EP1546288A1 - Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposition fatty acids - Google Patents

Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposition fatty acids

Info

Publication number
EP1546288A1
EP1546288A1 EP03793834A EP03793834A EP1546288A1 EP 1546288 A1 EP1546288 A1 EP 1546288A1 EP 03793834 A EP03793834 A EP 03793834A EP 03793834 A EP03793834 A EP 03793834A EP 1546288 A1 EP1546288 A1 EP 1546288A1
Authority
EP
European Patent Office
Prior art keywords
oil
fuel composition
raw material
components
biological raw
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
EP03793834A
Other languages
German (de)
English (en)
French (fr)
Inventor
Juha Jakkula
Pekka Aalto
Vesa Niemi
Ulla Kiiski
Jouko Nikkonen
Seppo Mikkonen
Outi Piirainen
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Neste Oyj
Original Assignee
Fortum Oil Oy
Neste Oyj
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8564542&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP1546288(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Fortum Oil Oy, Neste Oyj filed Critical Fortum Oil Oy
Publication of EP1546288A1 publication Critical patent/EP1546288A1/en
Ceased legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/04Liquid carbonaceous fuels essentially based on blends of hydrocarbons
    • C10L1/08Liquid carbonaceous fuels essentially based on blends of hydrocarbons for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G3/00Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids
    • C10G3/50Production of liquid hydrocarbon mixtures from oxygen-containing organic materials, e.g. fatty oils, fatty acids in the presence of hydrogen, hydrogen donors or hydrogen generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/02Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only
    • C10L1/026Liquid carbonaceous fuels essentially based on components consisting of carbon, hydrogen, and oxygen only for compression ignition
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/32Liquid carbonaceous fuels consisting of coal-oil suspensions or aqueous emulsions or oil emulsions
    • C10L1/328Oil emulsions containing water or any other hydrophilic phase
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1014Biomass of vegetal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1011Biomass
    • C10G2300/1018Biomass of animal origin
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1022Fischer-Tropsch products
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1033Oil well production fluids
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • C10G2300/1037Hydrocarbon fractions
    • C10G2300/1048Middle distillates
    • C10G2300/1055Diesel having a boiling range of about 230 - 330 °C
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2400/00Products obtained by processes covered by groups C10G9/00 - C10G69/14
    • C10G2400/04Diesel oil
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/12Inorganic compounds
    • C10L1/1233Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof
    • C10L1/125Inorganic compounds oxygen containing compounds, e.g. oxides, hydroxides, acids and salts thereof water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/16Hydrocarbons
    • C10L1/1616Hydrocarbons fractions, e.g. lubricants, solvents, naphta, bitumen, tars, terpentine
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/182Organic compounds containing oxygen containing hydroxy groups; Salts thereof
    • C10L1/1822Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms
    • C10L1/1824Organic compounds containing oxygen containing hydroxy groups; Salts thereof hydroxy group directly attached to (cyclo)aliphatic carbon atoms mono-hydroxy
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/185Ethers; Acetals; Ketals; Aldehydes; Ketones
    • C10L1/1852Ethers; Acetals; Ketals; Orthoesters
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G OR C10K; LIQUIFIED PETROLEUM GAS; USE OF ADDITIVES TO FUELS OR FIRES; FIRE-LIGHTERS
    • C10L1/00Liquid carbonaceous fuels
    • C10L1/10Liquid carbonaceous fuels containing additives
    • C10L1/14Organic compounds
    • C10L1/18Organic compounds containing oxygen
    • C10L1/19Esters ester radical containing compounds; ester ethers; carbonic acid esters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P30/00Technologies relating to oil refining and petrochemical industry
    • Y02P30/20Technologies relating to oil refining and petrochemical industry using bio-feedstock

Definitions

  • Diesel fuel composition comprising components based on biological raw material, obtained by ydrogenating and decomposing fatty acids.
  • the present invention relates to a fuel composition for diesel engines, comprising components based on vegetable oil and/or animal fat and/or fish oil, diesel components based on crude oil and/or fractions from Fischer-Tropsch process, and optionally components containing oxygen.
  • RME rape- seed oil methyl ester
  • DME rape- seed oil methyl ester
  • Drawbacks of RME are its poor miscibility with diesel fuels, and, in comparison to a conventional diesel fuel (EN 590), particularly under low tem- perature conditions, its poor storage stability and poor performance at low tern- peratures. Moreover, it causes engine fouling and increases emissions of nitrogen oxides (NO ⁇ ).
  • NO ⁇ nitrogen oxides
  • a by-product of the production process of RME is glycerol, which may become a problem when high amounts of the product are produced.
  • Esters of other vegetable oils may be produced in similar manner, and methyl esters of fatty acids are generally known as FAMEs (fatty acid methyl ester). These FAMEs may be used in similar applications as the rapeseed oil methyl ester, but they also have a negative effect on the quality of the diesel fuel, particularly with respect to the performance thereof at low temperatures, and in addition, the use thereof in fuels increases the emissions of nitrogen oxides. In some cases FAME and RME cause higher particle emissions and smoke development of the cold driven engine.
  • FAMEs fatty acid methyl ester
  • Negetable oils and animal fats may be processed to decompose the ester and or fatty acid structure and to saturate the double bonds of the hydrocarbon chains, thus obtaining about 80 to 85 % of n-paraffm product relative to the mass of the starting material.
  • This product may be directly mixed with a diesel fuel, but a problem with the fuel so produced is its poor performance at low temperatures.
  • n-paraffins having a carbon number of fatty acids are waxy with a high solidification point, typically above +10 °C, thus limiting the use of these compounds in diesel fuels at least at low temperatures.
  • WO 2001049812 discloses a method for producing a diesel fuel with a molar ratio of iso-paraffins to n-paraffins of at least 21:1. h the method, a feed stock containing at least 50 % of do-paraffins is contacted with a catalyst in the isomerization reaction zone.
  • WO 2001012581 discloses a method for producing methyl esters useful as biological diesel fuel, wherein mixtures of fatty acids and triglycerides are esterified in one phase.
  • a solution is formed from fatty acids, triglycerides, alcohol, acid catalyst and co-solvents at a temperature below the boiling point of the solution.
  • a co-solvent is used in amounts to provide a single phase, then the solution is maintained for a period of time sufficient for the acid catalyzed esteri- fication of the fatty acids to take place. Thereafter, the acid catalyst is neutralized, a base catalyst is added to transesterify the triglycerides, and finally, the esters are separated from the solution.
  • a biofuel containing esters is obtained, having a glycerol content of less than 0,4 % by weight.
  • US 6,174,501 presents a method for producing oxidized diesel fuel of biological origin.
  • This oxidized biological diesel fuel comprises a mixture of transesterified triglycerides.
  • FI 100248 describes a two-step process for producing middle distillate from vegetable oil by hydrogenating fatty acids of the vegetable oil, or triglycerides, to give n-paraffins, and then by isomerizing the n-paraffins to give branched-chain paraffins.
  • Air pollution mainly originates from three main emission sources, i.e. the industry, energy production, and traffic.
  • the harmfulness of particle emissions is caused by the substances and compounds they carry, such as heavy metals and other carcinogenic and mutagenic compounds. Particles present in exhaust gases are small and thus hazardous to health.
  • Greenhouse gases allow for the penetration of the radiation from the sun to reach the earth, preventing, however, the thermal radiation from escaping from the earth back to space. They thus contribute to the warming of the earth.
  • One of the most significant greenhouse gases is carbon dioxide released, for instance, during the combustion of fossil fuels.
  • Nitrogen oxides are acidifying compounds. This acidification may, for instance, lead to plant damages and species changes in surface waters. Nitrogen oxides may also react with oxygen to give ozone. This phenomenon contributes particularly to air quality in cities.
  • the object of the invention is to provide a more environmentally friendly fuel composition for diesel engines containing components of biological origin, and also meeting the quality requirements for diesel fuels under low temperature conditions.
  • the fuel composition for diesel engines of the invention containing components of biological origin, comprises at least one component produced from a biological starting material obtained from plants, animals or fish, diesel components based on crude oil and/or fractions from Fischer-Tropsch process, and optionally components containing oxygen.
  • the composition of the diesel fuel of the invention comprises the following:
  • both components a) and b) being mixed as an emulsion or dissolved in diesel components based on crude oil and/or fractions from Fischer-Tropsch process.
  • Component a) produced from biological raw material originating from plants and/or animals and/or fish is obtained by hydrogenating and decomposing fatty acids and/or fatty acid esters to give a hydrocarbon having a carbon number of 6-24, typically n-paraffin as the product having a carbon number of 12-24, and optionally by isomerizing the hydrocarbon, typically n-paraffin, thus obtained to give iso-
  • the hydrocarbon is preferably isomerized.
  • the biological raw material originating from plants and/or animals and/or fish is selected from the group consisting of vegetable oils, animal fats, fish oils and mixtures thereof containing fatty acids and/or fatty acid esters.
  • suit- able materials are wood-based and other plant-based fats and oils such as rapeseed oil, colza oil, canola oil, tall oil, sunflower oil, soybean oil, hempseed oil, olive oil, linseed oil, mustard oil, palm oil, peanut oil, castor oil, coconut oil, as well as fats contained in plants bred by means of gene manipulation, animal-based fats such as lard, tallow, train oil, and fats contained in milk, as well as recycled fats of the food industry and mixtures of the above.
  • triglyceride i.e. a tri- ester of glycerol and three fatty acid molecules having the structure presented in the following formula I:
  • R ⁇ , R 2 , and R 3 are hydrocarbon chains, and R ls R 2 , and R 3 may be saturated or unsaturated C 6 - C 24 alkyl groups.
  • the fatty acid composition may vary considerably in biological raw materials of different origin.
  • n-paraffin, iso-paraffin or mixtures thereof produced from the biological raw material may be used as a diesel fuel component in accordance with the properties desired for the diesel fuel.
  • Fractions from Fischer-Tropsch-process typically contain high levels of n-paraffin and, optionally, they may be isomerized either simul- taneously during the processing of the component of biological origin or separately therefrom, or they may be used as such.
  • the biological component may be produced, for instance, with a process comprising at least two steps and optionally utilizing the counter-current operation princi- pie.
  • first hydrodeoxygenation step of the process optionally running counter-current, the structure of the biological raw material is broken, compounds containing oxygen, nitrogen, phosphor and sulphur as well as light hydrocarbons as gas are removed, and thereafter, olefinic bonds are hydrogenated.
  • second isomerization step of the process optionally running counter-current, isomeriza- tion is carried out to give branched hydrocarbon chains, thus improving the low temperature properties of the paraffin.
  • Biological raw material originating from plants, animals or fish and containing fatty acids and/or fatty acid esters, selected from vegetable oils, animal fats, fish oils and mixtures thereof, is used as the feed stock.
  • High quality hydrocarbon component of biological origin is obtained as the product having a high cetane number that may even be higher than 70. Also, with a turbidity point lower than -30 °C a cetane number higher than 60 can still be achieved. The process can be adjusted according to the desired cetane number and turbidity point.
  • Advantages of the diesel fuel composition of the present invention include superior performance at low temperatures and an excellent cetane number compared to solutions of prior art using FAME-based components like RME. Problems associated with the performance at low temperatures may be avoided by isomerizing waxy n-paraffins having a carbon number comparable with that of fatty acids to give isoparaffins.
  • the properties of the products thus obtained are excellent, especially with respect to diesel applications, the n-paraffins typically have cetane numbers higher than 70, and isoparaffins higher than 60, and thus they have an improving effect on the cetane number of the diesel pool, which clearly makes them more valuable as diesel components.
  • the turbidity point of the isomerized product may be adjusted to the desired level, for example below -30 °C, whereas the corresponding value is about 0 °C for RME and more than +15 °C for n-paraffins.
  • Table 1 below compares the properties of an isomerized biological component, RME, and a commercial diesel fuel. Table 1
  • Fouling of engines is considerably diminished and the noise level is clearly lower when using the diesel fuel composition of the invention in comparison with similar prior art fuels of biological origin containing FAME components, and further, the density of the composition is lower.
  • the composition does not require any modifications of the automobile technology or logistics. Higher energy content per unit volume may be mentioned as a further advantage compared to RME.
  • the properties of the diesel fuel composition of biological origin according to the invention correspond to those of a high quality diesel fuel based on crude oil, it is free of aromates and, in contrast to FAME, it leaves no impurity residues.
  • Nitrogen oxide emissions due to the fuel composition of the invention are lower that those from a similar FAME-based product, and further, the particle emissions are clearly lower, and the carbon portion of the particles is smaller. These significant improvements in the emissions of the fuel composition of biological origin are environmentally very important.
  • Table 2 compares the emission characteristics of a conventional diesel fuel used in Europe in summer, EN 590 (DI), to those of a composition containing 60 % by volume of hydrogenated and isomerized tall oil (TOFA), and 40 % by volume of the European summer diesel fuel EN 590.
  • Table 3 compares the emission characteristics of a high quality reformed crude oil based diesel fuel available on the Finnish market (DITC, produced by Fortum Oyj), to those of compositions containing 30 % by volume of hydrogenated and isomerized tall oil (TOFA), and 70 % by volume of DITC, or containing 30 % by volume of tall oil methyl ester (MME), and 70 % by volume of DITC.
  • DITC hydrogenated and isomerized tall oil
  • MME tall oil methyl ester

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Liquid Carbonaceous Fuels (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)
  • Fats And Perfumes (AREA)
EP03793834A 2002-09-06 2003-09-04 Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposition fatty acids Ceased EP1546288A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
FI20021596 2002-09-06
FI20021596A FI20021596L (fi) 2002-09-06 2002-09-06 Dieselmoottorin polttoainekoostumus
PCT/FI2003/000648 WO2004022674A1 (en) 2002-09-06 2003-09-04 Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposition fatty acids

Publications (1)

Publication Number Publication Date
EP1546288A1 true EP1546288A1 (en) 2005-06-29

Family

ID=8564542

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03793834A Ceased EP1546288A1 (en) 2002-09-06 2003-09-04 Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposition fatty acids

Country Status (10)

Country Link
EP (1) EP1546288A1 (enExample)
JP (1) JP2005538204A (enExample)
CN (1) CN1688673A (enExample)
AU (3) AU2003258753C1 (enExample)
BR (1) BR0314100A (enExample)
CA (1) CA2499489C (enExample)
FI (1) FI20021596L (enExample)
MY (1) MY139714A (enExample)
RU (1) RU2348677C2 (enExample)
WO (1) WO2004022674A1 (enExample)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492818B2 (en) 2009-06-12 2016-11-15 Albemarle Europe Sprl SAPO molecular sieve catalysts and their preparation and uses

Families Citing this family (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1686165A1 (en) * 2005-02-01 2006-08-02 Gibson Chemical Corporation Method for manufacturing bio-diesel oil containing alkane compounds
BRPI0609771A2 (pt) 2005-03-21 2011-10-18 Univ Ben Gurion processo para produzir uma composição de combustìvel lìquida, composição de combustìvel diesel, e, composição de combustìvel misturada
US12203035B2 (en) 2005-07-05 2025-01-21 Neste Oyj Process for the manufacture of diesel range hydrocarbons
US8022258B2 (en) 2005-07-05 2011-09-20 Neste Oil Oyj Process for the manufacture of diesel range hydrocarbons
FI20055665L (fi) * 2005-12-12 2007-06-13 Neste Oil Oyj Prosessi haarautuneen hiilivetykomponentin valmistamiseksi
EP1960497B1 (en) * 2005-12-12 2020-04-29 Neste Oyj Process for producing a saturated hydrocarbon component
TR201905341T4 (tr) * 2005-12-12 2019-05-21 Neste Oyj Bir dallanmış hidrokarbon bileşeninin üretimine yönelik proses.
JP4829660B2 (ja) 2006-03-31 2011-12-07 Jx日鉱日石エネルギー株式会社 燃料組成物
MY146565A (en) 2006-03-31 2012-08-30 Nippon Oil Corp Gas oil composition
EP2022839A4 (en) * 2006-05-17 2013-07-31 Nippon Mitsubishi Oil Corp GAS OIL COMPOSITION
JP4916219B2 (ja) * 2006-05-17 2012-04-11 Jx日鉱日石エネルギー株式会社 A重油組成物の製造方法
JP4863772B2 (ja) * 2006-05-31 2012-01-25 Jx日鉱日石エネルギー株式会社 軽油組成物
FI121425B (fi) * 2006-06-14 2010-11-15 Neste Oil Oyj Prosessi perusöljyn valmistamiseksi
US8067653B2 (en) * 2006-07-14 2011-11-29 The Governors Of The University Of Alberta Methods for producing fuels and solvents
US7897824B2 (en) 2006-08-16 2011-03-01 Energy & Environmental Research Center Foundation Optimal energy pathway to renewable domestic and other fuels
ITMI20062193A1 (it) * 2006-11-15 2008-05-16 Eni Spa Processo per produrre frazioni idrocarburiche da miscele di origine biologica
CN101675148A (zh) 2007-03-28 2010-03-17 新日本石油株式会社 粗柴油组合物
WO2008138861A1 (en) 2007-05-11 2008-11-20 Shell Internationale Research Maatschappij B.V. Fuel composition
US8523959B2 (en) 2007-07-26 2013-09-03 Chevron U.S.A. Inc. Paraffinic biologically-derived distillate fuels with bio-oxygenates for improved lubricity and methods of making same
JP5288741B2 (ja) * 2007-08-08 2013-09-11 Jx日鉱日石エネルギー株式会社 軽油組成物の製造方法
JP5288742B2 (ja) * 2007-08-08 2013-09-11 Jx日鉱日石エネルギー株式会社 軽油組成物の製造方法
WO2009020056A1 (ja) * 2007-08-08 2009-02-12 Nippon Oil Corporation 軽油組成物
JP2009126935A (ja) * 2007-11-22 2009-06-11 Showa Shell Sekiyu Kk 軽油燃料組成物
US8551327B2 (en) * 2007-12-27 2013-10-08 Exxonmobil Research And Engineering Company Staged co-processing of biofeeds for manufacture of diesel range hydrocarbons
US8309783B2 (en) 2008-11-04 2012-11-13 Energy & Environmental Research Center Foundation Process for the conversion of renewable oils to liquid transportation fuels
US8247632B2 (en) 2008-11-04 2012-08-21 Energy & Environmental Research Center Foundation Process for the conversion of renewable oils to liquid transportation fuels
FR2940314B1 (fr) * 2008-12-23 2011-11-18 Total Raffinage Marketing Carburant de type gazole pour moteur diesel a fortes teneurs en carbone d'origine renouvelable et en oxygene
US8632675B2 (en) 2008-12-24 2014-01-21 Exxonmobil Research And Engineering Company Co-processing of diesel biofeed and heavy oil
US8785701B2 (en) * 2008-12-24 2014-07-22 Exxonmobil Research And Engineering Company Co-processing of diesel biofeed and kerosene range hydrocarbons
HU231091B1 (hu) 2009-09-30 2020-07-28 Mol Magyar Olaj- És Gázipari Nyilvánosan Működő Részvénytársaság Belső égésű motoroknál használható hajtóanyagok és hajtóanyag-adalékok, valamint eljárás ezek előállítására
IT1396939B1 (it) 2009-12-09 2012-12-20 Eni Spa Composizione idrocarburica utile come carburante o combustibile
US8853474B2 (en) 2009-12-29 2014-10-07 Exxonmobil Research And Engineering Company Hydroprocessing of biocomponent feedstocks with low purity hydrogen-containing streams
FI125632B (fi) 2010-05-25 2015-12-31 Upm Kymmene Corp Menetelmä ja laite hiilivetyjen tuottamiseksi
RU2440405C1 (ru) * 2010-06-16 2012-01-20 Федеральное государственное унитарное предприятие "Всероссийский научно-исследовательский институт рыбного хозяйства и океанографии" (ФГУП "ВНИРО") Способ получения биотоплива
RU2429909C1 (ru) * 2010-06-23 2011-09-27 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Катализатор, способ его приготовления и способ получения дизельного топлива из сырья природного происхождения
RU2440847C1 (ru) * 2010-08-30 2012-01-27 Учреждение Российской академии наук Институт катализа им. Г.К. Борескова Сибирского отделения РАН Катализатор и процесс гидродеоксигенации кислородорганических продуктов переработки растительной биомассы
EP2514803B1 (en) 2011-04-21 2017-02-01 Infineum International Limited Improvements in fuel oils
RU2466180C1 (ru) * 2011-08-09 2012-11-10 Закрытое акционерное общество "Центральный ордена Трудового Красного Знамени научно-исследовательский и проектно-конструкторский институт морского флота" Присадка к мазуту
FI20110300A0 (fi) 2011-09-11 2011-09-11 Neste Oil Oyj Bensiinikoostumukset ja menetelmä niiden valmistamiseksi
US8884086B2 (en) 2011-09-14 2014-11-11 Bp Corporation North America Inc. Renewable diesel refinery strategy
RU2544239C2 (ru) * 2012-11-19 2015-03-20 Общество с ограниченной ответственностью "РЕЦИКЛ" Биотопливная композиция
CN105255525A (zh) * 2015-09-21 2016-01-20 广州畅营环保科技有限公司 一种环保生物调和燃料
FI127887B (en) 2016-12-19 2019-04-30 Neste Oyj Multi-component diesel composition
FI127886B (en) 2016-12-19 2019-04-30 Neste Oyj More Diesel Component Composition
FI127307B2 (en) * 2017-01-27 2024-12-10 Neste Oyj Fuel compositions with improved cold properties and methods for their production
EP3585868B1 (en) * 2017-02-21 2022-08-31 ExxonMobil Technology and Engineering Company Use of a diesel boiling-range fuel blend
FI130601B (en) * 2018-12-14 2023-12-07 Neste Oyj Diesel fuel composition
CN110499178A (zh) * 2019-08-27 2019-11-26 易高生物化工科技(张家港)有限公司 一种废弃动植物油脂加氢制备液体石蜡的方法
FR3119625B1 (fr) * 2021-07-02 2023-02-17 Totalenergies Marketing Services Composition de carburant riche en composés aromatiques, en paraffines et en éther, et son utilisation dans des véhicules automobiles
BR102021016123A2 (pt) * 2021-08-16 2023-02-23 Petróleo Brasileiro S.A. - Petrobras Processo para produção de biodiesel a partir de cargas ácidas
EP4419632A1 (en) * 2021-10-20 2024-08-28 Shell Internationale Research Maatschappij B.V. Biofuel blends with improved oxidation stability and lubricity
AU2022371445A1 (en) 2021-10-20 2024-04-04 Shell Internationale Research Maatschappij B.V. Biofuel blends

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083641A2 (en) * 2000-05-02 2001-11-08 Exxonmobil Research And Engineering Company Winter diesel fuel production from a fischer-tropsch wax
US20020062053A1 (en) * 2000-05-02 2002-05-23 Berlowitz Paul Joseph Wide cut Fischer Tropsch diesel fuels

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US430009A (en) * 1890-06-10 Ender
US4992605A (en) * 1988-02-16 1991-02-12 Craig Wayne K Production of hydrocarbons with a relatively high cetane rating
CA2149685C (en) * 1994-06-30 1999-09-14 Jacques Monnier Conversion of depitched tall oil to diesel fuel additive
FI100248B (fi) * 1996-02-05 1997-10-31 Fortum Oil Oy Keskitisleen valmistus
FR2746106B1 (fr) * 1996-03-15 1998-08-28 Combustible emulsionne et l'un de ses procedes d'obtention
US5814109A (en) * 1997-02-07 1998-09-29 Exxon Research And Engineering Company Diesel additive for improving cetane, lubricity, and stability
FI102767B (fi) * 1997-05-29 1999-02-15 Fortum Oil Oy Menetelmä korkealuokkaisen dieselpolttoaineen valmistamiseksi
US6458265B1 (en) * 1999-12-29 2002-10-01 Chevrontexaco Corporation Diesel fuel having a very high iso-paraffin to normal paraffin mole ratio

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001083641A2 (en) * 2000-05-02 2001-11-08 Exxonmobil Research And Engineering Company Winter diesel fuel production from a fischer-tropsch wax
US20020062053A1 (en) * 2000-05-02 2002-05-23 Berlowitz Paul Joseph Wide cut Fischer Tropsch diesel fuels

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of WO2004022674A1 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9492818B2 (en) 2009-06-12 2016-11-15 Albemarle Europe Sprl SAPO molecular sieve catalysts and their preparation and uses

Also Published As

Publication number Publication date
AU2003258753B2 (en) 2008-12-04
AU2020203806B2 (en) 2022-05-26
FI20021596A0 (fi) 2002-09-06
AU2010200726A1 (en) 2010-03-18
CN1688673A (zh) 2005-10-26
WO2004022674A1 (en) 2004-03-18
RU2348677C2 (ru) 2009-03-10
RU2005109935A (ru) 2005-08-27
FI20021596A7 (fi) 2004-03-07
FI20021596L (fi) 2004-03-07
JP2005538204A (ja) 2005-12-15
AU2003258753C1 (en) 2012-06-14
AU2003258753A1 (en) 2004-03-29
MY139714A (en) 2009-10-30
AU2020203806A1 (en) 2020-07-02
CA2499489A1 (en) 2004-03-18
CA2499489C (en) 2013-04-30
BR0314100A (pt) 2005-07-19
PL375038A1 (en) 2005-11-14

Similar Documents

Publication Publication Date Title
US11384290B2 (en) Fuel composition for a diesel engine
AU2020203806B2 (en) Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposing fatty acids
EP1398364A1 (en) Fuel composition for a diesel engine
Chauhan et al. Practice of diesel fuel blends using alternative fuels: A review
US20090145392A1 (en) Fuel formulations
KR101016643B1 (ko) 탄화수소의 제조방법
JP3844871B2 (ja) 環境に優しいディーゼル燃料
JP2005538204A5 (enExample)
Banga et al. Effect of impurities on performance of biodiesel: A review
AU2017279689B2 (en) Diesel fuel composition, comprising components based on biological raw material, obtained by hydrogenating and decomposing fatty acids
CN101772563A (zh) 瓦斯油组合物
Sbihi et al. Study of oxidative stability and cold flow properties of Citrillus colocynthis oil and Camelus dromedaries fat biodiesel blends
JP2009096855A (ja) 高発熱量燃料油組成物
JP2005220227A (ja) バイオディーゼル燃料およびその製造方法
More et al. Biodiesel production with the help of different additives on the basis of standards–A review
PL203610B1 (pl) Mieszanka paliwowa do silników Diesla zawieraj aca komponenty na bazie surowca biologicznego otrzymywane w procesie uwodorniania i rozk ladu kwasów t luszczowych
Rahman et al. Production of Biodiesel Fuels from Castor Oil Using H2SO4 as Catalyst
Humphrey et al. ACID-CATALYSED ESTERIFICATION ENHANCED BIODIESEL YIELD FROM USED COOKING OIL
Nazarov THE CURRENT STATE OF ADDITIVES FOR DIESEL AND BIODIESEL BLENDED FUELS: A REVIEW
Mohandas COMPARISION STUDY OF PROPERTIES OF VARIOUS BIODIESEL
Campus VIABILITY OF BIOFUEL AS ALTERNATIVE FUEL IN NIGERIA TRANSPORT SYSTEM
CZ282360B6 (cs) Ekologické palivo pro vznětové motory

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050303

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL LT LV MK

DAX Request for extension of the european patent (deleted)
RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NESTE OIL OYJ

RIN1 Information on inventor provided before grant (corrected)

Inventor name: KIISKI, ULLA

Inventor name: NIKKONEN, JOUKO

Inventor name: MIKKONEN, SEPPO

Inventor name: JAKKULA, JUHA

Inventor name: AALTO, PEKKA

Inventor name: PIIRAINEN, OUTI

Inventor name: NIEMI, VESA

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAF Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNE

APBX Invitation to file observations in appeal sent

Free format text: ORIGINAL CODE: EPIDOSNOBA2E

APAQ Information on invitation to file observation in appeal modified

Free format text: ORIGINAL CODE: EPIDOSCOBA2E

APBZ Receipt of observations in appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNOBA4E

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: NESTE OYJ

RIC1 Information provided on ipc code assigned before grant

Ipc: C10G 3/00 20060101AFI20040323BHEP

Ipc: C10L 1/08 20060101ALI20040323BHEP

APBK Appeal reference recorded

Free format text: ORIGINAL CODE: EPIDOSNREFNE

APBN Date of receipt of notice of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA2E

APBR Date of receipt of statement of grounds of appeal recorded

Free format text: ORIGINAL CODE: EPIDOSNNOA3E

APAV Appeal reference deleted

Free format text: ORIGINAL CODE: EPIDOSDREFNE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R003

APBT Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9E

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN REFUSED

18R Application refused

Effective date: 20220628