in der Beschleunigungsstrecke 7 eine Ausbildung eines Kühlmedienstroms, der in Laufrichtung der Fadenschar 10 strömt. Durch Abstimmung zwischen dem Unterdruck und dem Abstand der Seitenwände im Nachkühlschacht 9 wird der Kühlmedienstrom auf eine Geschwindigkeit beschleunigt, die zumindest gleich oder größer als die Filamentgeschwindigkeit ist. Dabei wird die Fadenschar 10 kontinuierlich weiter gekühlt bis die Filamente 4 der Fadenschar 10 völlig erstarrt sind. Der Erstarrungsbereich der Filamente 4 wird durch die Luftführung derart eingestellt, daß die Filamente unterhalb oder im unteren Bereich der Beschleunigungsstrecke 7 sich verfestigen. Nach Abkühlung der Fadenschar wird diese durch die Abzugsdüse 31 als Spinnvlies 19 auf dem Siebband 17 abgelegt. Hierbei werden Filamentgeschwindigkeiten von 6.000 bis 10.000 m/min vorzugsweise 6.000 bis 8.000 m/min erreicht. Dabei kann die Fadenschar aus Filamenten mit einem Einzeltiter von 0,3 bis 10 dpf, vorzugweise 0,5 bis 5 dpf, ausgeführt sein. Der in der Beschleunigungsstrecke erzeugte Kühlmedienstrom wird im Verhältnis zu der Filamentgeschwindigkeit auf eine Fließgeschwindigkeit von 0,3 bis 2mal der Filamentgeschwindigkeit beschleunigt.In the device shown in Fig. 1, a thermoplastic material is added melted a polymer melt and fed to the spinning head 1. About the A large number of the nozzle bores 3 of the spinnerets 2 are a large number of Filaments 4 extruded into a sheet 10. The one formed from the filaments String of threads is pulled off the pulling means 14. The runs through Thread coulter with increasing speed the precooling zone 5 within the Pre-cooling shaft 8. The thread sheet then enters the after-cooling shaft 9 and passes through the after-cooling zone 6. In the after-cooling shaft 9 is through Effect of a negative pressure generator a negative pressure in the after-cooling zone 2 generated. Because of the negative pressure and due to one of the Thread coulter movement produces self-suction effect in the Pre-cooling zone 5 sucked an air stream into the pre-cooling zone 5 from the outside. The Side walls 34.1 and 34.2 of the pre-cooling zone are gas-permeable. The Air flow leads to a pre-cooling of the filaments 4 of the thread sheet 10. By the movement of the thread sheet 10 and by the action of the vacuum in After-cooling shaft 9, the air flow is conducted into the after-cooling shaft 9. there there is a formation in the acceleration path 7 Coolant flow, which flows in the direction of the thread sheet 10. By Coordination between the negative pressure and the distance between the side walls in the After cooling shaft 9, the cooling medium flow is at a speed accelerates that are at least equal to or greater than the filament speed is. The thread sheet 10 is continuously cooled until the filaments 4 of the thread group 10 are completely frozen. The solidification area of the filaments 4 is adjusted by the air flow so that the filaments below or in lower region of the acceleration path 7 solidify. After cooling the coulter is through the take-off nozzle 31 as spunbond 19 on the Sieve belt 17 deposited. Here filament speeds of 6,000 to 10,000 m / min preferably 6,000 to 8,000 m / min reached. The String of filaments with a single titer of 0.3 to 10 dpf, preferably 0.5 to 5 dpf. The one generated in the acceleration section Cooling media flow is reduced to a ratio of filament speed Flow rate accelerated from 0.3 to 2 times the filament speed.

Die in Fig. 1 dargestellte Vorrichtung zur Durchführung des erfindungsgemäßen Verfahrens ist beispielhaft. Hierbei ist zwischen dem Vorkühlschacht 8 und dem Spinnkopf 1 eine Heizeinrichtung 30 vorgesehen, um eine verzögerte thermische Kristallisation einstellen zu können. Ebenso ist es möglich, die Kühlluft in dem Vorkühlschacht 8 einzublasen. Der wesentliche Erfindungsgedanke ist hierbei, daß die Erstarrung der Filamente der Fadenschar erst innerhalb der Nachkühlzone erfolgt, um die positive Beeinflussung der physikalischen Eigenschaften bei gesteigerten Produktionsgeschwindigkeiten zu erhalten.The device shown in Fig. 1 for performing the invention The procedure is exemplary. Here is between the pre-cooling shaft 8 and the Spinning head 1 provided a heater 30 to delay thermal To be able to adjust crystallization. It is also possible to use the cooling air in the Blow in pre-cooling shaft 8. The main idea of the invention is that the solidification of the filaments of the thread group only within the post-cooling zone takes place in order to positively influence the physical properties to get increased production speeds.

In Fig. 2 ist ein weiteres Ausführungsbeispiel einer Vorrichtung zur Durchführung des Verfahrens gezeigt, die eingesetzt wird, um aus der Fadenschar ein Tow für die Stapelfaserherstellung zu erzeugen. Die Vorrichtung weist einen Spinnkopf 1 auf, der mit einer Schmelzezuführung (hier nicht dargestellt) verbunden ist. Auf der Unterseite des Spinnkopfes 1 ist eine Ringdüse 21 angeordnet. Die Ringdüse 21 weist eine Vielzahl von Düsenbohrungen 3 auf, die ringförmig angeordnet sind. Unterhalb des Spinnkopfes 1 ist ein Vorkühlschacht 8 angeordnet. Der Vorkühlschacht 8 ist mit einer gasdurchlässigen Wandung 33 ausgeführt, die umhüllend zu der Ringdüse 21 angeordnet ist. Der Vorkühlschacht 8 bildet die Vorkühlzone 5 direkt unterhalb der Ringdüse 21. Innerhalb der Vorkühlzone 5 ragt eine Anblasung 32 lanzettenförmig von der Unterseite des Spinnkopfes 1 zentrisch zur Ringdüse 21 in die Kühlzone 5 hinein. Durch die Anblasung 32 wird ein Kühlmedium radial von innen nach außen in die Kühlzone 5 hineingeleitet.2 shows a further exemplary embodiment of a device for carrying it out of the method shown, which is used to a Tow for from the thread sheet to produce the staple fiber production. The device has a spinning head 1 on, which is connected to a melt feed (not shown here). On an annular nozzle 21 is arranged on the underside of the spinning head 1. The ring nozzle 21 has a plurality of nozzle bores 3 which are arranged in a ring are. A pre-cooling shaft 8 is arranged below the spinning head 1. The Pre-cooling shaft 8 is designed with a gas-permeable wall 33 is arranged enveloping to the ring nozzle 21. The pre-cooling shaft 8 forms the Pre-cooling zone 5 directly below the ring nozzle 21. Inside the pre-cooling zone 5 a blowing 32 projects lancet-shaped from the underside of the spinning head 1 centrically to the ring nozzle 21 into the cooling zone 5. Through the blowing 32 a cooling medium is passed radially from the inside out into the cooling zone 5.

Unterhalb des Vorkühlschachtes 8 ist ein Nachkühlschacht 9 in der Spinnlinie angeordnet. Der Nachkühlschacht 9 ist hierbei vorzugsweise rohrförmig ausgebildet, wobei zwischen der Einlaßseite und der Auslaßseite in dem Nachkühlschacht 9 eine Beschleunigungsstrecke 7 mit einem engsten Querschnitt ausgebildet ist. Zu beiden Seiten der Beschleunigungsstrecke 7 ist der Nachkühlschacht 9 mit vorzugsweise kontinuierlich größer werdendem Strömungsquerschnitt ausgebildet. Durch den Nachkühlschacht 9 wird die Nachkühlzone 6 gebildet. Unterhalb des Nachkühlschachtes 9 ist eine Absaugeinrichtung vorgesehen, die in der Nachkühlzone einen Unterdruck erzeugt. Hierzu weist die Absaugeinrichtung 11 eine Unterdruckquelle 22 auf, die über einen Absaugschacht 12 mit einer Auslaßkammer 29 verbunden ist. Auf der einen Seite ist die Auslaßkammer 29 mit dem Nachkühlschacht 9 verbunden. Auf der gegenüberliegenden Seite weist die Auslaßkammer 29 einen Auslaß 34 auf. Innerhalb der Auslaßkammer 29 ist ein Siebzylinder 28 koaxial zu dem Nachkühlschacht 9 angeordnet.Below the pre-cooling shaft 8 is a post-cooling shaft 9 in the spinning line arranged. The after-cooling shaft 9 is preferably tubular formed, being between the inlet side and the outlet side in the After cooling shaft 9 an acceleration section 7 with a narrowest cross section is trained. On both sides of the acceleration path 7 is the After-cooling shaft 9 with preferably continuously increasing Flow cross section formed. Through the after-cooling shaft 9 Post-cooling zone 6 is formed. Below the after-cooling shaft 9 is one Suction device provided that a negative pressure in the post-cooling zone generated. For this purpose, the suction device 11 has a vacuum source 22 which is connected to an outlet chamber 29 via a suction shaft 12. On the the outlet chamber 29 is connected to the after-cooling shaft 9 on one side. On on the opposite side, the outlet chamber 29 has an outlet 34. Within the outlet chamber 29, a screen cylinder 28 is coaxial with that After-cooling shaft 9 arranged.

In Fadenlaufrichtung ist der Kühleinrichtung ein Abzugsmittel 14 nachgeschaltet. Das Abzugsmittel 14 wird hierbei aus mehreren Galetten 25 und 26 gebildet. Zwischen der Abzugsgalette 25 und der Kühleinrichtung ist eine Walze 24 vorgesehen, um eine Fadenschar zu einem Tow 23 zusammenzuführen.A draw-off means 14 is connected downstream of the cooling device in the thread running direction. The trigger means 14 is formed from several godets 25 and 26. A roller 24 is located between the take-off godet 25 and the cooling device provided to bring together a family of threads to form a tow 23.

Dem Abzugsmittel 14 ist eine Kannanablage 27 nachgeordnet.The trigger means 14 is followed by a can deposit 27.

Bei der in Fig. 2 dargestellten Vorrichtung wird eine Polymerschmelze durch die Düsenbohrungen 3 der Ringdüse 21 zu einer Fadenschar 10 extrudiert. Die Fadenschar 10 wird dabei aus einzelnen Filamenten 4 gebildet. Die Fadenschar 10 tritt zunächst in die Vorkühlzone 5 ein. In der Vorkühlzone 5 werden die Filamente 4 der Fadenschar 10 durch einen Kühlmedienstrom der Anblasung 32 gekühlt. Hierzu wird die ringförmig angeordnete Fadenschar 10 radial von innen nach außen mit dem Kühlmedienstrom beaufschlagt. Ein zweiter Kühlmedienstrom gelangt durch die Wandung 33 radial von außen nach innen in die Kühlzone hinein. Die Filamente 4 der Fadenschar 10 werden in der Vorkühlzone 5 nur bis zur Verfestigung der Randzonen abgekühlt. Zur weiteren Abkühlung wird die Fadenschar 10 durch die Nachkühlzone 6 des Nachkühlschachtes 9 geführt. Dabei wird aufgrund des in der Nachkühlzone 6 vorherrschenden Unterdruckes das in die Vorkühlzone 5 eingeleitete Kühlmedium in die Nachkühlzone 6 eingesogen. Beim Passieren der Beschleunigungsstrecke 7 wird ein Kühlmedienstrom auf eine Fließgeschwindigkeit beschleunigt, die größer oder gleich der Laufgeschwindigkeit der Fadenschar 10 ist. Dabei wird erreicht, daß die Filamente 4 der Fadenschar 10 in ihrer Fortbewegung unterstützt werden. Die durch das Abzugsmittel 14 an der Fadenschar 10 wirkenden Abzugsspannungen werden erst verzögert wirksam. Damit wird die spannungsinduzierte Kristallisation verzögert eintreten. Die Vorkühlung und die Nachkühlung sind dabei derart eingestellt, daß die Filamente 4 der Fadenschar 10 vorzugsweise unterhalb der Beschleunigungsstrecke 7 oder in der unteren Hälfte der Beschleunigungsstrecke 7 sich endgültig verfestigen. Die Fadenschar 10 verläßt die Kühleinrichtung durch den Auslaß 34. Dabei wird der begleitende Kühlmedienstrom zuvor mittels der Auslaßkammer abgeführt.In the device shown in Fig. 2, a polymer melt through the Nozzle bores 3 of the ring nozzle 21 are extruded into a family of threads 10. The Thread cluster 10 is formed from individual filaments 4. The thread cluster 10 first enters the pre-cooling zone 5. In the pre-cooling zone 5, the Filaments 4 of the thread sheet 10 through a cooling medium flow of the blowing 32 cooled. For this purpose, the group of threads 10 arranged in a ring is arranged radially from the inside acted upon externally with the coolant flow. A second Coolant flow enters through wall 33 radially from the outside inwards into the cooling zone. The filaments 4 of the thread sheet 10 are in the Pre-cooling zone 5 only cooled until the edge zones solidified. For further The thread sheet 10 is cooled by the post-cooling zone 6 of the After cooling shaft 9 performed. Due to the fact that in the post-cooling zone 6 prevailing negative pressure, the cooling medium introduced into the pre-cooling zone 5 sucked into the post-cooling zone 6. When passing the acceleration section 7 a flow of cooling media is accelerated to a flow rate that is greater or is equal to the running speed of the thread sheet 10. It is achieved that the filaments 4 of the thread sheet 10 are supported in their movement. Those acting on the thread sheet 10 through the pulling means 14 Deduction voltages take effect only after a delay. With that the stress-induced crystallization occurs with a delay. The pre-cooling and the Aftercooling is set such that the filaments 4 of the thread group 10 preferably below the acceleration path 7 or in the lower half the acceleration path 7 finally solidify. The thread cluster 10 leaves the cooling device through the outlet 34. The accompanying Cooling medium flow previously discharged by means of the outlet chamber.

Unterhalb der Kühleinrichtung wird die Fadenschar 10 durch die Walze 24 zu einem Tow 23 zusammengeführt und durch das Abzugsmittel 14 zu einer Kannenablage 27 geführt. In der Kannenablage 27 wird das Tow 23 beispielsweise in einer Rundkanne abgelegt.Below the cooling device, the thread sheet 10 is closed by the roller 24 a tow 23 merged and through the trigger 14 to one Can shelf 27 out. The tow 23 is located in the can shelf 27 for example stored in a round jug.

Die in Fig. 2 dargestellte Vorrichtung ist beispielhaft. So ist es möglich, daß zur Behandlung des Tows mehrere Streckwerke oder auch Heizeinrichtungen der Kannenablage vorgeschaltet sind oder zur Nachbehandlung des Tows Einrichtungen wie beispielsweise eine Faserschneidvorrichtung mit einer Ballenpresse zur Herstellung von Stapelfasern nachgeschaltet sind. Ebenso ist die Ausbildung der Kühleinrichtung beispielhaft. Das Verfahren ist nicht darauf beschränkt, daß der Kühlmedienstrom durch einen Unterdruck in der Nachkühlzone 6 erzeugt wird. Wesentlich ist, daß ein Druckgefälle zwischen der Vorkühlzone 5 und der Nachkühlzone 6 vorhanden ist, um einen die Fortbewegung der Filamente und damit die Abzugsspannung beeinflussenden Kühlmedienstrom zu erzeugen. Als Kühlmedium wird vorzugsweise Kühlluft eingesetzt. The device shown in Fig. 2 is exemplary. So it is possible that for Treatment of the tow several drafting devices or heating devices of the Can rack are upstream or for post-treatment of the tow Devices such as a fiber cutter with a Baler for the production of staple fibers are connected downstream. The same is true Training of the cooling device exemplary. The procedure is not on that limited that the cooling medium flow through a negative pressure in the Post-cooling zone 6 is generated. It is essential that a pressure drop between the Pre-cooling zone 5 and the post-cooling zone 6 is present to the one Movement of the filaments and thus influencing the withdrawal tension To generate cooling media flow. Cooling air is preferably used as the cooling medium used.

BezugszeichenlisteLIST OF REFERENCE NUMBERS

11
Spinnkopfspinning head
22
Spinndüsespinneret
33
Düsenbohrungennozzle bores
44
Filamentfilament
55
Vorkühlzoneprecooling
66
Nachkühlzoneaftercooling
77
Beschleunigungsstreckeacceleration path
88th
VorkühlschachtVorkühlschacht
99
NachkühlschachtNachkühlschacht
1010
Fadenscharyarn sheet
1111
Absaugeinrichtungsuction
1212
Absaugschachtextraction well
1313
Wandwall
1414
Abzugmittelwithdrawal means
1515
Injektorinjector
1616
VliesablageeinrichtungFleece depositing device
1717
Siebbandscreen belt
1818
Absaugungsuction
1919
Spinnvliesspunbond
2020
Rollenroll
2121
Ringdüsering nozzle
2222
UnterdruckerzeugerVacuum generator
2323
TowTow
2424
Walzeroller
2525
GaletteGalette
2626
GaletteGalette
2727
Kannenablagecan storage
2828
Siebzylinderscreen cylinder
2929
Auslaßkammer outlet
3030
Heizeinrichtungheater
3131
Abzugsdüsenavel
3232
Anblasungquenching
3333
Wandungwall
3434
SeitenwandSide wall
3535
SeitenwandSide wall

Claims (15)

  1. Method of melt spinning a group (10) of multifilament yarns from a polymer melt, wherein the group (10) of yarns is formed from a plurality of filaments (4), extruded through nozzle bores (3), and withdrawn by a withdrawal means (14) by the action of a withdrawal tension, and wherein the group (10) of yarns is advanced after the emergence of the filaments (4) from the nozzle bores (3) and upstream of the withdrawal means (14) in a linear arrangement through a cooling zone (5, 6) and cooled by a coolant, characterized in that the filaments (4) of the group (10) of yarns are precooled in the cooling zone (precooling zone) without a solidification of the polymer melt, and that the group of yarns in its linear arrangement is advanced into a second cooling zone (6)(aftercooling zone), which is formed downstream of the precooling zone (5) and upstream of the withdrawal means (14), and further cooled within the aftercooling zone (6) by the action of a coolant flow, which is directed into the path of the yarn in such a manner that the filaments (4) of the group (10) of yarns solidify in a solidification range within the aftercooling zone (5), with the coolant flow having a predetermined flow velocity for influencing the yarn friction.
  2. Method of claim 1, characterized in that the coolant flow is accelerated in an acceleration zone within the aftercooling zone (6) to the flow velocity, and that the solidification range of the filaments (4) extends within the acceleration zone of the aftercooling zone (6) or directly downstream thereof.
  3. Method of claim 1 or 2, characterized in that the flow velocity of the coolant flow upstream of the solidification range of the filaments (4) is substantially equal to or greater than the advancing speed of the filaments (4).
  4. Method of one of claims 1-3, characterized in that the cooling of the filaments (4) within the precooling zone (5) by the coolant is adjusted such that the position of the solidification range of the filaments (4) within the aftercooling zone (6) is kept in a predetermined desired range of the aftercooling zone (6).
  5. Method of claim 4, characterized in that the temperature of the coolant is variable before entering the precooling zone (5).
  6. Method of claim 4 or 5, characterized in that the volume flow of the coolant is variable before entering the precooling zone (5).
  7. Method of one of claims 1-6, characterized in that the coolant flow in the aftercooling zone (6) is generated by a suction effect.
  8. Method of one of claims 1-6, characterized in that the coolant flow in the aftercooling zone (6) is generated by a blowing effect.
  9. Method of one of the foregoing claims, characterized in that the coolant flow is generated from the coolant leaving the cooling zone (5, 6).
  10. Method of one of claims 1-9, characterized in that the coolant flow is generated from the coolant leaving the precooling zone (5) and from a coolant supplied downstream of the precooling zone (5).
  11. Method of one of the foregoing claims, characterized in that the coolant in the precooling zone (5) is supplied to the filaments (4) by a suction effect or by a blowing effect.
  12. Method of one of the foregoing claims, characterized in that the group (10) of yarns is laid to a spun-bonded nonwoven (19) after the solidification of the filaments (4).
  13. Method of one of claims 1-11, characterized in that the group (10) of yarns is combined to a tow (23) after the solidification of the filaments (4), and deposited in a can (27), or pressed as cut fibers to a bale.
  14. Method of one of claims 1-11, characterized in that after the solidification of the filaments (4) the group (10) of yarns is divided into a plurality of individual yarns and wound to packages.
  15. Method of one of the foregoing claims, characterized in that the polymer melt consists of the basis of polyester, polyamide, or polypropylene.
EP00964056A 1999-09-07 2000-08-29 Method for fusion spinning Expired - Lifetime EP1228268B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19942518 1999-09-07
DE19942518 1999-09-07
PCT/EP2000/008416 WO2001018288A1 (en) 1999-09-07 2000-08-29 Method for fusion spinning

Publications (2)

Publication Number Publication Date
EP1228268A1 EP1228268A1 (en) 2002-08-07
EP1228268B1 true EP1228268B1 (en) 2004-02-18

Family

ID=7920996

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00964056A Expired - Lifetime EP1228268B1 (en) 1999-09-07 2000-08-29 Method for fusion spinning

Country Status (4)

Country Link
US (1) US6824717B2 (en)
EP (1) EP1228268B1 (en)
DE (1) DE50005349D1 (en)
WO (1) WO2001018288A1 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050184429A1 (en) * 2002-11-09 2005-08-25 Saurer Gmbh & Co. Kg Method and apparatus for melt spinning and cooling a plurality of synthetic filaments
CN1711375A (en) * 2002-11-09 2005-12-21 苏拉有限及两合公司 Method and apparatus for melt spinning and cooling a plurality of synthetic filaments
EP1467005A1 (en) * 2003-04-12 2004-10-13 Saurer GmbH & Co. KG Process and device for melt spinning and cooling a bundle of filaments
WO2004104485A2 (en) 2003-05-20 2004-12-02 Hills, Inc. Methods and apparatus for controlling airflow in a fiber extrusion system
EP2111487A2 (en) * 2007-01-19 2009-10-28 Oerlikon Textile GmbH & Co. KG Apparatus and method for depositing synthetic fibers to form a non-woven web
JP5455902B2 (en) * 2007-07-21 2014-03-26 ディオレン インドゥストリアル ファイバース ベスローテン フェノートシャップ Spinning method
JP5925657B2 (en) * 2012-10-03 2016-05-25 Tmtマシナリー株式会社 Melt spinning equipment
CN104755667B (en) * 2012-10-27 2016-11-09 欧瑞康纺织有限及两合公司 For manufacturing the equipment of spunbonded non-woven fabric
US9410270B2 (en) 2014-08-22 2016-08-09 Nike, Inc. Thread structure composition and method of making
US9889606B2 (en) 2015-11-09 2018-02-13 Nike, Inc. Tack and drag printing
FR3046147B1 (en) 2015-12-23 2019-07-26 Compagnie Generale Des Etablissements Michelin DEVICE FOR CONVEYING CONTAINER ASSEMBLIES / ADDITIVE MANUFACTURING TRAY
FR3046093B1 (en) 2015-12-23 2018-01-26 Compagnie Generale Des Etablissements Michelin ADDITIVE MANUFACTURING WORKSHOP
CN112853515B (en) * 2020-12-31 2022-04-15 江苏恒科新材料有限公司 Lightweight sweat-absorbent quick-drying acetate-like polyester fiber and preparation method thereof
CN112760729B (en) * 2020-12-31 2022-04-15 江苏恒科新材料有限公司 Melting spinning ground state cooling device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3503818C1 (en) 1985-02-05 1986-04-30 Reifenhäuser GmbH & Co Maschinenfabrik, 5210 Troisdorf Device for stretching monofilament bundles
US5178814A (en) 1991-08-09 1993-01-12 The Bouligny Company Quenching method and apparatus
TW268054B (en) * 1993-12-03 1996-01-11 Rieter Automatik Gmbh
US5976431A (en) * 1993-12-03 1999-11-02 Ronald Mears Melt spinning process to produce filaments
TW476818B (en) * 1998-02-21 2002-02-21 Barmag Barmer Maschf Method and apparatus for spinning a multifilament yarn
WO1999067450A1 (en) * 1998-06-22 1999-12-29 Barmag Ag Spinner for spinning a synthetic thread
KR100574180B1 (en) * 1998-07-23 2006-04-27 바마크 악티엔게젤샤프트 Spinning device and method for spinning a synthetic thread
EP1079008A1 (en) * 1999-08-26 2001-02-28 B a r m a g AG Process and apparatus for the spinning of a multifilament yarn

Also Published As

Publication number Publication date
DE50005349D1 (en) 2004-03-25
WO2001018288A1 (en) 2001-03-15
EP1228268A1 (en) 2002-08-07
US20020121724A1 (en) 2002-09-05
US6824717B2 (en) 2004-11-30

Similar Documents

Publication Publication Date Title
EP1192301B1 (en) Method and device for the production of an essentially continuous fine thread
EP2283174B1 (en) Method for melt-spinning, drawing, and winding up a multifilament, and apparatus for carrying out said method
EP0937791B1 (en) Process and apparatus for the spinning of a multifilament yarn
EP1090170B1 (en) Spinner for spinning a synthetic thread
EP1228268B1 (en) Method for fusion spinning
EP1079008A1 (en) Process and apparatus for the spinning of a multifilament yarn
EP2318577B1 (en) Method for melt spinning, stretching and winding a multifilament thread and device for carrying out the method
EP1102878B1 (en) Spinning device and method for spinning a synthetic thread
EP1045930B1 (en) Method and device for producing a high oriented yarn
EP1778899A1 (en) Device and method for melt-spinning, drawing off, processing, and winding up several synthetic threads
EP0957187A2 (en) Apparatus and process for the production of microfilament yarns with high titer regularity from thermoplastic polymers
EP2567008B1 (en) Process and apparatus for melt-spinning, drawing and winding multiple synthetic threads
DE3941824C2 (en)
DE19653451C2 (en) Process for the production of a polyester multifilament yarn
DE19705113C2 (en) Stretching device and method for producing stretched plastic filaments
DE10116294A1 (en) Melt-spinning thermoplastic filament bundles from nozzles to form composite thread, employs separate cooling for each bundle to differentiate crystallization
EP1819854B1 (en) Method and device for guiding and mingling a multifilament yarn
EP1486592B1 (en) Apparatus for spinning and treating synthetic filaments
WO2016058873A1 (en) Method and device for producing a multifilament thread from a polyamide melt
DE10005664A1 (en) Melt spinning assembly has larger spinneret drillings for the outer filaments which shroud the inner filaments in the cooling station but with a constant flow throughput of the molten polymer
DE19909073A1 (en) Take-off and drawing godet units in production line for fully drawn yarn melt spun multifilaments
DE4120460A1 (en) METHOD AND DEVICE FOR THE PRODUCTION OF POLYPROPYLENE YARN
DE19705116A1 (en) Yarn and fleece manufactured from stretched plastic filaments, stretching process and process equipment

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20020328

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE LI

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

REF Corresponds to:

Ref document number: 50005349

Country of ref document: DE

Date of ref document: 20040325

Kind code of ref document: P

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: SAURER GMBH & CO. KG

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20041119

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20100830

Year of fee payment: 11

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110831

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20121001

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140301

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50005349

Country of ref document: DE

Effective date: 20140301