EP1546547B1 - Soupape d'injection de carburant pour moteurs a combustion interne - Google Patents

Soupape d'injection de carburant pour moteurs a combustion interne Download PDF

Info

Publication number
EP1546547B1
EP1546547B1 EP03737862A EP03737862A EP1546547B1 EP 1546547 B1 EP1546547 B1 EP 1546547B1 EP 03737862 A EP03737862 A EP 03737862A EP 03737862 A EP03737862 A EP 03737862A EP 1546547 B1 EP1546547 B1 EP 1546547B1
Authority
EP
European Patent Office
Prior art keywords
grooves
valve
fuel injection
annular groove
combustion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03737862A
Other languages
German (de)
English (en)
Other versions
EP1546547A1 (fr
Inventor
Markus Ohnmacht
Patrick Mattes
Werner Teschner
Wilhelm Christ
Friedrich Boecking
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1546547A1 publication Critical patent/EP1546547A1/fr
Application granted granted Critical
Publication of EP1546547B1 publication Critical patent/EP1546547B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1873Valve seats or member ends having circumferential grooves or ridges, e.g. toroidal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1866Valve seats or member ends having multiple cones

Definitions

  • WO 96/19661 shows a fuel injection valve with a valve body in which a bore is formed, which is bounded at its combustion-chamber end by a conical valve seat.
  • a piston-shaped valve needle is arranged longitudinally displaceable, which has a substantially conical valve sealing surface at its combustion chamber end.
  • the valve sealing surface is divided into two conical surfaces, which are separated from each other by an annular groove.
  • the opening angle of the two conical surfaces and the opening angle of the conical valve seat are in this case coordinated so that upon contact of the valve needle on the valve seat edge, which is formed at the transition of the annular groove to the first conical surface, comes to rest on the valve seat and serves as a sealing edge to the Control fuel flow to at least one injection port, which goes off the valve seat and opens into the combustion chamber of the internal combustion engine.
  • the second edge of the annular groove which limits the annular groove next to the sealing edge and is formed at the transition to the second conical surface on the valve sealing surface, is spaced from the valve seat in the closed position of the valve needle, ie when the valve needle comes into abutment with its sealing edge on the valve seat.
  • the valve needle is closed by a closing force held their closed position by acting on their combustion chamber end facing a closing force that presses the valve needle against the valve seat.
  • a hydraulic counterforce must act on the valve needle, which exceeds the closing force.
  • a corresponding hydraulic force results inter alia on parts of the valve sealing surface, which generates a corresponding, the closing force opposing opening force. If the valve needle now lifts off the valve seat, fuel flows from the pressure chamber to the injection openings between the valve seat and the valve sealing surface.
  • the opening dynamics of the valve needle and thus also the injected fuel quantity change over time.
  • this change in the opening dynamics causes with respect Pollutant emissions and fuel consumption is no longer guaranteed optimal injection.
  • the fuel injection valve according to the invention with the characterizing features of claim 1 has the advantage over that the opening dynamics of the valve needle remains constant over the entire life.
  • recesses are formed on the valve sealing surface, which hydraulically connect the annular groove with a combustion chamber side located to the annular groove portion of the second cone surface.
  • the valve needle therefore, no additional fuel pressure can build up in the annular groove, since the fuel is discharged through the recesses in the space formed between the valve seat and the second conical surface.
  • This space is in turn connected via the injection openings with the combustion chamber, so that a reliable pressure relief of the annular groove is ensured in sectionhub Scheme. Only when the maximum lift is reached does the fuel from the pressure chamber also flow into these regions of the valve sealing surface and ensure the corresponding increase in pressure in order to inject the fuel under high pressure into the combustion chamber.
  • the structure is formed as a roughening on the valve sealing surface.
  • the roughening connects directly to the annular groove and is thus arranged on the second conical surface.
  • Such a roughening can be in a simple way and manufacture either with a laser or an etching process.
  • the recesses are formed as a plurality of grooves.
  • a corresponding overall cross section of the grooves By means of a corresponding overall cross section of the grooves, a corresponding cross section can be produced, in which a pressure relief of the annular groove is ensured.
  • These grooves can be formed in various ways in an advantageous manner. It is particularly advantageous if the grooves are designed as micron grooves whose depth is less than 50 ⁇ m. By correspondingly flat microgrooves, the stability of the valve needle in the region of the valve seat is not impaired, and on the number of grooves can still produce a corresponding cross section, which is sufficient for a pressure relief of the annular groove.
  • the depth of the grooves is greater than their width, since then increases the area at the same flow cross-section with which the valve needle can sit on the valve seat. This reduces the wear in the region of the valve seat and thus increases the service life of the fuel injection valve.
  • the structured surface is formed by grooves whose combustion chamber opposite end lies within the annular groove.
  • Such grooves have the advantage that they can be easier to incorporate. If the annular groove begins precisely at the second edge of the annular groove, it is not always possible during the manufacturing process to place the beginning of the groove exactly on the second edge. However, if the annular groove begins within the annular groove, the exact position of the combustion chamber end of the grooves plays no role.
  • the recesses are formed as a plurality of grooves which are bent in an S-shape.
  • Such designed grooves have the advantage that they can be produced faster and thus cheaper.
  • the needle When manufactured by a laser process, the needle must be rotated accordingly so that the laser device inserts the groove into the correct location of the valve sealing surface.
  • the valve needle When manufactured by a laser process, the needle must be rotated accordingly so that the laser device inserts the groove into the correct location of the valve sealing surface.
  • the valve needle is rotated by a certain angle about its longitudinal axis, remains in this position until the groove is introduced by the laser, and then continues to rotate.
  • S-shaped grooves it is possible to continuously rotate the valve needle so that as the laser moves along the longitudinal axis of the valve needle, a curved groove is created.
  • the width of the grooves changes from its end remote from the combustion chamber to the end, which faces the combustion chamber. It is particularly advantageous if the width decreases in this direction. This results in a rapid discharge of the fuel from the annular groove and a corresponding reduction in the throttling at the second edge of the annular groove, wherein the decreasing cross-section of the grooves to the injection openings towards the flow conditions between the valve seat and the valve sealing surface at least approximately those of the known fuel injection valves correspond, so that there are identical Einström discipline in the injection openings.
  • the recesses are formed as rougenanschliffe, which are formed on the second cone surface.
  • Suchoasananschliffe can be produced with little effort, so that a cost-effective production is possible.
  • the combustion chamber facing the conical valve seat is followed by a bag volume, from which the at least one injection opening emerges.
  • the grooves extend so far in the direction of the combustion chamber that they extend at least to the transitional edge between the conical valve seat and the bag volume.
  • a further fuel injection valve according to the invention with the characterizing features of claim 16 has the same advantage as the fuel injection valve according to claim 1.
  • the recesses are formed on the valve seat, which recesses hydraulically connect the annular groove with a combustion chamber side of the annular groove portion of the valve seat. Hydraulically, these recesses act the same, so that here too a pressure build-up in the annular groove is prevented during partial lift of the valve needle.
  • the grooves extend between the injection openings, which emanate here from the valve seat.
  • the inlet conditions in the injection openings are not changed compared to the previously used injection valves, so that no adjustment must take place here.
  • the grooves extend over the injection openings, so that the uniform fuel supply is not affected by a possible slight misalignment of the valve needle.
  • the recesses are produced by a laser method, since in an economical manner almost arbitrarily structured surfaces can be formed which can not be produced with mechanical processing methods or only with considerably greater effort.
  • FIG. 1 shows a longitudinal section of a fuel injection valve according to the invention.
  • a bore 3 is formed, which is bounded at its combustion-chamber end by a conical valve seat 12. From the valve seat 12 is at least one injection port 14, which opens in the installed position of the fuel injection valve in the combustion chamber of the internal combustion engine.
  • a piston-shaped valve needle 5 is arranged longitudinally displaceable, which is guided with a guided portion 105 in a guide portion 103 of the bore 3. Starting from the guided section 105 of the valve needle 5, the valve needle 5 tapers the valve seat 12 to form a pressure shoulder 7 and merges at its combustion chamber end into a valve sealing surface 10.
  • valve needle 5 In its closed position, the valve needle 5 is located with the valve sealing surface 10 on the valve seat 12 and thus closes the injection openings 11 against a valve needle 5 and the wall of the bore 3 formed pressure chamber 16.
  • the pressure chamber 16 is radially expanded at the level of the pressure shoulder 7, and in the radial extension of the pressure chamber 16 opens a valve body 1 extending inlet channel 18, via which the pressure chamber 16 can be filled with fuel under high pressure.
  • a corresponding device is for example a spring or a device which generates the closing force hydraulically.
  • a gap between the valve sealing surface 10 and the valve seat 12 is opened, so that fuel from the pressure chamber 16 can flow into the injection openings 14 and is injected from there into the combustion chamber of the internal combustion engine.
  • the corresponding opening force which is opposite to the closing force, is hereby generated by the hydraulic force on parts of the valve sealing surface 10 and the pressure shoulder 7.
  • FIG. 2 shows an enlargement of FIG. 1 in the section of a fuel injection valve not according to the invention, designated by A.
  • the valve sealing surface 10 comprises a first conical surface 20 and a second conical surface 22, wherein the second conical surface 22 is formed facing the combustion chamber facing the first conical surface 20.
  • An annular groove 25 is formed between the first conical surface 20 and the second conical surface 22, wherein a sealing edge 27 is formed at the transition of the first conical surface 20 to the annular groove 25 and a second edge 29 at the transition of the annular groove 25 to the second conical surface 22.
  • the opening angle ⁇ of the first conical surface 20 is smaller than the opening angle ⁇ of the conical valve seat 12, so that a differential angle ⁇ 1 is formed between the first conical surface 20 and the valve seat 12.
  • the opening angle ⁇ of the second cone surface 22 is greater than that Opening angle ⁇ of the valve seat 12, so that between the second conical surface 22 and the valve seat 12, a differential angle ⁇ 2 is formed.
  • the difference angle ⁇ 1 is preferably smaller than the difference angle ⁇ 2 .
  • the second edge 29 of the annular groove 25 is not at least in the new state of the fuel injection valve on the valve seat 12, but this distance can decrease in the course of operation by appropriate wear and eventually cause in the closed position of the valve needle 5 and the second edge 29 on the valve seat 12 rests.
  • recesses 35 are formed, which establishes a hydraulic connection between the annular groove 25 and the space formed between the second conical surface 22 and the valve seat 12.
  • the recesses 35 in the exemplary embodiment shown in FIG. 2 can be produced, for example, by etching or by introducing the recesses 35 by means of a laser, so that a hydraulic connection of the annular groove 25 with the second section of the second conical surface 22 located on the combustion chamber side to the annular groove is produced.
  • FIG. 3 shows the same detail as in FIG. 2 of another fuel injection valve not according to the invention.
  • the recesses 35 here consist of a multiplicity of grooves 38, the end facing away from the combustion chamber coinciding with the second edge 29 and which extend to a section of the second conical surface 22 which is situated in the direction of the annular groove 25 on the combustion chamber side.
  • the extent of the grooves 38 on the second conical surface 22 in the direction of the combustion chamber is determined by the difference angle ⁇ 2 and the position of the injection openings 14.
  • the grooves 38 extend so far that they extend beyond the injection openings 11.
  • the grooves 38 are preferably made microstructured, that is to say that they have a depth of preferably less than 50 ⁇ m.
  • the width of the grooves 38 which are again shown in Figure 4a in a cross section of the valve needle 5, is preferably 5 microns to 50 microns.
  • the grooves 38 In order to remove as little material from the second edge 29 by the formation of the grooves 38 and thus to reduce the area with which the valve needle 5 rests in the region of the second edge 29 on the valve seat 12, the grooves 38 with a ratio of width b to depth t, where the depth t is one to ten times the width b. This achieves a minimum reduction of the area in the region of the second edge 29, while maintaining the flow cross-section, which is sufficient to prevent the pressure increase in the annular groove 25 in Generalhub Scheme.
  • a rectangular cross section as shown in FIG. 4a
  • a certain cross section is generally easier to produce than another, so that the most favorable for the production process can be selected in each case.
  • Figure 5 shows an embodiment of the invention, wherein the same section as shown in Figure 3 is shown.
  • the combustion chamber facing away from the end of the grooves 38 is here within the annular groove 25, and the grooves 38 extend along the generatrices of the second cone surface 22.
  • the formation of such grooves 38 is advantageous in that it is difficult manufacturing technology, the combustion chamber facing away from the grooves 38 so that it coincides exactly with the second edge 29. Due to the design of the combustion chamber end of the grooves 38 approximately in the middle of the annular groove 25, wherein the grooves 38 pass over the second edge 29, a trouble-free production of the grooves 38 is ensured.
  • FIG. 6 shows a further exemplary embodiment, wherein the same section is shown as in FIG.
  • the left half of Figure 6 shows an embodiment in which the grooves 38 are curved C- or S-shaped.
  • Such a shape of the grooves 38 is advantageous in that, in the manufacturing process by means of a laser, the laser beam moves when the valve needle 5 is stationary along the generatrices of the second cone surface 22. To form straight grooves 38, therefore, the valve needle 5 must be kept quiet as long as the laser beam 5 introduces the groove 38. This manufacturing process can be accelerated if the valve needle 5 is rotated continuously and the laser thereby performs its movement, which enables an acceleration of the manufacturing process.
  • the resulting grooves 38 are bent, but also serve their purpose to prevent the pressure increase in the annular groove 25.
  • the right half of Figure 6 shows another embodiment in which the grooves 38 alternately have a different length. Since the throttling is to be prevented substantially at the second edge 29 and in the immediate region of the second conical surface 22, a large cross-section of the grooves 38 in this area is required. In the combustion chamber nearer lying portions of the second conical surface 22 a relief through the grooves 38 is no longer possible to the extent, so that here few grooves 38 are sufficient.
  • FIG. 7 shows a further exemplary embodiment, again showing the same detail as in FIG is.
  • the left half of Figure 7 shows an embodiment in which the grooves 38 have a constant width and to the combustion chamber end, ie, extend to the end surface 32. Depending on the position of the injection openings 14 and the size of the difference angle ⁇ 2 , such an embodiment offers better dethrottling of the annular groove 25.
  • the right half of FIG. 7 represents a further embodiment in which the grooves 38 have a non-constant width. At the end facing away from the combustion chamber, ie in the region of the annular groove 25 and the second edge 29, a greater width is present than at the combustion chamber end of the grooves 38, which ensures good Entdrosselung the annular groove 25.
  • the grooves 38 have a non-constant depth, wherein the greatest depth is in the region of the annular groove 25 and on the second edge 29 and the depth of the grooves 38 decreases continuously towards its combustion chamber end ,
  • FIG. 8 shows a further fuel injection valve not according to the invention, wherein the recesses 35 are designed as professionnanschliffe 37.
  • FIG. 8 a shows a top view of the valve needle 5, in which the arrangement of the surface contours 37 becomes clear.
  • four clergynanschliffe 37 are arranged on the second cone surface 22, ranging from the annular groove 25 to the end face 32 and provide the hydraulic connection.
  • the depth of the beneficiananschliffe 37 can be varied, depending on the size of theinstitunanschliffe 37, the supporting part of the second cone surface 22 changes, so the part with which the second cone surface 22 rests on the valve seat 12.
  • the number of consultantsnanschliffe 37 can be chosen freely, but advantageously at least two proceedingsnanschliffe 37 may be provided which are arranged distributed uniformly over the circumference of the second cone surface 22 to a uniform To achieve distribution of the contact forces of the valve needle 5 on the valve seat 12.
  • FIG. 9 shows a further fuel injection valve not according to the invention, wherein the valve body 1 is formed in the region of the valve seat 12 differently from the previously shown exemplary embodiments.
  • a bag volume 40 connects to the combustion chamber side, wherein at the transition of the conical valve seat 12 to the bag volume 40, a transition edge 42 is formed.
  • the grooves 38 are guided so far in the direction of the bag volume 40 that their end extends at least to the transition edge 42.
  • the grooves 38 here have the effect that the throttling at the inlet into the bag volume 40 in the region of the transition edge 42 is de-throttled.
  • the number of grooves 38 arranged over the circumference of the valve needle 5 is dimensioned according to the desired cross section. It has proven to be advantageous in this case to form at least eight grooves distributed over the circumference of the second conical surface 22. However, it can also be provided to form significantly more grooves 38 and to form them with a correspondingly smaller depth.
  • FIG. 10 shows a further exemplary embodiment of a fuel injection valve.
  • the valve needle 5 in this case has no recesses on the valve sealing surface 10, instead recesses 35 are formed on the valve seat 12.
  • the recesses 35 are formed here as grooves 38, the combustion chamber opposite end is at the level of the annular groove 25 and located up to a combustion chamber side to the annular groove 25 Section of the valve seat 12 range.
  • the grooves 38 are here formed so that they do not intersect the injection openings 11, which emanate from the valve seat 12.
  • FIG. 11 shows a cross section through FIG. 10 along the line BB, the valve needle 5 being omitted here.
  • the grooves 38 can be seen, which are arranged alternately distributed with the injection openings 11 via the valve seat 12.
  • FIG. 12 shows the same view as in FIG. 10 of a further exemplary embodiment, wherein the grooves 38 here do not run between the injection openings 11, but over them.
  • the arrangement of the grooves 38 of each injection port 11 targeted to fuel out, so that a desalination of the valve needle 5 without significant effect on the quantitative distribution of the fuel between the injection ports 11 remains.
  • FIG. 13 shows a perspective view of the valve body 1 without valve needle 5, so that the course of the grooves 38 on the valve seat 12 can be better seen.
  • FIG. 14 shows the same view as in FIG. 9, that is to say a fuel injection valve in which a bag volume 40 adjoins the valve seat.
  • the recesses 35 are also formed here as grooves 38 in the valve seat 12, which extend to the transition edge 42 of the conical valve seat 12 to the bag volume 40. This also has the additional effect that the throttling of the fuel flow at the transition edge 42 when flowing into the bag volume 40 is reduced.
  • 12 recesses 35 are formed both on the valve sealing surface 10 and the valve seat, which cause a corresponding hydraulic relief of the annular groove 25 in Operahub Scheme. Any combinations of the embodiments shown in FIGS. 2 to 8 with those of FIGS. 9 through 13 are possible. The entire flow cross-section can be divided on the recesses 35 on these surfaces, which allows a smaller depth of the individual recesses 35 at the same flow cross-section.
  • the recesses 35 can be produced particularly advantageously by means of a laser. With this, both a rough surface, as shown in FIG. 2, can be formed, as well as arbitrary shapes and depths of the grooves 38.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)

Abstract

L'invention concerne une soupape d'injection de carburant pour moteurs à combustion interne, comprenant un corps de soupape (1) dans lequel est formé un alésage (3), délimité au niveau de son extrémité côté chambre de combustion, par un siège de soupape (12) conique. Un pointeau de soupape (5) sous forme de piston est disposé dans l'alésage (3), de manière à coulisser dans le sens longitudinal et présente à son extrémité côté chambre de combustion, une surface d'étanchéité de soupape (10) comprenant deux surfaces coniques (20;22). A cet effet, la seconde surface conique (22) est disposée côté chambre de combustion par rapport à la première surface conique (20) et une rainure annulaire (25) s'étend entre les surfaces coniques (20; 22). L'arête opposée à la chambre de combustion de ladite rainure annulaire fait office d'arête d'étanchéité (27) lorsque la surface d'étanchéité de la soupape (10) est appliquée sur le siège de soupape (10). Il est prévu, sur le siège de soupape (12) et/ou sur la surface d'étanchéité de soupape (10), des cavités (35) reliant de manière hydraulique, la section située côté chambre de combustion par rapport à la rainure annulaire (25), entre le siège de soupape (12) et la surface d'étanchéité de soupape (10).

Claims (18)

  1. Injecteur de carburant pour des moteurs à combustion interne, avec un corps de soupape (1), dans lequel un alésage (3) est limité à son extrémité côté chambre de combustion par un siège de soupape conique (12), et avec une aiguille de soupape (5) en forme de piston, coulissant longitudinalement dans l'alésage (3) et comprenant, à son extrémité côté chambre de combustion, une surface d'étanchéité de soupape (10) comportant deux surfaces coniques (20 ; 22), la deuxième surface conique (22) étant du côté de la chambre de combustion par rapport à la première surface conique (20) avec une rainure annulaire (25) pratiquée entre les surfaces coniques (20 ; 22), et dont l'arête éloignée de la chambre de combustion agit comme arête d'étanchéité (27) lorsque la surface d'étanchéité de soupape (10) est appliquée sur le siège de soupape (12),
    caractérisé en ce que
    plusieurs rainures (38) formées sur la surface d'étanchéité de soupape (10) relient hydrauliquement la rainure annulaire (25) à une partie de la deuxième surface conique (22) située du côté de la chambre de combustion par rapport à la rainure annulaire (25) et l'extrémité des rainures (38) éloignée de la chambre de combustion est située à l'intérieur de la rainure annulaire (25).
  2. Injecteur de carburant selon la revendication 1,
    caractérisé en ce qu'
    un volume borgne (40) se raccorde côté chambre de combustion à la surface d'étanchéité de soupape (10), et à partir de celui-ci part au moins un orifice d'injection (11), les rainures (38) arrivant au moins jusqu'à l'arête de transition (42) entre le volume borgne (40) et le siège de soupape (12).
  3. Injecteur de carburant selon la revendication 1,
    caractérisé en ce que
    toutes les rainures (38) commencent dans le même plan radial de l'aiguille de soupape (5) et conduisent de là en direction de la chambre de combustion.
  4. Injecteur de carburant selon la revendication 3,
    caractérisé en ce que
    les rainures (38) présentent des longueurs différentes.
  5. Injecteur de carburant selon la revendication 1,
    caractérisé en ce que
    les rainures (38) se prolongent au-delà des orifices d'injection (11).
  6. Injecteur de carburant selon la revendication 1,
    caractérisé en ce que
    les rainures (38) sont des microrainures, dont la profondeur (t) est inférieure à 50 µm.
  7. Injecteur de carburant selon la revendication 1,
    caractérisé en ce que
    les rainures (38) présentent une largeur (b) de 5 µm à 50 µm.
  8. Injecteur de carburant selon la revendication 1,
    caractérisé en ce que
    les rainures (38) sont rectilignes et sont situées le long des génératrices de la deuxième surface conique (22).
  9. Injecteur de carburant selon la revendication 1,
    caractérisé en ce que
    les rainures (38) sont rectilignes et sont inclinées par rapport aux génératrices de la deuxième surface conique (22).
  10. Injecteur de carburant selon la revendication 1,
    caractérisé en ce que
    la profondeur (t) des rainures (38) vaut de 1 à 10 fois leur largeur (b).
  11. Injecteur de carburant selon la revendication 1,
    caractérisé en ce que
    la largeur (b) des rainures (38) diminue à partir de leur extrémité éloignée de la chambre de combustion en direction de la chambre de combustion.
  12. Injecteur de carburant selon la revendication 1,
    caractérisé en ce que
    les rainures (38) sont courbées en forme de S.
  13. Injecteur de carburant selon la revendication 1,
    caractérisé en ce que
    les rainures (38) s'étendent jusqu'à l'extrémité de l'aiguille de soupape (5) côté chambre de combustion.
  14. Injecteur de carburant pour des moteurs à combustion interne, avec un corps de soupape (1), dans lequel un alésage (3) est limité à son extrémité côté chambre de combustion par un siège de soupape conique (12), et avec une aiguille de soupape (5) en forme de piston coulissant longitudinalement dans l'alésage (3) et comprenant, à son extrémité côté chambre de combustion, une surface d'étanchéité de soupape (10) qui comporte deux surfaces coniques (20 ; 22), la deuxième surface conique (22) étant du côté de la chambre de combustion par rapport à la première surface conique (20) et avec une rainure annulaire (25) pratiquée entre les surfaces coniques (20 ; 22), et dont l'arête éloignée de la chambre de combustion agit comme arête d'étanchéité (27) lorsque la surface d'étanchéité de soupape (10) est appliquée sur le siège de soupape (12),
    caractérisé en ce que
    des évidements (35) formés sur le siège de soupape (12) relient hydrauliquement la rainure annulaire (25) à une partie du siège de soupape (12) située du côté de la chambre de combustion par rapport à la rainure annulaire (25), les évidements (35) étant formés par des rainures rectilignes (38) et s'étendant jusqu'à hauteur de ces orifices d'injection (11).
  15. Injecteur de carburant selon la revendication 14,
    caractérisé en ce que
    les rainures (38) sont situées entre les orifices d'injection (11).
  16. Injecteur de carburant selon la revendication 14,
    caractérisé en ce que
    les rainures (38) s'étendent au-delà des orifices d'injection (11).
  17. Injecteur de carburant selon la revendication 14,
    caractérisé en ce qu'
    un volume borgne (40) se raccorde côté chambre de combustion au siège de soupape (12), et à partir de celui-ci partent plusieurs orifices d'injection (11), des rainures (38) étant formées dans le siège de soupape (12), et s'étendant de la rainure annulaire (25) jusqu'à l'arête de transition (42) entre le siège de soupape (12) et le volume borgne (40).
  18. Injecteur de carburant selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    les rainures (38) sont réalisées par un procédé au laser.
EP03737862A 2002-09-27 2003-04-25 Soupape d'injection de carburant pour moteurs a combustion interne Expired - Lifetime EP1546547B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10245573 2002-09-27
DE10245573A DE10245573A1 (de) 2002-09-27 2002-09-27 Kraftstoffeinspritzventil für Brennkraftmaschinen
PCT/DE2003/001350 WO2004031570A1 (fr) 2002-09-27 2003-04-25 Soupape d'injection de carburant pour moteurs a combustion interne

Publications (2)

Publication Number Publication Date
EP1546547A1 EP1546547A1 (fr) 2005-06-29
EP1546547B1 true EP1546547B1 (fr) 2006-11-22

Family

ID=31984275

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03737862A Expired - Lifetime EP1546547B1 (fr) 2002-09-27 2003-04-25 Soupape d'injection de carburant pour moteurs a combustion interne

Country Status (6)

Country Link
US (1) US7347389B2 (fr)
EP (1) EP1546547B1 (fr)
JP (1) JP2006500514A (fr)
CN (1) CN100416087C (fr)
DE (2) DE10245573A1 (fr)
WO (1) WO2004031570A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030344A1 (de) 2010-06-22 2011-12-22 Robert Bosch Gmbh Injektor, insbesondere Common-Rail-Injektor, sowie Kraftstoffeinspritzsystem mit einem Injektor

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1496246A1 (fr) 2003-07-07 2005-01-12 Delphi Technologies, Inc. Buse d'injection
BRPI0516150A (pt) 2004-09-27 2008-08-26 Medical Instill Tech Inc dispensador para liberar uma substáncia
DE102005008894A1 (de) * 2005-02-26 2006-08-31 Audi Ag Einspritzdüse
DE102005038444A1 (de) * 2005-05-02 2006-11-09 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102005025135A1 (de) * 2005-06-01 2006-12-07 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
DE102005029024A1 (de) * 2005-06-22 2007-01-04 Siemens Ag Düsenbaugruppe
DE102005045001A1 (de) 2005-09-21 2007-03-22 Robert Bosch Gmbh Kraftstoffeinspritzventil für Brennkraftmaschinen
WO2008061041A2 (fr) * 2006-11-11 2008-05-22 Medical Instill Technologies, Inc. Dispositif d'administration de doses multiples avec actionneur enfoncable manuellement et valve a sens unique pour stocker et distribuer des substances, et procédé apparente
DE102007013247A1 (de) * 2007-03-20 2008-09-25 Robert Bosch Gmbh Dichtkante für Kegelsitzventil
EP2071178A1 (fr) * 2007-12-10 2009-06-17 Delphi Technologies, Inc. Buse à injection
DE102009042155A1 (de) 2009-09-21 2011-04-07 Continental Automotive Gmbh Kraftstoff-Einspritzventil für eine Brennkraftmaschine
WO2012085901A2 (fr) * 2011-05-09 2012-06-28 Lietuvietis Vilis I Canal d'égalisation de pression à trous recouverts par aiguille
JP5838701B2 (ja) * 2011-10-05 2016-01-06 株式会社デンソー 燃料噴射弁
US10060402B2 (en) 2014-03-10 2018-08-28 G.W. Lisk Company, Inc. Injector valve
DE102015206467A1 (de) * 2015-02-17 2016-08-18 Robert Bosch Gmbh Einspritzventil für ein gasförmiges oder flüssiges Medium und Verfahren zur Herstellung eines solchen Einspritzventils
DE102016215637A1 (de) * 2016-08-19 2018-02-22 Robert Bosch Gmbh Kraftstoffeinspritzdüse
JP2018165504A (ja) * 2017-03-28 2018-10-25 愛三工業株式会社 燃料噴射弁
CN112282999B (zh) * 2020-10-30 2021-10-22 安徽江淮汽车集团股份有限公司 一种能够降低落座声的喷油器结构

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1952816A (en) * 1931-04-04 1934-03-27 Bendix Res Corp Fuel injector
US2407915A (en) * 1942-08-20 1946-09-17 Chrysler Corp Injection nozzle
GB2232203A (en) 1989-06-03 1990-12-05 Lucas Ind Plc C.i. engine fuel injector
GB9425652D0 (en) * 1994-12-20 1995-02-22 Lucas Ind Plc Fuel injection nozzle
DE19820513A1 (de) * 1998-05-08 1999-11-11 Mtu Friedrichshafen Gmbh Kraftstoffeinspritzdüse für eine Brennkraftmaschine
US6776358B2 (en) * 1998-10-09 2004-08-17 Jun Arimoto Fuel injection nozzle for a diesel engine
JP3817959B2 (ja) 1999-03-16 2006-09-06 トヨタ自動車株式会社 燃料噴射ノズル
JP3567838B2 (ja) 1999-04-26 2004-09-22 トヨタ自動車株式会社 燃料噴射ノズル
DE19931891A1 (de) * 1999-07-08 2001-01-18 Siemens Ag Kraftstoffeinspritzventil für eine Brennkraftmaschine
DE10000574A1 (de) * 2000-01-10 2001-07-19 Bosch Gmbh Robert Kraftstoff-Einspritzdüse
IT1319988B1 (it) * 2000-03-21 2003-11-12 Fiat Ricerche Spina di chiusura di un ugello in un iniettore di combustibile permotori a combustione interna.
DE10031264A1 (de) * 2000-06-27 2002-01-17 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
DE10102234A1 (de) * 2001-01-19 2002-07-25 Bosch Gmbh Robert Vorrichtung zur Kraftstoff-Hochdruckversorgung einer Brennkraftmaschine
DE10115216A1 (de) * 2001-03-28 2002-10-10 Bosch Gmbh Robert Kraftstoffeinspritzventil für Brennkraftmaschinen
JP3882680B2 (ja) * 2001-11-16 2007-02-21 株式会社デンソー 燃料噴射ノズル
DE50305850D1 (de) * 2002-05-18 2007-01-11 Bosch Gmbh Robert Kraftstoffeinspritzventil für brennkraftmaschinen
DE50305296D1 (de) * 2002-11-11 2006-11-16 Bosch Gmbh Robert Kraftstoffeinspritzventil für brennkraftmaschinen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102010030344A1 (de) 2010-06-22 2011-12-22 Robert Bosch Gmbh Injektor, insbesondere Common-Rail-Injektor, sowie Kraftstoffeinspritzsystem mit einem Injektor
WO2011160991A1 (fr) 2010-06-22 2011-12-29 Robert Bosch Gmbh Injecteur, en particulier injecteur pour rampe commune, et système d'injection de carburant présentant un injecteur

Also Published As

Publication number Publication date
US20050284964A1 (en) 2005-12-29
US7347389B2 (en) 2008-03-25
JP2006500514A (ja) 2006-01-05
CN100416087C (zh) 2008-09-03
WO2004031570A1 (fr) 2004-04-15
DE10245573A1 (de) 2004-04-08
EP1546547A1 (fr) 2005-06-29
CN1685146A (zh) 2005-10-19
DE50305785D1 (de) 2007-01-04

Similar Documents

Publication Publication Date Title
EP1546547B1 (fr) Soupape d'injection de carburant pour moteurs a combustion interne
DE4039520B4 (de) Kraftstoff-Einspritzventil
DE69636585T2 (de) Kraftstoffeinspritzdüse
DE60312260T2 (de) Kraftstoff-Einspritzvorrichtung
EP1198672A1 (fr) Soupape d'injection de carburant pour moteurs a combustion interne
DE102006000035A1 (de) Fluideinspritzventil
EP1656498A1 (fr) Soupape d'injection de carburant commandee par une soupape pilote
EP1045978B1 (fr) Soupape d'injection de carburant pour moteurs a combustion interne
DE10210976A1 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen
DE3905636A1 (de) Schieberventil
DD142739A1 (de) Kraftstoff-einspritzduese fuer brennkraftmaschinen
DE19823937A1 (de) Servoventil für Kraftstoffeinspritzventil
EP1346143B1 (fr) Soupape d'injection de carburant destinee a des moteurs a combustion interne
DE102014220839B4 (de) Hochdruckpumpe für ein Kraftstoffeinspritzsystem einer Brennkraftmaschine
EP1623108A1 (fr) Injecteur de carburant pour moteur a combustion interne
WO1999066192A1 (fr) Unite de commande pour soupape d'injection de carburant
EP1605159A1 (fr) Injecteur de carburant
DE102005034879B4 (de) Düsenbaugruppe für ein Einspritzventil
EP1579113A1 (fr) Soupape d'injection de carburant pour moteurs a combustion interne
WO2012084515A1 (fr) Corps de buse présentant un trou d'injection qui comporte au moins deux ouvertures d'entrée
DE19843912B4 (de) Kraftstoffeinspritzdüse
WO2004027254A1 (fr) Soupape d'injection de carburant pour moteur a combustion interne
EP1528251A1 (fr) Injecteur avec des structures pour limiter les changements des caractéristiques d'ouverture dûs à l'usure
DE10254466B4 (de) Kraftstoffeinspritzventil
EP1176306A2 (fr) Système d'injection de combustible pour moteurs à combustion interne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050427

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR IT

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR IT

REF Corresponds to:

Ref document number: 50305785

Country of ref document: DE

Date of ref document: 20070104

Kind code of ref document: P

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070823

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 14

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 15

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20220429

Year of fee payment: 20

Ref country code: FR

Payment date: 20220420

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20220627

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 50305785

Country of ref document: DE