EP1555433A2 - Dosierpumpsystem und Verfahren zum Betreiben einer Dosierpumpe - Google Patents
Dosierpumpsystem und Verfahren zum Betreiben einer Dosierpumpe Download PDFInfo
- Publication number
- EP1555433A2 EP1555433A2 EP05000632A EP05000632A EP1555433A2 EP 1555433 A2 EP1555433 A2 EP 1555433A2 EP 05000632 A EP05000632 A EP 05000632A EP 05000632 A EP05000632 A EP 05000632A EP 1555433 A2 EP1555433 A2 EP 1555433A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- metering pump
- movement
- drive
- pump element
- pulsed
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 12
- 239000000446 fuel Substances 0.000 claims description 18
- 230000007423 decrease Effects 0.000 claims description 15
- 230000003993 interaction Effects 0.000 claims description 11
- 239000012530 fluid Substances 0.000 claims description 9
- 238000005086 pumping Methods 0.000 claims description 7
- 230000009471 action Effects 0.000 claims description 6
- 230000005284 excitation Effects 0.000 claims description 4
- 238000010438 heat treatment Methods 0.000 claims description 3
- 230000003247 decreasing effect Effects 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 2
- 239000007788 liquid Substances 0.000 description 8
- 238000006073 displacement reaction Methods 0.000 description 6
- 238000013459 approach Methods 0.000 description 5
- 238000013016 damping Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 3
- 230000036316 preload Effects 0.000 description 3
- 230000009467 reduction Effects 0.000 description 3
- TVEXGJYMHHTVKP-UHFFFAOYSA-N 6-oxabicyclo[3.2.1]oct-3-en-7-one Chemical compound C1C2C(=O)OC1C=CC2 TVEXGJYMHHTVKP-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000037007 arousal Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000013013 elastic material Substances 0.000 description 1
- 239000003344 environmental pollutant Substances 0.000 description 1
- 231100000719 pollutant Toxicity 0.000 description 1
- 230000000750 progressive effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B13/00—Pumps specially modified to deliver fixed or variable measured quantities
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B17/00—Pumps characterised by combination with, or adaptation to, specific driving engines or motors
- F04B17/03—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors
- F04B17/04—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids
- F04B17/046—Pumps characterised by combination with, or adaptation to, specific driving engines or motors driven by electric motors using solenoids the fluid flowing through the moving part of the motor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04B—POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
- F04B2203/00—Motor parameters
- F04B2203/04—Motor parameters of linear electric motors
- F04B2203/0402—Voltage
Definitions
- the present invention relates to a metering pump system, in particular for dosed fuel supply to a vehicle heater, comprising a Metering pump with at least one between two movement end positions movable Dosierpumpenelement and one at least a metering pump element drive associated with a metering pump element, wherein the Dosierpumpen institutenantrieb a coil assembly and a Drive device comprising which for moving the at least one Dosierpumpenelements in at least one direction of movement, the coil assembly to generate a magnetic force interaction.
- the movement of the pump piston between his two movement end positions can thereby be attained that the pump piston towards one of his End positions is biased, for example, by a biasing spring.
- a biasing spring to counteract this pump piston then from this movement end position the spring bias out towards the other end position to move is a generally electromagnetically acting pump piston drive available.
- This can be a surrounding the pump piston Coil, which under the control of a drive device stands. By applying a voltage to this coil, i. excite same, then becomes by magnetic interaction with an anchor the pump piston displaced, contrary to the above already addressed bias.
- From DE 101 03 224 C1 is a metering pump for a vehicle heater known, in which a pump piston in a pump chamber and a providing cylinder is movable back and forth and in the direction Minimization of the pump chamber volume biased by a spring is.
- the pump piston is not its own example, electromagnetic assigned to effective drive. It is also a valve assembly present, one positioned in extension of the pump piston Valve slide has. This valve spool is in one of his movement end positions biased by a biasing spring. From this End ein, the valve spool by excitation of a drive for the spool providing coil to be moved out to reach the other movement end position.
- valve spool In his movement end positions The valve spool once connects an inlet area for under Form fluid standing with the pump chamber, while in the other Movement end position the pump chamber with an outlet connected is.
- the valve spool in the former Movement end position is by the in the inlet area under form existing fluid of the pump piston against its spring preload shifted, so that the pump chamber volume increases and the Pump chamber is filled with the fluid to be delivered.
- the valve spool in the second-mentioned valve position is now with Fluid filled pump chamber with the lower pressure Connected outlet, so that the spring preload following the Pump piston now in the direction of minimizing the pump chamber volume can shift and thereby the contained therein Liquid ejects to the outlet area.
- there is at by magnetic interaction induced displacement of the valve spool the danger that when reaching a movement end position impact noises and vibrations that feel uncomfortable or to impair functionality can lead to such a metering pump.
- a metering pumping system for metered fuel supply to a vehicle heater comprising a metering pump at least one dosing pump element movable between two movement end positions and one of the at least one metering pump element associated Dosierpumpen emulatenantrieb, wherein the Dosierpumpen institutenantrieb a coil assembly and a drive device comprising, which for moving the at least one metering pump element in at least one direction of movement, the coil arrangement to generate a magnetic force interaction, wherein the Drive device is adapted to the coil assembly during a metering pump element moving operation corresponding Anberichtintervalls at least phased pulsed approach.
- the pulsed driving of the coil assembly becomes a moving state of the metering pump element driven thereby, in which a less abrupt deceleration when reaching a final movement position is obtained.
- the control of the coil assembly by the drive device for generating the magnetic force interaction the Apply one at least in phases during a drive interval pulsed voltage to the coil assembly causes.
- a frequency of Dosierpumpenettin Gay is in the range of 1 to 20 Hz and that the frequency the pulsed drive is in the range of 200 to 2000 Hz.
- the metering pump element can, for example, a for conveying
- fluid may include displaceable pump pistons a valve spool through which at least one fluid flow path can be locked or released.
- metering pump elements it is also possible to use the principles of the present invention for metering pump elements to use, whose motion mode no Linear displacement, but a rotational movement.
- the beginning said object solved by a method for operating a Dosing pump, in particular for supplying fuel to a vehicle heater, which metering pump at least one by exciting a Coil arrangement for generating a magnetic force interaction during a drive interval movable Dosierpumpenelement includes, at which method the coil arrangement during the An horrintervalls is pulsed at least in phases.
- Fig. 1 is a metering pump 10, as used for example in motor vehicles used to convey fuel to a heater, in longitudinal section shown.
- This metering pump 10 generally includes an inlet area 12, in which liquid fuel is received, as well as a Outlet area 14, in which the funded by the metering pump 10 Fuel is discharged.
- an inlet pipe 16 placed on a housing part 18. The through the inlet pipe 16 flowing fuel first passes through a pot sieve 20, before entering a Opening 22 may occur in the housing part 18.
- the housing part 18 is further connected to an outer housing 24, which surrounds a coil 26 outside.
- the coil 26 is on a ring-like yoke 28th wound and via a contact plug connection 30 in conjunction with a Drive device 32.
- a here of several parts assembled outlet 34 is provided, in which a valve ball 36 and a valve spring 38 of an outlet check valve 40 are received.
- One in the Outlet 34 formed passage opening 42 is in communication with a pump chamber 44.
- the volume of this pump chamber 44 can by a back in the longitudinal direction of the metering pump 10 and movable Pump piston 46 can be varied.
- the pump piston 46 is connected with a bolt 48 carried thereon and a gasket 50 which can close the opening 22, by a biasing spring 52 in the Representation of FIG. 1 biased to the right, so that the seal 50 on the housing part 18 is seated and thereby closes the opening 22.
- the pump piston 46 By Applying a voltage to the coil 26 and thus energizing the same means the drive device 32, the pump piston 46 together with displaced the armature 48 against the biasing action of the biasing spring 52, to minimize the volume of the pump chamber 44 and thereby eject the fuel contained therein via the check valve 40.
- the duration of the drive period I, a is dimensioned such that taking into account the level of the voltage U S is the desired piston displacement is obtained.
- the duration of this interval is I a in the range of 25 - ms are 35, wherein the procedure can be so here is that the interval contains a certain safety period, for example, that even at relatively low ambient temperatures, the complete movement of the pump piston 46 during a such interval can be obtained.
- the excitation is then suspended during an interval I out .
- the length of this interval I from, in principle, but also by specifying the length of the drive period I a, the working frequency and thus the delivery rate of the metering pump 10 can be adjusted.
- Fig. 3 is such a drive interval I a between the switch-on time t, and off time t off is.
- the voltage U S can be obtained from the vehicle electrical system or removed, it preferably being possible for a voltage U S to be applied to decouple fluctuations in the supply voltage with respect to the on-board voltage, but always to a constant level.
- the ratio of the time period or intervals I A 'to I from' the so-called duty cycle determines the voltage applied to the coil 26 voltage.
- This duty cycle also essentially determines the voltage applied to the coil 26 effective voltage. The greater the duty cycle, the closer the effective voltage approaches the voltage U S. The lower the duty cycle, the further the effective applied voltage decreases in comparison to the voltage U S.
- a movement end position can be ensured to a further reduction of noises and vibrations stop upon reaching that the above-mentioned duty factor a decreases over the duration of a drive period of time I.
- This can be realized, for example, that, as shown in Fig. 3, the time duration of ON-intervals 'is kept substantially constant while the duration of the OFF intervals of I' I a increases. This has the result that the frequency of the ON intervals I A 'decreases, which corresponds to a corresponding decrease in the duty ratio.
- the consequence of this reduction in the duty cycle is a decrease in the effective voltage U e , as illustrated in FIG. 4. This decrease in the effective voltage applied to the coil 26 voltage U e in turn leads to the example illustrated in FIG. 5 movement behavior of the pump piston 46 a during a drive period I.
- FIG. 5 the actuating path or the actuating position of the pump piston 46 is illustrated on the vertical axis, with 0 referring to the state shown in FIG. 1, for example, while S max represents the other final movement state, that is, starting from the representation of FIG 1 maximum left shifted state.
- the solid curve k 1 in FIG. 5 represents the movement of the pump piston 46 when the coil 26 is driven with the signal shown in FIG. 3. It can be seen that the slope of this curve k 1 decreases as it approaches the final movement position S max , which means that the speed of the pump piston 46 decreases in a corresponding manner.
- the duty cycle by suitably changing the duty cycle, it can be provided that an almost asymptotic approach to the final movement state S max is achieved, so that a very gentle reaching of this position occurs.
- the curve represents k 2 in Fig. 5 the movement mode, such as is obtained at a unpulsed, so constant actuation or energization of the coil 26 during a drive period I in the prior art.
- the duty cycle reduction discussed above with reference to FIGS. 3-5 may also be achieved by so-called pulse width modulation.
- the sum of the immediately successive intervals I a 'and I out' is kept constant, which in principle also has a constant pulse frequency result, however, the ratio of these two intervals is varied in such a way that toward the end of a Anêtintervalls I a the ON interval I a 'decreases while the OFF interval I out ' increases.
- substantially constant drive frequency or pulse frequency in the range of about 400 hz a decrease in the effective voltage during a drive interval I a can also be achieved, which in turn leads to a decrease in the movement speed of the pump piston.
- the pulsed actuation of the metering pump 10 according to the invention for displacing the pump piston 46 in addition to avoiding impact noises and stop vibrations, further has the significant advantage that the movement of the pump piston 26 can be reproduced with significantly higher precision.
- a defined adjustable and largely uninfluenced by fluctuations in voltage U S and also prescribing the possibly over a Anêtintervall I a changing duty cycle I a '/ I off ', the movement of the pump piston 46 can be specified with high precision, which is a corresponding Precise specification or adjustment of the flow rate entails.
- FIG. 6 shows an alternative embodiment of a metering pump.
- Components which components described above in terms Structure or function correspond, are denoted by the same reference numerals with the addition of an appendix "a".
- the pump piston 46a in a cylinder member 60a movable, in which also the pump chamber 40a is provided.
- the pump piston 46a is under again Bias of the spring 52a, the pump piston 46a in the direction Minimizing the pump chamber volume 44a biased. It is otherwise However, the pump piston 46a no further controllable drive arrangement assigned.
- valve element 62a In the axial extension of the pump piston 46 a is formed like a pin Valve element 62a provided. This is now with the armature 48a firmly connected and is under bias of a biasing spring 64a.
- the Preload spring 64a acts on the valve element 62a such that this is biased in a movement end position, in which a damping plate 66a rests on the inlet nozzle 16a.
- the valve element 62a will collapse with the armature 48a then in the positioning shown in Fig. 6 or movement end position against the bias of the spring 64a moves.
- an opening provided on the valve element 62a is oblique extending groove 68a positioned to communicate with the pump chamber 44a with an outlet channel 70a, while an inlet channel 72a is not connected to the pump chamber 44a.
- This metering pump 10a shown in Fig. 6 functions such that at in the movement end position not shown in Fig. 6 positioned valve element 62a and then existing connection of the pump chamber 44a with the inlet channel 72a and the inlet portion 12a under admission pressure supplied liquid fuel can flow into the pump chamber 44 a and the pump piston 46a against the biasing action of the spring 52a from the positioning shown in Fig. 6 to the left in the direction of maximization of the pump chamber volume can move. Will then the Coil 26a is energized, the valve element 62a shifts to those in Fig.
- the metering pump 10a shown in FIG. 6 also has a metering pump element that can be moved by energizing a coil 26a, namely the valve element 62a, which is thus moved back and forth between two movement end positions.
- a metering pump element that can be moved by energizing a coil 26a, namely the valve element 62a, which is thus moved back and forth between two movement end positions.
- the drive device 32a can be driven pulsed during the drive intervals which are provided for moving the valve element 62a into the movement end position shown in FIG to achieve the effects described above.
- the duty cycle over the duration of a An horrintervalls away can be varied or reduced, for example by increasing the frequency or by pulse width modulation to obtain the illustrated in Fig. 5 with reference to the curve k 1 also in the valve element 62a movement mode.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Fluid Mechanics (AREA)
- Electromagnetic Pumps, Or The Like (AREA)
- Reciprocating Pumps (AREA)
- Control Of Positive-Displacement Pumps (AREA)
- Lubrication Of Internal Combustion Engines (AREA)
Abstract
Description
- Fig. 1
- eine Längsschnittansicht einer Dosierpumpe, bei welcher die vorliegende Erfindung verwirklicht werden kann;
- Fig. 2
- ein Zeit-Spannungsdiagramm, welches das grundlegende Prinzip der Ansteuerung einer Spulenanordnung der in Fig. 1 gezeigten Dosierpumpe veranschaulicht;
- Fig. 3
- vergrößert ein im Diagramm der Fig. 2 erkennbares Ansteuerintervall, während welchem die Spulenanordnung der Dosierpumpe der Fig. 1 zum Verschieben eines Dosierpumpenelements erregt wird;
- Fig. 4
- in zeitlicher Zuordnung zu dem Spannungsverlauf der Fig. 3 die effektiv angelegte Spannung;
- Fig. 5
- die Verschiebung eines Dosierpumpenelements während des in Fig. 3 gezeigten Ansteuerintervalls;
- Fig. 6
- eine alternative Ausgestaltungsart einer Dosierpumpe, bei welcher die vorliegende Erfindung verwirklicht werden kann;
- Fig. 7
- ein der Fig. 3 entsprechendes Diagramm einer anderen Art der gepulsten Ansteuerung.
Claims (9)
- Dosierpumpsystem, insbesondere zur dosierten Brennstoffzufuhr zu einem Fahrzeugheizgerät, umfassend eine Dosierpumpe (10; 10a) mit wenigstens einem zwischen zwei Bewegungsendstellungen bewegbaren Dosierpumpenelement (46; 62a) und einem dem wenigstens einen Dosierpumpenelement (46; 62a) zugeordneten Dosierpumpenelementenantrieb (26, 32; 26a, 32a), wobei der Dosierpumpenelementenantrieb (26, 32; 26a, 32a) eine Spulenanordnung (26; 26a) und eine Ansteuervorrichtung (32; 32a)umfasst, welche zum Bewegen des wenigstens einen Dosierpumpenelements (46; 62a) in wenigstens einer Bewegungsrichtung die Spulenanordnung (26; 26a) zur Erzeugung einer Magnetkraftwechselwirkung ansteuert, wobei die Ansteuervorrichtung (32; 32a) dazu ausgebildet ist, die Spulenanordnung (26; 26a) während eines einem Dosierpumpenelementenbewegungsvorgang entsprechenden Ansteuerintervalls (Iein) wenigstens phasenweise gepulst anzusteuern.
- Dosierpumpsystem nach Anspruch 1,
dadurch gekennzeichnet, dass die Ansteuerung der Spulenanordnung (26; 26a) durch die Ansteuervorrichtung (30; 32a) zur Erzeugung der Magnetkraftwechselwirkung das Anlegen einer während eines Ansteuerintervalls (Iein) wenigstens phasenweise gepulsten Spannung (US) an die Spulenanordnung (26; 26a) bewirkt. - Dosierpumpsystem nach Anspruch 1 oder 2,
dadurch gekennzeichnet, dass das wenigstens eine Dosierpumpenelement (46; 62a) zum Durchführen eines Bewegungsvorgangs in einer ersten Bewegungsrichtung vorgespannt ist und dass die Ansteuervorrichtung (32; 32a) die Spulenanordnung(26; 26a) zum Durchführen eines Bewegungsvorgangs des wenigstens einen Dosierpumpenelements (46; 62a) in einer der ersten Bewegungsrichtung entgegengesetzten zweiten Bewegungsrichtung entgegen der Vorspannung ansteuert. - Dosierpumpsystem nach einem der Ansprüche 1 bis 3,
dadurch gekennzeichnet, dass ein Tastverhältnis (Iein' / Iaus') der gepulsten Ansteuerung während eines Ansteuerintervalls (Iein)wenigstens phasenweise abnimmt. - Dosierpumpsystem nach einem der Ansprüche 1 bis 4,
dadurch gekennzeichnet, dass eine Frequenz der Dosierpumpenelementenbewegung im Bereich von 1 bis 20 Hz liegt und dass eine Frequenz der gepulsten Ansteuerung der Spulenanordnung (26; 26a) im Bereich von 200 bis 2000 Hz liegt. - Dosierpumpsystem nach einem der Ansprüche 1 bis 5,
dadurch gekennzeichnet, dass das wenigstens eine Dosierpumpenelement (46) einen zum Fördern von Fluid verschiebbaren Pumpenkolben (46) umfasst. - Dosierpumpsystem nach einem der Ansprüche 1 bis 6,
dadurch gekennzeichnet, dass das wenigstens eine Dosierpumpenelement (62a) einen zum Absperren/Freigeben wenigstens eines Fluidströmungsweges (70a, 72a) verschiebbaren Ventilschieber (62a) umfasst. - Verfahren zum Betreiben einer Dosierpumpe, insbesondere zum Zuführen von Brennstoff zu einem Fahrzeugheizgerät, welche Dosierpumpe (10; 10a) wenigstens ein durch Erregung einer Spulenanordnung (26; 26a) zur Erzeugung einer Magnetkraftwechselwirkung während eines Ansteuerintervalls (Iein) bewegbares Dosierpumpenelement (46; 62a) umfasst, bei welchem Verfahren die Spulenanordnung (26; 26a) während des Ansteuerintervalls (Iein) wenigstens phasenweise gepulst erregt wird.
- Verfahren nach Anspruch 8,
dadurch gekennzeichnet, dass ein Tastverhältnis (Iein' / Iaus') gepulsten Erregung der Spulenanordnung (26; 26a) während eines Ansteuerintervalls (Iein) wenigstens phasenweise abnimmt.
Applications Claiming Priority (2)
| Application Number | Priority Date | Filing Date | Title |
|---|---|---|---|
| DE102004002454A DE102004002454B4 (de) | 2004-01-16 | 2004-01-16 | Dosierpumpsystem und Verfahren zum Betreiben einer Dosierpumpe |
| DE102004002454 | 2004-01-16 |
Publications (3)
| Publication Number | Publication Date |
|---|---|
| EP1555433A2 true EP1555433A2 (de) | 2005-07-20 |
| EP1555433A3 EP1555433A3 (de) | 2008-12-17 |
| EP1555433B1 EP1555433B1 (de) | 2010-07-28 |
Family
ID=34609595
Family Applications (1)
| Application Number | Title | Priority Date | Filing Date |
|---|---|---|---|
| EP05000632A Expired - Lifetime EP1555433B1 (de) | 2004-01-16 | 2005-01-13 | Dosierpumpsystem und Verfahren zum Betreiben einer Dosierpumpe |
Country Status (3)
| Country | Link |
|---|---|
| EP (1) | EP1555433B1 (de) |
| AT (1) | ATE475804T1 (de) |
| DE (2) | DE102004002454B4 (de) |
Cited By (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006042605A1 (de) * | 2004-10-20 | 2006-04-27 | Compact Dynamics Gmbh | Fluid-druckerzeuger |
| EP1857673A1 (de) * | 2006-05-18 | 2007-11-21 | J. Eberspächer GmbH & Co. KG | Dosierpumpe, insbesondere zum Fördern von Brennstoff für ein Fahrzeugheizgerät |
| EP1878920A1 (de) | 2006-07-12 | 2008-01-16 | Delphi Technologies, Inc. | Dosierpumpe für ein Reagens |
| WO2010124668A1 (de) * | 2009-04-29 | 2010-11-04 | Webasto Ag | Verfahren zum betreiben einer dosierpumpe |
| EP2322797A1 (de) * | 2009-11-12 | 2011-05-18 | Delphi Technologies Holding S.à.r.l. | Anker einer Solenoidantriebsvorrichtung |
| WO2012171757A1 (de) | 2011-06-16 | 2012-12-20 | Robert Bosch Gmbh | Förderaggregat für betriebs-/hilfsstoffe für verwendungskraftmaschinen |
| WO2013053409A3 (de) * | 2011-10-13 | 2013-09-26 | Thomas Magnete Gmbh | Vorrichtung zum dosieren und zerstäuben von flüssigkeiten mit vorgespanntem dämpfer |
| CN104201860A (zh) * | 2014-09-01 | 2014-12-10 | 瑞安市金星汽车泵业制造有限公司 | 一种可拆卸式电磁泵 |
| CN110998091A (zh) * | 2017-06-05 | 2020-04-10 | 西米股份公司 | 液压、电磁式浮动活塞电动泵 |
Families Citing this family (9)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE102005024858A1 (de) * | 2005-05-31 | 2006-12-07 | J. Eberspächer GmbH & Co. KG | Verfahren zum Betreiben einer Dosierpumpe, insbesondere zum Fördern von Brennstoff für ein Fahrzeugheizgerät |
| DE102008057365B4 (de) * | 2008-11-14 | 2015-12-17 | Eberspächer Climate Control Systems GmbH & Co. KG | Verfahren zum Betreiben einer elektromagnetisch betriebenen Dosierpumpe mit Anschlagdämpfung |
| DE102010014106B4 (de) * | 2010-04-07 | 2012-03-15 | Webasto Ag | Verfahren zum Betreiben einer Dosierpumpe und Vorrichtung mit einer Dosierpumpe |
| DE102011106932B4 (de) | 2011-07-08 | 2018-10-25 | Thomas Magnete Gmbh | Verfahren zum Betrieb eines Geräts zum Fördern und Dosieren |
| DE102011088701B4 (de) | 2011-12-15 | 2023-09-21 | Robert Bosch Gmbh | Verfahren zur Überwachung der Ankerbewegung einer Hubkolbenmagnetpumpe |
| DE102014211895A1 (de) * | 2014-06-20 | 2015-12-24 | Robert Bosch Gmbh | Verfahren und Vorrichtung zur Ansteuerung einer Hubkolbenpumpe |
| DE102014012307B3 (de) | 2014-08-19 | 2015-07-09 | Technische Universität Dresden | Verfahren zur Steuerung einer elektromagnetisch angetriebenen Hubkolbenpumpe und Vorrichtung zur Ausführung des Verfahrens |
| DE102016219685A1 (de) | 2016-10-11 | 2018-04-12 | Robert Bosch Gmbh | Verfahren und Vorrichtung zum Betreiben einer Rückförderpumpe |
| CN109340075A (zh) * | 2018-10-15 | 2019-02-15 | 安徽致信汽车科技有限公司 | 一种可以消除燃油负压空气析出的电磁泵 |
Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2822442B1 (de) | 1978-05-23 | 1979-12-06 | Webasto Werk Baier Kg W | Dosierkolbenpumpe |
| DE10152782A1 (de) | 2001-10-29 | 2003-05-22 | Webasto Thermosysteme Gmbh | Verfahren zum Ansteuern einer Dosierpumpe |
Family Cites Families (3)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE10047045B4 (de) * | 2000-09-22 | 2005-10-06 | Thomas Magnete Gmbh | Elektrische Steuervorrichtung für Magnetpumpen |
| DE10103224C5 (de) * | 2001-01-25 | 2006-01-26 | J. Eberspächer GmbH & Co. KG | Dosierpumpanordnung und diese enthaltendes Dosierpumpsystem |
| DE10158207B4 (de) * | 2001-11-28 | 2004-09-02 | Webasto Thermosysteme International Gmbh | Verfahren zum Betreiben der Dosierpumpe eines Heizgeräts mittels Dauerbestromung |
-
2004
- 2004-01-16 DE DE102004002454A patent/DE102004002454B4/de not_active Expired - Fee Related
-
2005
- 2005-01-13 DE DE502005009989T patent/DE502005009989D1/de not_active Expired - Lifetime
- 2005-01-13 EP EP05000632A patent/EP1555433B1/de not_active Expired - Lifetime
- 2005-01-13 AT AT05000632T patent/ATE475804T1/de not_active IP Right Cessation
Patent Citations (2)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| DE2822442B1 (de) | 1978-05-23 | 1979-12-06 | Webasto Werk Baier Kg W | Dosierkolbenpumpe |
| DE10152782A1 (de) | 2001-10-29 | 2003-05-22 | Webasto Thermosysteme Gmbh | Verfahren zum Ansteuern einer Dosierpumpe |
Cited By (14)
| Publication number | Priority date | Publication date | Assignee | Title |
|---|---|---|---|---|
| WO2006042605A1 (de) * | 2004-10-20 | 2006-04-27 | Compact Dynamics Gmbh | Fluid-druckerzeuger |
| EP1857673A1 (de) * | 2006-05-18 | 2007-11-21 | J. Eberspächer GmbH & Co. KG | Dosierpumpe, insbesondere zum Fördern von Brennstoff für ein Fahrzeugheizgerät |
| US8388323B2 (en) | 2006-07-12 | 2013-03-05 | Delphi Technologies Holding S.Arl | Reagent dosing pump |
| EP1878920A1 (de) | 2006-07-12 | 2008-01-16 | Delphi Technologies, Inc. | Dosierpumpe für ein Reagens |
| JP2008019866A (ja) * | 2006-07-12 | 2008-01-31 | Delphi Technologies Inc | 試薬投与ポンプ |
| WO2010124668A1 (de) * | 2009-04-29 | 2010-11-04 | Webasto Ag | Verfahren zum betreiben einer dosierpumpe |
| EP2322797A1 (de) * | 2009-11-12 | 2011-05-18 | Delphi Technologies Holding S.à.r.l. | Anker einer Solenoidantriebsvorrichtung |
| US8613603B2 (en) | 2009-11-12 | 2013-12-24 | Delphi International Operations Luxembourg, S.A.R.L. | Armature for a solenoid actuator |
| WO2012171757A1 (de) | 2011-06-16 | 2012-12-20 | Robert Bosch Gmbh | Förderaggregat für betriebs-/hilfsstoffe für verwendungskraftmaschinen |
| DE102011077617A1 (de) | 2011-06-16 | 2012-12-20 | Robert Bosch Gmbh | Förderaggregat für Betriebs-/Hilfsstoffe für Verwendungskraftmaschinen |
| WO2013053409A3 (de) * | 2011-10-13 | 2013-09-26 | Thomas Magnete Gmbh | Vorrichtung zum dosieren und zerstäuben von flüssigkeiten mit vorgespanntem dämpfer |
| CN104201860A (zh) * | 2014-09-01 | 2014-12-10 | 瑞安市金星汽车泵业制造有限公司 | 一种可拆卸式电磁泵 |
| CN110998091A (zh) * | 2017-06-05 | 2020-04-10 | 西米股份公司 | 液压、电磁式浮动活塞电动泵 |
| CN110998091B (zh) * | 2017-06-05 | 2022-04-26 | 西米股份公司 | 液压、电磁式浮动活塞电动泵 |
Also Published As
| Publication number | Publication date |
|---|---|
| ATE475804T1 (de) | 2010-08-15 |
| DE502005009989D1 (de) | 2010-09-09 |
| EP1555433A3 (de) | 2008-12-17 |
| EP1555433B1 (de) | 2010-07-28 |
| DE102004002454B4 (de) | 2006-06-29 |
| DE102004002454A1 (de) | 2005-08-25 |
Similar Documents
| Publication | Publication Date | Title |
|---|---|---|
| DE102004002454B4 (de) | Dosierpumpsystem und Verfahren zum Betreiben einer Dosierpumpe | |
| EP0733799B1 (de) | Kraftstoff-Einspritzvorrichtung für Brennkraftmaschinen | |
| EP1151219B1 (de) | Proportional-druckregelventil | |
| DE60225984T2 (de) | Regeleinrichtung für das Common-Rail-Einspritzsystem einer Brennkraftmaschine | |
| EP0823017B1 (de) | Verfahren zum ansteuern der erregerspule einer elektromagnetisch angetriebenen hubkolbenpumpe | |
| EP3211280B1 (de) | Gasventil und verfahren zu seiner ansteuerung | |
| DE10247436A1 (de) | Dosierventil und Kraftstoffeinspritzpumpe | |
| DE102007028960A1 (de) | Hochdruckpumpe für ein Kraftstoffsystem einer Brennkraftmaschine | |
| EP3066343B1 (de) | Magnetpumpe für ein hilfsaggregat eines fahrzeugs sowie verfahren zur steuerung einer magnetpumpe für ein hilfsaggregat | |
| DE4206817C2 (de) | Kraftstoff-Einspritzvorrichtung nach dem Festkörper-Energiespeicher-Prinzip für Brennkraftmaschinen | |
| DE102007000389A1 (de) | Kraftstoffeinspritzsystem | |
| EP0173861B1 (de) | Elektrisch steuerbare Bremse für Fahrzeuge, insbesondere Schienenfahrzeuge | |
| DE1900093B2 (de) | Elektromagnetisch betätigte, zweistufige Brennstoff-Förderpumpe zur Speisung von Brennkraftmaschinen | |
| EP0309501B1 (de) | Kraftstoffeinspritzpumpe für Brennkraftmaschinen | |
| DE4116842A1 (de) | Einrichtung zur hubbegrenzung eines hydraulikzylinders | |
| DE10162988B4 (de) | Vorrichtung und Verfahren zur Regelung des Steuerventils einer Hochdruckpumpe | |
| EP1729008B1 (de) | Verfahren zum Betreiben einer Dosierpumpe, insbesondere zum Fördern von Brennstoff für ein Fahrzeugheizgerät | |
| DE10301093A1 (de) | Dosierpumpeinrichtung für ein Fahrzeugheizgerät | |
| DE3247584C2 (de) | Kraftstoffeinspritzpumpe für Brennkraftmaschinen | |
| EP0651858B1 (de) | Elektromagnetisch antreibbare pumpe | |
| DE10149412C1 (de) | Vorrichtung zum Dämpfen von Druckpulsationen in einem Fluidsystem, insbesondere in einem Kraftstoffsystem einer Brennkraftmaschine, sowie Verfahren zum Betreiben einer Brennkraftmaschine | |
| WO2004005687A1 (de) | Verfahren zur ansteuerung einer fluid-dosiervorrichtung und common-rail-injektor | |
| DE102010028736A1 (de) | Brennstoffversorgungssystem, insbesondere für ein Fahrzeugheizgerät und Verfahren zum Betreiben eines Brennstoffversorgungssystems | |
| DE19916657A1 (de) | Einspritzvorrichtung für Verbrennungsmaschinen, vorzugsweise Dieselmotoren | |
| EP1251277B1 (de) | Druckmittler und Leistungsregelvorrichtung |
Legal Events
| Date | Code | Title | Description |
|---|---|---|---|
| PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
| AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
| PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
| AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU MC NL PL PT RO SE SI SK TR |
|
| AX | Request for extension of the european patent |
Extension state: AL BA HR LV MK YU |
|
| 17P | Request for examination filed |
Effective date: 20090617 |
|
| AKX | Designation fees paid |
Designated state(s): AT CZ DE FR PL SE |
|
| 17Q | First examination report despatched |
Effective date: 20090904 |
|
| GRAP | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOSNIGR1 |
|
| GRAS | Grant fee paid |
Free format text: ORIGINAL CODE: EPIDOSNIGR3 |
|
| GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
| AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CZ DE FR PL SE |
|
| REF | Corresponds to: |
Ref document number: 502005009989 Country of ref document: DE Date of ref document: 20100909 Kind code of ref document: P |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: TRGR |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PL Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: CZ Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20100728 |
|
| PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
| STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
| 26N | No opposition filed |
Effective date: 20110429 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R097 Ref document number: 502005009989 Country of ref document: DE Effective date: 20110429 |
|
| REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
| REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20110930 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110131 |
|
| REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 475804 Country of ref document: AT Kind code of ref document: T Effective date: 20110113 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110113 |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20110114 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502005009989 Country of ref document: DE Representative=s name: WEICKMANN & WEICKMANN, DE |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R081 Ref document number: 502005009989 Country of ref document: DE Owner name: EBERSPAECHER CLIMATE CONTROL SYSTEMS GMBH & CO, DE Free format text: FORMER OWNER: J. EBERSPAECHER GMBH & CO. KG, 73730 ESSLINGEN, DE Effective date: 20130607 Ref country code: DE Ref legal event code: R082 Ref document number: 502005009989 Country of ref document: DE Representative=s name: WEICKMANN & WEICKMANN, DE Effective date: 20130607 Ref country code: DE Ref legal event code: R082 Ref document number: 502005009989 Country of ref document: DE Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL PATENT- U, DE Effective date: 20130607 Ref country code: DE Ref legal event code: R082 Ref document number: 502005009989 Country of ref document: DE Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL, PATENT- , DE Effective date: 20130607 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 502005009989 Country of ref document: DE Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL PATENT- U, DE Ref country code: DE Ref legal event code: R082 Ref document number: 502005009989 Country of ref document: DE Representative=s name: RUTTENSPERGER LACHNIT TROSSIN GOMOLL, PATENT- , DE |
|
| PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160131 Year of fee payment: 12 |
|
| REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 502005009989 Country of ref document: DE |
|
| PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170801 |