EP1546437A2 - Dünne filme oxidischer materialien mit hoher dielektrizitätskonstante - Google Patents

Dünne filme oxidischer materialien mit hoher dielektrizitätskonstante

Info

Publication number
EP1546437A2
EP1546437A2 EP03757799A EP03757799A EP1546437A2 EP 1546437 A2 EP1546437 A2 EP 1546437A2 EP 03757799 A EP03757799 A EP 03757799A EP 03757799 A EP03757799 A EP 03757799A EP 1546437 A2 EP1546437 A2 EP 1546437A2
Authority
EP
European Patent Office
Prior art keywords
substrate
glycol mono
suspension
coating
ether
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP03757799A
Other languages
English (en)
French (fr)
Inventor
Hans-Josef Sterzel
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE10244285A external-priority patent/DE10244285A1/de
Priority claimed from DE10260091A external-priority patent/DE10260091A1/de
Application filed by BASF SE filed Critical BASF SE
Publication of EP1546437A2 publication Critical patent/EP1546437A2/de
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C24/00Coating starting from inorganic powder
    • C23C24/08Coating starting from inorganic powder by application of heat or pressure and heat
    • C23C24/10Coating starting from inorganic powder by application of heat or pressure and heat with intermediate formation of a liquid phase in the layer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G23/00Compounds of titanium
    • C01G23/003Titanates
    • C01G23/006Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G35/00Compounds of tantalum
    • C01G35/006Compounds containing, besides tantalum, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/468Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates
    • C04B35/4682Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on barium titanates based on BaTiO3 perovskite phase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/465Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates
    • C04B35/47Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on alkaline earth metal titanates based on strontium titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/46Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates
    • C04B35/462Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates
    • C04B35/475Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on titanium oxides or titanates based on titanates based on bismuth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/48Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates
    • C04B35/49Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates
    • C04B35/491Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on zirconium or hafnium oxides, zirconates, zircon or hafnates containing also titanium oxides or titanates based on lead zirconates and lead titanates, e.g. PZT
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02282Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process liquid deposition, e.g. spin-coating, sol-gel techniques, spray coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31691Inorganic layers composed of oxides or glassy oxides or oxide based glass with perovskite structure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/64Nanometer sized, i.e. from 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3215Barium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • C04B2235/3248Zirconates or hafnates, e.g. zircon
    • C04B2235/3249Zirconates or hafnates, e.g. zircon containing also titanium oxide or titanates, e.g. lead zirconate titanate (PZT)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3251Niobium oxides, niobates, tantalum oxides, tantalates, or oxide-forming salts thereof
    • C04B2235/3255Niobates or tantalates, e.g. silver niobate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3296Lead oxides, plumbates or oxide forming salts thereof, e.g. silver plumbate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/441Alkoxides, e.g. methoxide, tert-butoxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/549Particle size related information the particle size being expressed by crystallite size or primary particle size

Definitions

  • the present invention relates to a method for coating a substrate by coating a finely divided, stable suspension of crystalline oxide particles on the substrate, which may need to be tempered, evaporating the suspension medium and sintering at elevated temperature.
  • Oxidic materials with a high dielectric constant such as barium titanate, strontium titanate, mixed titanates made of barium and strontium, lead zircon titanates or strontium bismuth tantalate are used as dielectrics or ferroelectrics for memory chips in microelectronics.
  • These materials act as a dielectric on a substrate if they are applied as a film in layer thicknesses of approximately 100 nm in crystalline form. To produce a film, a temperature treatment at 300 to 1000 ° C must be carried out.
  • the object of the present invention was therefore to remedy the disadvantages mentioned above.
  • a new and improved method for coating a substrate which is characterized in that a finely divided suspension of crystalline oxide particles is applied to a substrate by coating, the suspension medium is evaporated and the coating is sintered on the substrate.
  • the method according to the invention can be carried out as follows:
  • the oxide suspensions can be sprayed onto a substrate by means of a suitable device, such as spray nozzles, which is optionally heated to such a high temperature that the suspension medium evaporates. Evaporation can also be carried out in a separate step by subsequent heating.
  • a homogeneous spray cone can be achieved by coupling the spray nozzle (s) to an ultrasonic oscillator or by superimposing an ultrasonic oscillation during metering or by metering the suspension onto a suitably shaped ultrasonic oscillator.
  • the spraying of the optionally moderately tempered (temperature from room temperature to below the boiling point of the suspension medium) suspension can be achieved in a two-component nozzle by means of an auxiliary gas (such as nitrogen or argon) and / or by supporting the spraying process, for example, by superimposed ultrasonic vibrations.
  • an auxiliary gas such as nitrogen or argon
  • Coating can be carried out by spraying or by a spin-on process, in which a certain amount of flowable suspension is metered in at any point, for example in the center, of a rotating substrate and the suspension is distributed uniformly over the substrate due to the centrifugal force.
  • the system can be heated to the crystallization temperature adequate for the oxide and the desired coherent film can be produced by sintering together the nano-particles.
  • the sintering temperatures for nanoparticles are generally well below the sintering temperature for particles on the micrometer scale.
  • the sintering temperature for nanoparticles is approx. 750 ° C in contrast to micrometer particles (grain sizes of 2 to 5 ⁇ m) at approx. 1350 ° C.
  • the oxide particles In the suspensions of finely divided, crystalline oxide particles, water or organic suspension media are generally used, which give the oxide particles an average particle size of 0.5 to 9.9 nm, preferably 0.6 to 9 nm, particularly preferably 1 to 8 nm contain.
  • Wafers made of high-purity silicon, which are already structured, are generally suitable as substrates, the structuring taking place according to the known “damascene” process.
  • the actual substrate layers are electrically conductive layers that are created in the Damascene process.
  • Suitable organic suspending agents are generally polar organic suspending agents, especially aliphatic alcohols, ether alcohols or their mixtures with a boiling point below approximately 300 ° C. under normal pressure. These can be used in anhydrous form or, preferably, in commercially available aqueous form.
  • Suitable alcohols are C ⁇ ⁇ to Cs-alkanols, preferably C ⁇ ⁇ to C -alkanols such as methanol, ethanol, n-propanol, iso-propanol, n-butanol, iso-butanol, sec-butanol or tert.
  • -Butanol particularly preferably C ⁇ ⁇ to C -alkanol such as methanol, ethanol, n-propanol or iso-propanol, especially methanol or ethanol.
  • Suitable ether alcohols are all known glycol ethers, for example ethylene glycol mono-methyl ether, ethylene glycol mono-ethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-iso-propyl ether, ethylene glycol mino-n-butyl ether, ethylene glycol ono -iso-butyl ether, ethylene glycol mono-sec.
  • -butyl ether diethylene glycol tert-butyl ether, preferably ethylene glycol mono-ethyl ether, ethylene glycol mono-n-propyl ether, ethylene glycol mono-iso-propyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono -iso-butyl ether, ethylene glycol mono-sec. -butyl ether, ethylene glycol tert.
  • -butyl ether diethylene glycol mono-ethyl ether, diethylene glycol mono-n-propyl ether, diethylene glycol mono-isopropyl ether, diethylene glycol mono-n-butyl ether, diethylene glycol mono-iso-butyl ether, diethylene glycol mono-sec. butyl ether and diethylene glycol tert-butyl ether, particularly preferably ethylene glycol mono-n-propyl ether, ethylene glycol mono-iso-propyl ether, ethylene glycol mono-n-butyl ether, ethylene glycol mono-iso-butyl ether, ethylene glycol mono-sec. -butyl ether, ethylene glycol tert.
  • butyl ether diethylene glycol mono-n-propyl ether, diethylene glycol mono-iso-propyl ether, diethylene glycol mono-n-butyl ether, Diethylene glycol mono-iso-butyl ether, diethylene glycol mono-sec. - Butyl ether and diethylene glycol ter. -butyl ether, especially ethylene glycol mono-iso-propyl ether, ethylene glycol mono-iso-butyl ether, ethylene glycol tert-butyl ether, diethylene glycol 5-mono-iso-propyl ether, diethylene glycol mono-iso-butyl ether and diethylene glycol tert. -butyl ether.
  • the solids content of the suspensions can be varied within wide limits, is generally 1 to 35% by weight, preferably 10 5 to 25% by weight, and can be adjusted in the synthesis of the suspensions or subsequently by dilution or concentration.
  • the nanocrystalline oxide suspensions can be produced as follows:
  • Titanium alcoholates can be introduced in an alkanol, a glycol ether or mixtures thereof and at a temperature of 50 to 150 ° C, preferably 60 to 120 ° C, particularly preferably 20 70 to 110 ° C, in particular at the reflux temperature and a pressure of 0.1 up to 3 bar, preferably 0.5 to 2 bar, particularly preferably at atmospheric pressure (normal pressure) with barium or strontium hydroxide hydrate.
  • the concentration of the alcoholic titanium alcoholate solution can be varied within wide limits.
  • the concentration is preferably 50 to 800 g / liter, particularly preferably 100 to 600 g / liter, very particularly preferably 200 to 400 g / liter.
  • hydroxide hydrates are suitable as barium or strontium hydroxide hydrates, e.g. Barium or strontiu - hydroxide octahydra.
  • Suitable titanium alcoholates are, for example, titanium tetra-methanolate, titanium tetraethanolate, titanium tetra-n-propanolate, titanium tetra-iso-propanolate, titanium tetra-n-butanolate, titanium tetra-iso-butanolate, titanium tetra-sec-butanolate, titanium tetra-tert. -butanolate, titanium tetra-n-pentanolate and titanium tetra-
  • iso-pentanolate preferably titanium tetraethanolate, titanium tetra-n-propanolate, titanium butanolate, titanium tetra-sec. -butanolate and titanium tetra-tert-butanolate, particularly preferably titanium tetra-n-propanolate, titanium tetra-iso-propanolate, titanium tetra-n-butanolate and titrantetra-iso-butanolate or mixtures thereof.
  • the commercially available alkoxides preferably zirconium tetraisobutylate and / or zirconium tetra-n-butoxide, are used as zirconium alkoxides.
  • lead acetate trihydrate is generally used as the lead component, or a mixture of the basic lead acetate [Pb (OAc) 2 »Pb (OH) 2 ].
  • the proportion of the water of reaction can be predetermined by the mixing ratio of lead acetate trihydrate and basic lead acetate, the acetate residues being split off as acetic acid and this, together with the alcohol present as a component in the suspension medium, providing further water with ester formation.
  • the addition of small amounts of additional acetic acid to form water of reaction may be advantageous.
  • the commercially available tantalum pentaethoxide Ta (OC 2 H 5 ) 5 is generally used as the alkoxide, preferably Sr (OH) 8H 2 0 as the Sr component, optionally in a mixture with anhydrous Sr (0H) , and as bismuth component Bi (OCOCH 3 ) 3 or bismuth hydroxide Bi (0H) 3 .
  • Bi 4 _ x La x Ti 3 0 ⁇ is generally produced using anhydrous lithium hydroxide as the Li component and titanium alcoholates as listed above as the titanium component.
  • An advantageous embodiment consists in that no additional water other than the water from the components and the suspending agent is introduced into the reaction in the oxide suspensions.
  • doping elements such as Mg, Ca, Zn, Zr, V, Nb, Ta, Bi, Cr, Mo, W, Mn, Fe, Co, Ni, Pb, Ce, or mixtures thereof, preferably Mg, Ca, Cr, Fe , Co, Ni, Pb or mixtures thereof, for example in the form of their hydroxides, oxides, carbonates, carboxylates or nitrates.
  • the mixed oxides produced according to the invention generally have an average particle diameter of less than 10 nm, preferably 5 to 9.9 nm, particularly preferably 0.6 to 9 nm, in particular 1 to 8 nm.
  • DRAMs Dynamic Random Access Memories

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Composite Materials (AREA)
  • Nanotechnology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Formation Of Insulating Films (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Paints Or Removers (AREA)
  • Semiconductor Memories (AREA)

Abstract

Verfahren zur Beschichtung eines Substrats, indem man durch Beschichtung eine feinteilige Suspension kristalliner Oxidteilchen auf ein Substrat aufbringt, das Suspensionsmittel verdampft und die Beschichtung auf dem Substrat sintert.

Description

Dünne Filme oxidischer Materialien mit hoher Dielektrizitätskonstante
Beschreibung
Die vorliegende Erfindung betrifft ein Verfahren zur Beschichtung eines Substrats durch Beschichten einer feinteiligen, stabilen Suspension kristalliner Oxidteilchen auf das ggf. zu temperierte Substrat, Verdampfen des Suspensionsmittel und Sintern bei erhöhter Temperatur.
Oxidische Materialien hoher Dielektrizitätskonstante wie Bariumtitanat, Strontiumtitanat, Mischtitanate aus Barium und Strontium, Bleizirkontitanate oder Strontiumwismut- tantalat werden als Dielektrika bzw. Ferroelektrika für Speicherchips in der Mikroelektronik eingesetzt.
Diese Materialien wirken auf einem Substrat als Dielektrikum, wenn diese als Film in Schichtdicken von ca. 100 nm in kristalliner Form aufgebracht sind. Zur Erzeugung eines Films muss eine Temperaturbehandlung bei 300 bis 1000°C erfolgen.
Aus Appl. Phys. A 69, 55-61 (1999) ist bekannt, daß derartige Filme für das ferroelektrische Material SrBi Ta 09 nach Mischen und Calcinieren von SrC0 mit Bi20 und TaOs und anschließende Sinterung verpreßter Pellets mittels Laserbestrahlung (Sputtern) auf einem Substrat erhalten werden können. Nachteilig an diesem Verfahren ist, daß sich beim Sputtervorgang die Stöchiometrie des Materials ändern kann und daß damit die Dielektrizitätskonstante oder die permanente Polarisierbarkeit negativ beein- flusst werden.
Der vorliegenden Erfindung lag daher die Aufgabe zugrunde, den zuvor genannten Nachteilen abzuhelfen.
Demgemäß wurde ein neues und verbessertes Verfahren zur Beschichtung eines Substrats gefunden, welches dadurch gekennzeichnet ist, daß man durch Beschichten eine feinteilige Suspension kristalliner Oxidteilchen auf ein Substrat auf- gringt, das Suspensionsmittel verdampft und die Beschichtung auf dem Substrat sintert. Das erfindungsgemäße Verfahren kann wie folgt durchgeführt werden :
Die Oxid-Suspensionen können durch geeigneten Vorrichtung wie Sprühdüsen auf ein Substrat versprüht werden, das man gegebenenfalls so hoch temperiert, dass das Suspensionsmittel verdampft. Die Verdampfung kann auch in einem separaten Schritt durch anschließende Erwärmung erfolgen. Ein homogener Sprühkegel kann erreicht werden, indem man die Sprühdüse (n) an einen Ultraschallschwinger ankoppelt oder bei der Dosierung eine UltraschallSchwingung überlagert oder die Suspension auf eine geeignet geformten Ultraschallschwinger dosiert. Das Versprühen der ggf. mäßig temperierten (Temperatur von Raumtemperatur bis unterhalb des Siedepunkts des Suspensionsmittels) Suspension kann in einer Zweistoffdüse durch ein Hilfsgas (wie beispielsweise Stickstoff oder Argon) erreicht werden und/oder indem man den Sprühvorgang beispielsweise durch überlagerte Ultraschallschwingungen unterstützt.
Das Beschichten kann durch Aufsprühen oder durch einen Spin-On- Prozess, bei welchem eine bestimmte Menge fließfähiger Suspen- sionan einer beliebigen Stelle, beispielsweise in Zentrum, eines rotierenden Substrats dosiert wird und die Suspension sich aufgrund der Fliehkraft über das Substrat gleichmäßig verteilt.
Nach erfolgter Abscheidung der Oxid-Suspension auf dem Substrat kann das System auf die dem Oxid adäquate Kristallisationstemperatur erhitzt und durch Zusammensintern der Nano-Teilchen der erwünschte zusammenhängende Film erzeugt werden.
Die Sintertemperaturen für Nanoteilchen liegen in der Regel deutlich unterhalb der Sintertemperatur für Teilchen im Mikrometermaßstab. So liegt beispielsweise für BaTi03-Teilchen die Sintertemperatur bei Nanoteilchen (Korngrößen von 2 bis 5 nm) bei ca. 750°C im Gegensatz zu Mikrometerteilchen (Korngrößen von 2 bis 5 μm) bei ca. 1350°C.
Eine Änderung der Stöchio etrie der aufgebrachten Oxide wie bei anderen Verfahren erfolgt nicht. Damit werden Filme mit über- legenen dielektrischen bzw. ferroelektrischen Eigenschaften erhalten.
Bei den Suspensionen feinteiliger, kristalliner Oxidteilchen werden in der Regel Wasser oder organische Suspensionsmittel eingesetzt, die die Oxidteilchen mit einer mittleren Teilchengrößen von 0,5 bis 9,9 nm, vorzugsweise von 0,6 bis 9 nm, besonders bevorzugt von 1 bis 8 nm enthalten. Die Oxidteilchen sind beispielsweise BaTi03, SrTi03, Bax Sr _x Ti03 mit x = 0,01 bis 0,99, Pb (ZrxTiχ_x) 03 mit x = 0,01 bis 0,99, Bi4_xLaxTi32 mit x = 0 bis 4 oder Sr Bi2Ta209.
Als Substrate eignen sich in der Regel Wafer aus Reinstsilizium, die bereits strukturiert sind, wobei die Strukturierung nach dem bekannten "Damascene"-Verfahren erfolgt. Die eigentlichen Substratschichten sind elektrisch leitende Schichten, die im Rahmen des Damascene-Prozesses erzeugt werden.
Als organische Suspensionsmittel eignen sich in der Regel polare organische Suspensionsmittel, besonders aliphatische Alkohole, Etheralkohole oder deren Gemische mit einem Siedepunkt unterhalb von ca. 300°C unter Normaldruck. Diese können wasserfrei oder bevorzugt in handelsüblicher wäßriger Form eingesetzt werden.
Als Alkohole eignen sich Cχ~ bis Cs-Alkanole, bevorzugt Cχ~ bis C -Alkanole wie Methanol, Ethanol, n-Propanol, Iso-Propanol, n-Butanol, iso-Butanol, sec.-Butanol oder tert . -Butanol, besonders bevorzugt Cχ~ bis C -Alkanol wie Methanol, Ethanol, n-Propanol oder Iso-Propanol, insbesondere Methanol oder Ethanol .
Als Etheralkohole eignen sich alle bekannten Glykolether wie beispielsweise Ethylenglykol-mono-methylether, Ethylenglykol- mono-ethylether, Ethylenglykol-mono-n-propylether, Ethylen- glykol-mono-iso-propylether, Ethylenglykol-mino-n-butylether, Ethylenglykol- ono-iso-butylether, Ethylenglykol-mono-sec . - butylether, Ethylenglykol-tert .-butylether, Diethylenglykol- mino-methylether, Diethylenglykol-mono-ethylether, Diethylen- glykol-mono-n-propylether, Diethylenglykol-mono-iso-propylether, Diethylenglykol-mono-n-butylether, Diethylenglykol-mono-iso- butylether, Diethlyenglykol-mono-sec. -butylether, Diethylen- glykol-tert .-butylether, bevorzugt Ethylenglykol-mono-ethyl- ether, Ethylenglykol-mono-n-propylether, Ethylenglykol-mono- iso-propylether, Ethylenglykol-mono-n-butylether, Ethylen- glykol-mono-iso-butylether, Ethylenglykol-mono-sec . -butylether, Ethylenglykol-tert . -butylether, Diethylenglykol-mono-ethylether, Diethylenglykol-mono-n-propylether , Diethlyeriglykol-mono-iso- propylether, Diethylenglykol-mono-n-butylether , Diethylenglykol- mono-iso-butylether, Diethylengykol-mono-sec . -butylether und Diethylenglykol-tert .-butylether, besonders bevorzugt Ethylen- glykol-mono-n-propylether, Ethylenglykol-mono-iso-propylether, Ethylenglykol-mono-n-butylether, Ethylenglykol-mono-iso-butyl- ether, Ethylenglykol-mono-sec. -butylether, Ethylenglykol-tert . - butylether, Diethylenglykol-mono-n-propylether, Diethylen- glykol-mono-iso-propylether, Diethylenglykol-mono-n-butylether, Diethylenglykol-mono-iso-butylether, Diethylenglykol-mono-sec . - butylether und Diethylenglykol-ter . -butylether, insbesondere Ethylenglykol- ono-iso-propylether, Ethylenglykol-mono-iso- butylether, Ethylenglykol-tert .-butylether , Diethylenglykol- 5 mono-iso-propylether, Diethylenglykol-mono-iso-butylether und Diethylenglykol-tert . -butylether .
Der Feststoffgehalt der Suspensionen kann in weiten Grenzen variiert werden, beträgt in der Regel 1 bis 35 Gew.-%, bevorzugt 10 5 bis 25 Gew.-%, und kann in der Synthese der Suspensionen oder nachträglich durch Verdünnen oder Aufkonzentrieren eingestellt werden .
Die nanokristallinen Oxid-Suspensionen können wie folgt her- 15 gestellt werden:
Man kann Titanalkoholate in einem Alkanol, einem Glykolether oder deren Gemischen vorlegen und bei einer Temperatur von 50 bis 150°C, bevorzugt 60 bis 120°C, besonders bevorzugt 20 70 bis 110°C, insbesondere bei Rückflusstemperatur und einem Druck von 0,1 bis 3 bar, bevorzugt 0,5 bis 2 bar, besonders bevorzugt bei Atmosphärendruck (Normaldruck) mit Barium- oder Strontiumhydroxid-hydrat umsetzen.
25 Die Konzentration der alkoholischen Titanalkoholat-Lösung kann in weiten Grenzen variiert werden. Bevorzugt liegt die Konzentration bei 50 bis 800 g/Liter, besonders bevorzugt bei 100 bis 600 g/Liter, ganz besonders bevorzugt bei 200 bis 400 g/Liter.
30
Als Barium- oder Strontiumhydroxidhydrate eignen sich die bekannten Hydroxid-hydrate, z.B. Barium- oder Strontiu - hydroxid-octahydra .
35 Als Titanalkoholate eignen sich beispielsweise Titantetra- methanolat, Titantetraethanolat, Titantetra-n-propanolat, Titantetra-iso-propanolat, Titantetra-n-butanolat, Titan- tetra-iso-butanolat, Titantetra-sec .-butanolat, Titantetra- tert . -butanolat, Titantetra-n-pentanolat und Titantetra-
40 iso-pentanolat, bevorzugt Titantetraethanolat, Titantetra- n-propanolat, Titan-butanolat, Titantetra-sec . -butanolat und Titantetra-tert .-butanolat, besonders bevorzugt Titantetra-n-propanolat, Titan-tetra-iso-propanolat, Titantetra- n-butanolat und Titrantetra-iso-butanolat oder deren Gemische. Zur Herstellung von Ba(Zrx Tiχ_x)03 oder Sr(Zrx Tiχ_x) 03-Oxide werden anstelle des reinen Titanalkoxids die Mischungen mit Zirkonalkoxiden eingesetzt und die bereits beschriebenen Bedingungen verwendet .
Als Zirkonalkoxide werden die kommerziell zugänglichen Alkoxide, bevorzugt Zirkontetraisobutylat und/oder Zirkontetra-n-butylat eingesetzt.
Zur Herstellung der Pb(Zrx Tχ_x) 03-0xide setzt man in der Regel als Bleikomponente Bleiacetattrihydrat oder in Mischung das basische Bleiacetat [Pb (OAc) 2»Pb (OH) 2] ein. Durch das Mischungsverhältnis von Bleiacetattrihydrat und basischem Bleiacetat kann der Anteil des Reaktionswassers vorgegeben werden, wobei die Acetat-Reste als Essigsäure abgespalten werden und diese mit dem im Suspensionsmittel als Komponente vorhandenen Alkohol unter Esterbildung weiteres Wasser liefert. Die Zugabe von geringen Mengen zusätzlicher Essigsäure zur Bildung von Reaktionswasser kann gegebenenfalls vorteilhaft sein.
Zur Herstellung von SrBi Ta 0g setzt man in der Regel als Alkoxid das kommerziell erhältliche Tantalpentaethoxid Ta(OC2H5)5 ein, als Sr-Komponente vorzugsweise Sr (OH) «8H20, gegebenenfalls in Mischung mit wasserfreiem Sr(0H) , und als Wismutkomponente Bi(OCOCH3)3 oder Wismuthydroxid Bi(0H)3.
Zur Herstellung von Bi4_xLaxTi30χ setzt man in der Regel wasserfreies Lithiumhydroxid als Li-Komponente sowie Titanalkoholate wie vorgehend aufgeführt als Titankomponente ein.
Es kann vorteilhaft sein, das Eintragen der Feststoffe durch kräftiges Rühren zu unterstützen.
Eine vorteilhafte Ausführungsform besteht darin, dass in die Oxid-Suspensionen kein zusätzliches Wasser außer dem Wasser aus den Komponenten und dem Suspensionsmittel in die Umsetzung eingetragen wird.
Gegebenenfalls können Dotierelemente wie Mg, Ca, Zn, Zr, V, Nb, Ta, Bi, Cr, Mo, W, Mn, Fe, Co, Ni, Pb, Ce, oder deren Gemische, bevorzugt Mg, Ca, Cr, Fe, Co, Ni, Pb oder deren Gemische, beispielsweise in Form ihrer Hydroxide, Oxide, Carbonate, Carboxylate oder Nitrate eingebracht werden. Die erfindungsgemäß hergestellten Mischoxide haben in der Regel einen mittleren Teilchendurchmesser von kleiner als 10 nm, bevorzugt, 5 bis 9,9 nm, besonders bevorzugt 0,6 bis 9 nm, insbesondere 1 bis 8 nm.
Mit dem erfindungsgemäße Verfahren kann man zu dielektrischen Schichten für DRAMs (Dynamic Random Access Memories) , beispielsweise Titanate, BaTi03, SrTi03 sowie Baχ_x Srx Ti03 (x = 0,01 bis 0,99) bzw. ferroelektrischen Schichten für FeRAMs, beispiels- weise Pb (Zr_x Tix) 03 mit x = 0,01 bis 0,99 oder SrBi2Ta20g bzw. Bi _xLaxTi32 mit x = 0 bis 4, beispielsweise Bi3/ 5Larj,85Ti 0χ2 mit x = 0,85, gelangen, die ohne Änderung der Stöchiometrie zu überlegenen dielektrischen bzw. ferroelektrischen Eigenschaften führen.
Beispiele
Beispiel 1
Herstellung einer nanoteiligen Ba-Titanat-Suspension
Zu 844 g Butylglykol wurden nacheinander 335,6 g Titantetra- butylat und 79,6 g Ba(0H)2 x 8 H20 mit 128,4 g Ba(0H)2 schnell zugegeben und 48 h bei 120°C gerührt. Man erhielt eine Ba-Tita- nat-Suspensionen hochkristalline Teilchen mit einer mittleren Teilchengröße von 4 bis 6 nm.
Beispiel 2
Herstellung einer nanoteiligen SrBi2Ta2Og-Suspension von < 10 nm
Zu 110 g Bμtylglykol wurden nacheinander 40,6 g Tantal-ethylat, 4,6 g Sr(OH)2 (Sr-Gehalt: 70,4 Gew.-%), 3,35 g Sr(0H)2 x H20 und 26 g Bi(OH) zugegeben, 48 h unter Rückfluss (104°C) gerührt. Man erhielt eine kristalline SrBi2Ta2θ9-Suspension mit einer mittleren Teilchengröße von 5 nm.
Beispiel 3
Herstellung einer nanaoteiligen SrBi2Ta2θ9-Suspension von < 10 nm
Zu 110 g Butylglykol wurden nacheinander 40,6 g Tantal-ethylat, 1,55 g Sr(0H)2 (Sr-Gehalt: 70,4 Gew.-%), 10 g Sr(0H)2 x H20 und 26 g Bi(0H)3 zugegeben, 48 h unter Rückfluss (104°C) gerührt. Man erhielt eine kristalline SrBi2Ta209-Suspension mit einer mittleren Teilchengröße von 8 nm. Beispiel 4
Herstellung einer nanoteiligen Pb (Zro,53Tio,4 ) 03-Suspension
Zu 211 g Butylglykol wurden nacheinander 49,6 g Zr(0C3H ) , 31,5 g Ti(OCH9)4 und 75,8 g Pb(OCOCH3)2 x 3 H20 zugegeben und 24 h bei 80°C und 24 h bei 120°C gerührt. Man erhielt eine kristalline Pb(Zro,53Tio, 7) 03-Suspension mit einer mittleren Teilchengröße von 2 bis 3 nm.
Beispiel 5
Herstellung einer nanoteiligen Pb (Zro,53Tio, 7) 03-Suspension
Zu 211 g Butylglykol wurden nacheinander 49,6 g Zr(OCH )4, 31,5 g Ti(OC4H9) , 24 g Essigsäure (100%-ig) und 75,8 g Pb(OCOCH3)2 x 3 H20 zugegeben und 24 h bei 80°C und 24 h bei 120°C gerührt. Man erhielt eine kristalline Pb(Zro,5 Tio, 7)03- Suspension mit einer mittleren Teilchengröße von 3 bis 4 nm.
Beispiel 6
Herstellung einer nanoteiligen Pb(Zrr/53Tio/4 ) 03-Suspension
Zu 211 g Butylglykol wurden nacheinander 48,5 g Zr(OC4Hg)4, 31,5 g Ti(0C4Hg)4 und 75,8 g Pb(OCOCH3)2 x 3 H20 zugegeben und 72 h bei 120°C gerührt. Man erhielt eine kristalline Pb(Zr0,5 Tio,47) 03-Suspension mit einer mittleren Teilchengröße von 2 bis 3 nm.
Beispiel 7
Herstellung einer nanoteiligen Bi (χ5Larj,85Ti3Oχ -Suspension
Zu 110 g Butylglykol wurden nacheinander 33,5 g (Ti(OC4H9)4,
27,3 g Bi(0H)3, 5,4 g La(0H)3 und 8 g 100 %ige Essigsäure zugegeben und 48 h bei 120°C gerührt. Man erhielt eine kristalline Bi3/χ5Lao,85 τi3θi2-Suspension mit einer mittleren Teilchengröße von 2 bis 4 nm.

Claims

Patentansprüche
1. Verfahren, zur Beschichtung eines Substrats, dadurch gekenn- zeichnet, daß man durch Beschichtung eine feinteilige
Suspension kristalliner Oxidteilchen auf ein Substrat aufbringt, das Suspensionsmittel verdampft und die Beschichtung auf dem Substrat sintert.
2. Verfahren zur Beschichtung eines Substrats nach Anspruch 1, dadurch gekennzeichnet, daß man Oxidteilchen mit einer mittleren Teichengröße von 0,5 bis 9,9 nm einsetzt.
3. Verfahren zur Beschichtung eines Substrats einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß man als
Oxidteilchen BaTi03, SrTi03 , Bax Srχ_x Ti03 mit x = 0,01 bis 0,99, Pb (ZrxTiχ_x) 03 mit x = 0,01 bis 0,99, Bi4_xLaxTi3012 mit x = 0 bis 4 oder Sr Bi Ta209 einsetzt.
4. Verfahren zur Beschichtung eines Substrats einem der
Ansprüche 1, 2 oder 3, dadurch gekennzeichnet, daß man als Suspensionsmittel Alkohole oder Glykolether einsetzt.
EP03757799A 2002-09-23 2003-09-08 Dünne filme oxidischer materialien mit hoher dielektrizitätskonstante Withdrawn EP1546437A2 (de)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
DE10244285A DE10244285A1 (de) 2002-09-23 2002-09-23 Dünne Filme oxidischer Materialien mit hoher Dielektrizitätskonstante
DE10244285 2002-09-23
DE10260091 2002-12-19
DE10260091A DE10260091A1 (de) 2002-12-19 2002-12-19 Dünne Filme oxidischer Materialien mit hoher Dielektrizitätskonstante
PCT/EP2003/009945 WO2004028999A2 (de) 2002-09-23 2003-09-08 Dünne filme oxidischer materialien mit hoher dielektrizitätskonstante

Publications (1)

Publication Number Publication Date
EP1546437A2 true EP1546437A2 (de) 2005-06-29

Family

ID=32043957

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03757799A Withdrawn EP1546437A2 (de) 2002-09-23 2003-09-08 Dünne filme oxidischer materialien mit hoher dielektrizitätskonstante

Country Status (8)

Country Link
US (1) US20050220993A1 (de)
EP (1) EP1546437A2 (de)
JP (1) JP4183681B2 (de)
KR (1) KR20050057540A (de)
CN (1) CN100471996C (de)
AU (1) AU2003273836A1 (de)
TW (1) TWI291903B (de)
WO (1) WO2004028999A2 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6737364B2 (en) * 2002-10-07 2004-05-18 International Business Machines Corporation Method for fabricating crystalline-dielectric thin films and devices formed using same
EP1820005B1 (de) * 2004-11-24 2019-01-09 Sensirion Holding AG Verfahren zur selektiven auftragung einer schicht auf ein strukturiertes substrat durch verwendung eines temperaturgradienten im substrat
FI122009B (fi) * 2007-06-08 2011-07-15 Teknologian Tutkimuskeskus Vtt Nanopartikkeleihin perustuvat rakenteet ja menetelmä niiden valmistamiseksi
CN102665896A (zh) * 2009-11-27 2012-09-12 株式会社村田制作所 逆转移反应用催化剂和使用其的合成气体的制造方法

Family Cites Families (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3148362A1 (de) * 1981-12-07 1983-06-09 Friedrich Theysohn GmbH, 3012 Langenhagen "verfahren zur erzeugung einer verschleissfesten schicht"
US5510920A (en) * 1991-01-07 1996-04-23 Fuji Xerox Co., Ltd. Local area network
DE4131871C1 (de) * 1991-06-13 1992-05-27 Degussa Ag, 6000 Frankfurt, De
US5446828A (en) * 1993-03-18 1995-08-29 The United States Of America As Represented By The Secretary Of The Navy Nonlinear neural network oscillator
FR2735931B1 (fr) * 1995-06-21 1997-07-25 Hamel Andre Dispositif reconfigurable pour insertion-extraction de longueurs d'onde
JPH0918452A (ja) * 1995-06-30 1997-01-17 Oki Electric Ind Co Ltd 光波長変換機エレメントおよび光波長変換機装置
IT1277204B1 (it) * 1995-10-19 1997-11-05 Pirelli S P A Ora Pirelli Cavi Rete di comunicazione ottica trasparente ad anello autoprotetto
US5790285A (en) * 1996-05-21 1998-08-04 Lucent Technologies Inc. Lightwave communication monitoring system
JPH10145298A (ja) * 1996-11-08 1998-05-29 Kokusai Denshin Denwa Co Ltd <Kdd> 波長多重通信用光分波装置
US5683614A (en) * 1996-08-16 1997-11-04 Sandia Corporation Sol-gel type synthesis of Bi2 (Sr,Ta2)O9 using an acetate based system
SE506320C2 (sv) * 1996-09-23 1997-12-01 Ericsson Telefon Ab L M Förfarande och anordning för att detektera fel i ett nätverk
US5778118A (en) * 1996-12-03 1998-07-07 Ciena Corporation Optical add-drop multiplexers for WDM optical communication systems
US6226111B1 (en) * 1996-12-06 2001-05-01 Telcordia Technologies, Inc. Inter-ring cross-connect for survivable multi-wavelength optical communication networks
JP3703239B2 (ja) * 1997-01-14 2005-10-05 富士通株式会社 光増幅器
JPH10209964A (ja) * 1997-01-28 1998-08-07 Fujitsu Ltd 波長多重送受信装置、光伝送システム及びその冗長系切替え方法
DE19722618A1 (de) * 1997-05-30 1998-12-03 Philips Patentverwaltung Hochtemperaturkondensator
US6258170B1 (en) * 1997-09-11 2001-07-10 Applied Materials, Inc. Vaporization and deposition apparatus
US5999288A (en) * 1998-02-02 1999-12-07 Telcordia Technologies, Inc. Connection set-up and path assignment in wavelength division multiplexed ring networks
FI980328A (fi) * 1998-02-13 1999-08-14 Nokia Networks Oy Optinen tietoliikenneverkko
SE520943C2 (sv) * 1998-06-10 2003-09-16 Ericsson Telefon Ab L M Add/dropp-nod anordnad att anslutas i ett optiskt fibernät av wdm-typ
JP3808632B2 (ja) * 1998-06-18 2006-08-16 富士通株式会社 光増幅器及び光増幅方法
US6111673A (en) * 1998-07-17 2000-08-29 Telcordia Technologies, Inc. High-throughput, low-latency next generation internet networks using optical tag switching
US6893623B2 (en) * 1998-12-11 2005-05-17 Showa Denko Kabushiki Kaisha Perovskite titanium-type composite oxide particle and production process thereof
US6192173B1 (en) * 1999-06-02 2001-02-20 Nortel Networks Limited Flexible WDM network architecture
US6192172B1 (en) * 1999-08-09 2001-02-20 Lucent Technologies Inc. Optical wavelength-space cross-connect switch architecture
DE19939686A1 (de) * 1999-08-20 2001-02-22 Dechema Verfahren zur Herstellung korrosionsschützender Überzüge auf metallischen Werkstoffen auf der Basis nanoteiliger Pulver
US7120359B2 (en) * 2000-05-22 2006-10-10 Opvista Incorporated Broadcast and select all optical network
US6895184B2 (en) * 2000-05-22 2005-05-17 Opvista, Inc. Interconnected broadcast and select optical networks with shared wavelengths
DE10036700A1 (de) * 2000-07-27 2002-02-14 Siemens Ag Modularer optischer Netzwerkknoten
AU2002254262A1 (en) * 2001-03-16 2002-10-03 Photuris, Inc. Method and apparatus for interconnecting a plurality of optical transducers with a wavelength division multiplexed optical switch
AU2002311788A1 (en) * 2001-03-29 2002-10-15 Arris International, Inc. Methods and apparatus for reconfigurable wdm lightpath rings
US20020167981A1 (en) * 2001-05-09 2002-11-14 Motorola, Inc. Semiconductor device structure including an optically-active material, device formed using the structure, and method of forming the structure and device

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO2004028999A2 *

Also Published As

Publication number Publication date
WO2004028999B1 (de) 2004-06-17
JP4183681B2 (ja) 2008-11-19
CN1685082A (zh) 2005-10-19
WO2004028999A2 (de) 2004-04-08
AU2003273836A8 (en) 2004-04-19
JP2006500777A (ja) 2006-01-05
CN100471996C (zh) 2009-03-25
TWI291903B (en) 2008-01-01
TW200406263A (en) 2004-05-01
KR20050057540A (ko) 2005-06-16
US20050220993A1 (en) 2005-10-06
AU2003273836A1 (en) 2004-04-19
WO2004028999A3 (de) 2004-05-13

Similar Documents

Publication Publication Date Title
EP0823885B1 (de) Verfahren zur herstellung schwach agglomerierter nanoskaliger teilchen
EP0689249A2 (de) Elektrodenschicht für elektronisches Bauteil und Verfahren zu seiner Herstellung
EP1479653B1 (de) Verfahren zur Herstellung von Mischoxiden mit mittleren Durchmessern kleiner als 10 Nanometer
DE60300173T2 (de) Verfahren zur Herstellung von kristallinem Mischoxidpulver
EP1362830B1 (de) Verfahren zur Herstellung von Barium- oder Strontiumtitanat mit mittleren Durchmessern kleiner als 10 Nanometer
DE60120254T2 (de) Abscheidung und thermische Behandlung von dünnen Schichten aus Mehrkomponentenoxyden von Typ ZrSnTi und HfSnTi unter Verwendung eines flüssigen lösungsmittelfreien Vorläufergemisch
EP1546437A2 (de) Dünne filme oxidischer materialien mit hoher dielektrizitätskonstante
EP1624468A1 (de) Flüssige zusammensetzung zur bildung eines ferroelektrischen dünnfilms und verfahren zur bildung eines ferroelektrischen dünnfilms
DE19840527A1 (de) Verfahren zur Herstellung von Suspensionen, Pulvern und Formkörpern von Indium-Zinn-Oxid
JP2002047011A (ja) 緻密質ペロブスカイト型金属酸化物薄膜の形成方法及び緻密質ペロブスカイト型金属酸化物薄膜
DE10260091A1 (de) Dünne Filme oxidischer Materialien mit hoher Dielektrizitätskonstante
US20060124890A1 (en) Liquid composition for forming ferroelectric thin film and process for producing ferroelectric thin film
DE10244285A1 (de) Dünne Filme oxidischer Materialien mit hoher Dielektrizitätskonstante
EP0905278B1 (de) Herstellverfahren für eine keramische Schicht
JP3102210B2 (ja) チタン酸系強誘電体膜形成用組成物と形成法
JP4702215B2 (ja) 高誘電体薄膜形成用塗布組成物とその製造方法
EP0905277B1 (de) Herstellungsverfahren für eine Bi-haltige keramische Schicht, insbesondere aus Strontium-Wismut-Tantalat
JP2003002650A (ja) Sbt強誘電体薄膜、その形成用組成物及び形成方法
EP0648710B1 (de) Verfahren zur Herstellung eines feinen monodispersen Oxidpulvers
WO2004020363A2 (de) Hochdichte keramiken sowie verfahren zur herstellung derselben
DE102007036998A1 (de) Verfahren zur Herstellung von amorphen metallorganischen Makromolekülen, mit diesem Verfahren erhaltenes Material und seine Verwendung
DD283877A5 (de) Profilierter gegenstand
JP2008053281A (ja) 高誘電体膜とその形成方法
JP4407103B2 (ja) 耐疲労特性に優れた強誘電体薄膜とその形成用組成物
DE10232791A1 (de) Verfahren zur Herstellung von Barium- oder Strontiumtitanat mit mittleren Durchmessern kleiner als 10 Nanometer

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050425

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BASF SE

17Q First examination report despatched

Effective date: 20090625

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20091106