EP1538302B1 - Verfahren zum Verfüllen von Hohlräumen ausserhalb der lichten Tunnelröhre eines maschinell aufgefahrenen Tunnels - Google Patents

Verfahren zum Verfüllen von Hohlräumen ausserhalb der lichten Tunnelröhre eines maschinell aufgefahrenen Tunnels Download PDF

Info

Publication number
EP1538302B1
EP1538302B1 EP04028102A EP04028102A EP1538302B1 EP 1538302 B1 EP1538302 B1 EP 1538302B1 EP 04028102 A EP04028102 A EP 04028102A EP 04028102 A EP04028102 A EP 04028102A EP 1538302 B1 EP1538302 B1 EP 1538302B1
Authority
EP
European Patent Office
Prior art keywords
tunnel
ground
annular gap
filling
soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP04028102A
Other languages
English (en)
French (fr)
Other versions
EP1538302A1 (de
Inventor
Gereon Behnen
Hans-Walter Gross
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dywidag Bau GmbH
Original Assignee
Dywidag Bau GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dywidag Bau GmbH filed Critical Dywidag Bau GmbH
Publication of EP1538302A1 publication Critical patent/EP1538302A1/de
Application granted granted Critical
Publication of EP1538302B1 publication Critical patent/EP1538302B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/12Devices for removing or hauling away excavated material or spoil; Working or loading platforms
    • E21D9/13Devices for removing or hauling away excavated material or spoil; Working or loading platforms using hydraulic or pneumatic conveying means
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D11/00Lining tunnels, galleries or other underground cavities, e.g. large underground chambers; Linings therefor; Making such linings in situ, e.g. by assembling
    • E21D11/04Lining with building materials
    • E21D11/10Lining with building materials with concrete cast in situ; Shuttering also lost shutterings, e.g. made of blocks, of metal plates or other equipment adapted therefor
    • E21D11/105Transport or application of concrete specially adapted for the lining of tunnels or galleries ; Backfilling the space between main building element and the surrounding rock, e.g. with concrete

Definitions

  • the invention relates to a method for filling or pressing cavities outside the clear tunnel tube of a tunnel driven in tunneling tunnel or tunnel, in particular the annular gap between the tunnel lining and the upcoming soil.
  • the grout is pumpable and can be introduced with targeted pressurization and volume control. Sufficient distribution of the grout within the cavity must be ensured by sufficient fluidity. If the grout is provided with binders, their hardening time must be adjusted so that it does not prematurely hardened during short interruptions of Verpressvorgangs within the delivery lines, but on the other hand ensures the static required bedding the tubbing rings when leaving the shield tail as quickly as possible.
  • both mortar mixtures and binder-free mixtures have in common that they consist in the main components of sand or gravel sand to ensure the required grain structure, water and lower admixtures of bentonite or fly ash as a filler to improve the processability.
  • the compression takes place at Propagation in loose soil usually through the shield tail, usually about four to eight distributed over the circumference injection nozzles are arranged, which are fed via piston pumps.
  • Grouting mortar is either delivered as ready-mixed mortar or mixed on-site from the supplied components.
  • the conveyance of processed grouting mortar from the tunnel mouth to the injection site in the tunnel is usually carried out via lore operation, then via pumping lines.
  • the object of the invention is to provide a possibility by means of which these problems can be minimized or largely avoided.
  • the invention is based on the finding that in the known methods the annular gap filling takes place both in terms of process and materials independently of soil degradation and soil extraction. In contrast, the invention proposes to couple these two processes together. This is done procedurally such that a part of the soil just dismantled or soil-liquid mixture branched off immediately behind the working face of the delivery line, if necessary, processed directly in the tunnel, but in any case immediately used again for Ringpaltverpressung, ie the material does not leave the tunnel tube between degradation and compression.
  • the invention is based on the basic principle that the material to be incorporated into the annular gap need not have better mechanical properties than the pending surrounding soil, since otherwise this would be decisive for bedding and settlement behavior.
  • the invention has the significant advantage that by using the mined soil or soil mixture as Verpressmaterial under direct removal from the feed line no separately to be transported and consequentfahrzufahren in the tunnel grout is more needed. This reduces the traffic volume and the noise pollution of the environment, which has an effect especially on inner-city highly-stressed construction sites. Since no storage space is required for the grouting mortar, the area required for construction site equipment is also reduced. Finally, the construction site logistics are simplified, since mortar transports through the tunnel are eliminated.
  • Another advantage that should not be underestimated in terms of operation is that the grouting mortar can be produced in situ precisely when it is actually needed for grouting. A hardening and disposal of too much or because of standstill not needed mortar is eliminated.
  • FIG. 1 to 3 schematically shows how in a mountain formation 1 by means of a shield machine 2, a tunnel tube 3 is ascended.
  • the shield machine 2 comprises in a known manner a cylindrical shield shell 4.
  • the degradation of the pending at the working face 5 soil is carried out by a drill head 6; the excavation chamber 7 is usually completed by a bulkhead 8.
  • the tunnel lining consisting here of tubbing rings 10 made of reinforced concrete or steel, installed; the resulting in the ancestor of the shield machine 2 behind the shield tail 9 annular gap 11 is, as described above, pressed by a suitable backfill material 12.
  • Fig. 1 can the invention in a tunnel or tunnel propulsion in the slurry mode, ie a propulsion with liquid-supported face, be explained, especially in cohesive soils such.
  • the working face is fed via a feed line 15 to a supporting liquid, usually a bentonite-water suspension.
  • the support liquid mixes with the degraded by the drill head 6 ground;
  • This bentonite-soil-water mixture is removed via a bulkhead 8 passing through the outlet opening 16 and pumped through a delivery line 17 through the tunnel tube 3 through to a daytime separation system 18.
  • the soil material is separated from the supporting liquid, which can then be pumped back to the working face 5 again.
  • a portion of the bentonite-soil-water mixture discharged from the working face is branched off from the delivery line 17 via a branching valve 19 and, if appropriate, after passing through a small separation plant 20 and a small processing plant 21 as a grouting material, is forced through a slurry pump 22 into a grouting line 23 from which it exits through arranged on the shield tail 9 Verpressdüsen 24 in the annular gap 11.
  • a coarse separation for example screening out of undesired grain fractions
  • a targeted admixing of further components for example cement
  • can also be an intermediate container for Volume buffering can be arranged.
  • Such systems are known in the Nachrucr Scheme.
  • the water contained in the bentonite-soil-water mixture is harmless when pressed, as long as the pressure application during the pressing ensures that it can be pressed through the pore spaces of the pending soil material, ie. H. that there is a grain-to-grain contact of the built-in soil material and thus a sufficient compaction according to the density of the surrounding soil. This is usually given in rolling or mixed-grained soils. The addition of a binder for solidification is then not required. For economic reasons, however, efforts will be made to reduce the bentonite contained in the soil mixture to the level necessary for pumpability, in order to be able to feed the separated bentonite back into the working face support. This Bentonitseparmaschine can be done easily in the described small processing plant 20, 21 in the tunnel.
  • a branching device 28 for example a flap, is arranged in order to feed a portion of the soil material to a small processing plant 29 again. From there, the optionally treated material by means of a slurry pump 30 in a Pressed pressing line 31, from which it again passes directly to the injection nozzles 24 on the shield tail 9 and exits into the annular gap 11.
  • Binding soils are often raised in the EPB mode, in which the mined soil is already treated at the working face with a conditioning agent, for example a foam, and therefore has no additional bentonite components. Also, this soil is basically suitable for direct recompression, provided that it is brought by means of flow agents in a pumpable and compressible state.
  • a conditioning agent for example a foam
  • the inventive method is basically suitable for drives with open working face; how this can be done, can be based on Fig. 3 be explained.
  • the material excavated at the working face 5 is conveyed out of the excavating chamber 7 by means of a conveying device 35, for example a conveyor belt, a branching device 37, for example a flap, again being provided in the region of a transition station to a further conveyor belt 36, by means of which a part of the conveyed soil material is branched off and a screening plant 38, optionally also a treatment plant 39 can be supplied.
  • a conveying device 35 for example a conveyor belt
  • a branching device 37 for example a flap
  • the processed material is pressed again via a slurry pump 40 in a Verpresstechnisch 41, through which it passes to the Verpressdüsen 24 at the end of the shield tail 9. If necessary, 42 water can be supplied via a line.
  • the method according to the invention can advantageously be used for rolling or mixed-grained soils (gravels, sands, optionally with cohesive admixtures).
  • the conveyed soil mixture can be used in virtually unchanged form for compression; reprocessing will not make sense for technical reasons, but at most for economic reasons.
  • cohesive soils on the other hand, as a rule, a preparation to be adapted to the requirements of the annular gap compression must be carried out.
  • a "concrete floor” By targeted admixture of cement or other binders to the branched, just degraded soil mixture, a "concrete floor” can be generated, which can be assigned a sealing or insulating, depending even a static-bearing function. It is thus possible according to the invention to produce a kind of "extruded concrete" as a tunnel safety in the tunnel.
  • the pending soil is the supplement and the existing groundwater is the mixing water.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Structural Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geology (AREA)
  • Architecture (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Lining And Supports For Tunnels (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Verfüllen oder Verpressen von Hohlräumen außerhalb der lichten Tunnelröhre eines im Schildvortrieb aufgefahrenen Tunnels oder Stollens, insbesondere des Ringspalts zwischen der Tunnelauskleidung und dem anstehenden Boden.
  • Im maschinellen Tunnelbau mit Schildvortriebsmaschinen (Tunnelbohrmaschinen) und Ausbau aus Tübbingen entsteht systembedingt hinter der Schildschwanzdichtung beim Vorfahren des Schildes am Umfang des Schildmantels ein Ringspalt zwischen Gebirge und Außenfläche der Tunnelauskleidung, der in der Regel eine Dicke von 10 bis 15 cm, in Ausnahmefällen bis ca. 30 cm aufweist. Dieser Ringspalt wird üblicherweise durch einen Verpressmörtel, meist druckbeaufschlagt, verfüllt. Dabei werden vorrangig folgende Ziele bzw. Aufgaben verfolgt:
    • Bettung der Tübbingringe;
    • weitgehende Erhaltung des Spannungszustands des Bodens und Minimierung von Setzungen der Geländeoberfläche und damit von Bauwerken;
    • gelegentlich zusätzliche Wirkung als Dicht- oder Isoliermittel zur Reduzierung des Wasserandrangs zur Tunnelauskleidung hin oder Abschirmung der Tunnelauskleidung gegenüber aggressiven Stoffen.
  • Aus verfahrenstechnischen Gründen ist es erforderlich, dass der Verpressmörtel pumpfähig ist und mit gezielter Druckbeaufschlagung sowie Volumenkontrolle eingebracht werden kann. Eine ausreichende Verteilung des Verpressmörtels innerhalb des Hohlraums muss über ein ausreichendes Fließvermögen gewährleistet werden. Sofern der Verpressmörtel mit Bindemitteln versehen ist, muss deren Erhärtungszeit derart eingestellt werden, dass er einerseits bei kurzzeitigen Unterbrechungen des Verpressvorgangs nicht vorzeitig innerhalb der Förderleitungen erhärtet, andererseits aber die statisch erforderliche Bettung der Tübbingringe bei Verlassen des Schildschwanzes möglichst schnell gewährleistet.
  • Allen solchen Mischungen, und zwar sowohl Mörtelmischungen als auch bindemittelfreien Mischungen ist gemeinsam, dass sie in den Hauptbestandteilen aus Sand oder Kiessand zur Gewährleistung des geforderten Kornaufbaus, aus Wasser sowie aus geringeren Zumischungen von Bentonit bzw. Flugasche als Füllmittel zur Verbesserung der Verarbeitbarkeit bestehen. Die Verpressung selbst erfolgt bei Vortrieben in Lockerböden üblicherweise durch den Schildschwanz, wobei meist etwa vier bis acht über den Umfang verteilte Verpressdüsen angeordnet sind, die über Kolbenpumpen beschickt werden.
  • Verpressmörtel wird entweder als Fertigmörtel angeliefert oder bauseitig aus den angelieferten Bestandteilen gemischt. Die Förderung des aufbereiteten Verpressmörtels vom Tunnelmund bis zum Verpressort im Tunnel erfolgt üblicherweise über Lorenbetrieb, anschließend über Pumpleitungen.
  • Derartige Lösungen sind beispielsweise aus der EP-A-0 897 050 und EP-A-0 931 909 bekannt. Dort wird das Injektionsgut in einem in der Nähe des Einpressortes angeordneten und gegebenenfalls im Lorenbetrieb gespeisten Behälter zwischengespeichert und über Rohrleitungen im Schutze des Schildschwanzes in den Ringspalt injiziert. Eine ähnliche Lösung offenbart die DE 29 32 430 A , bei der die Verfüllmasse über eine Betonförderleitung aus dem rückwärtigen Bereich der Tunnelröhre zum Ringspalt herangeführt und injiziert wird. Hier ist offen gelassen, ob die Betonförderleitung von einem Zwischenspeicher in der Tunnelröhre kommt oder ob sich die Betonförderleitung über die gesamte Länge der bereits aufgefahrenen Tunnelröhre erstreckt. Eine Möglichkeit der Verteilung des Injektionsguts gleichmäßig über den Umfang des Ringspalts ist in der US-A-3 561 223 dargestellt. Dort sieht man eine zentrale großvolumige Förderleitung, in der das Injektionsgut in den Bereich des Tunnelvortriebs gepumpt wird. An ihrem Ende geht die Förderleitung in ein Verteilersystem aus mehreren Schlauchleitungen geringeren Durchmessers über, die zu über den Umfang des Ringspalts gleichmäßig verteilten in den Ringspalt mündenden Injektionsdüsen führen. Ähnliche Lösungen sind auch aus US-A-6 082 930 und EP-A-0 348118 bekannt.
  • Als nächstliegender Stand der Technik wird JP57187499 angesehen. Dieses Dokument entspricht den Oberbegriff des Anspruchs 1.
  • Die Materialtransporte für die Ringspaltverpressung sind oft mit logistischen und umweltschutztechnischen Problemen belastet. So bereitet der Antransport der Mengen von Verpressmörtel, die bei einer Tunnelröhre 75 m3/Tag, bei zwei parallel aufzufahrenden Röhren doppelt so viel betragen können, zunehmend Probleme in der Umgebung der Baustelle. Dies gilt insbesondere in dicht besiedelten Innenstadtbereichen, wie sie immer wieder bei U-Bahn-Baustellen und innerstädtischen Straßentunnels auftreten. So sind Materialtransporte tagsüber wegen der hiermit verbundenen unerwünschten Erhöhung des Verkehrsaufkommens durch Lkw-Transporte problematisch, während der Nachtzeiten aus Lärmschutzgründen zum Schutz der Anwohner vielfach unzulässig. In der Tunnelröhre ist die Baustellenlogistik auf die Verpressvolumina auszulegen; Schwierigkeiten beim Mörteinachschub führen unweigerlich zu einem kostenintensiven Stillstand der Vortriebsmaschine.
  • Vor diesem Hintergrund liegt der Erfindung die Aufgabe zugrunde, eine Möglichkeit aufzuzeigen, durch die diese Probleme minimiert bzw. weitgehend vermieden werden können.
  • Erfindungsgemäß wird diese Aufgabe durch das im Patentanspruch 1 angegebenen Verfahren gelöst.
  • Vorteilhafte Weiterbildungen ergeben sich aus den Unteransprüchen.
  • Der Erfindung liegt die Erkenntnis zugrunde, dass bei den bekannten Verfahren die Ringspaltverfüllung sowohl verfahrens- als auch materialtechnisch unabhängig von Bodenabbau und Bodenförderung erfolgt. Demgegenüber schlägt die Erfindung vor, diese beiden Vorgänge miteinander zu koppeln. Dies geschieht verfahrensmäßig derart, dass ein Teil des soeben abgebauten Bodens bzw. Boden-Flüssigkeits-Gemishs unmittelbar hinter der Ortsbrust aus der Förderleitung abgezweigt, falls erforderlich, unmittelbar im Tunnel aufbereitet, auf jeden Fall aber sofort zur Ringspaltverpressung wieder verwendet wird, d. h. das Material verlässt zwischen Abbau und Verpressung die Tunnelröhre nicht. Die Erfindung basiert auf dem Grundprinzip, dass das in den Ringspalt einzubauende Material keine besseren mechanischen Eigenschaften aufzuweisen braucht als der anstehende umgebende Boden, da ansonsten dieser maßgeblich wäre für Bettungs- und Setzungsverhalten.
  • Die Erfindung hat den wesentlichen Vorteil, dass durch Verwendung des abgebauten Bodens bzw. Bodengemischs als Verpressmaterial unter direkter Entnahme aus der Förderleitung kein gesondert anzutransportierender und in den Tunnel einzufahrender Verpressmörtel mehr benötigt wird. Hierdurch reduzieren sich das Verkehrsaufkommen und die Lärmbelastung der Umwelt, was sich insbesondere bei innerstädtischen hochbelasteten Baustellen auswirkt. Da keine Lagerflächen für den Verpressmörtel mehr erforderlich sind, reduziert sich auch der Flächenbedarf für die Baustelleneinrichtung. Schließlich vereinfacht sich die Baustellenlogistik, da Mörteltransporte durch den Tunnel entfallen.
  • Unmittelbare Folge dieser Vorteile ist eine Erhöhung der Betriebssicherheit, da der Vortriebsbetrieb nicht mehr durch logistische Probleme im Mörteltransport behindert oder unterbrochen werden kann. Da das Verpressmaterial als Boden bzw. Bodengemisch vorhanden ist und nicht gesondert beschafft zu werden braucht, ergeben sich auch Kostenersparnisse. Schließlich reduziert sich das Volumen des aus dem Tunnel abzufördernden Materials durch Abzweigung eines Teils des gelösten Bodens, der unter Tage verbleibt.
  • Ein weiterer betriebstechnisch nicht zu unterschätzender Vorteil ist, dass der Verpressmörtel an Ort und Stelle genau dann hergestellt werden kann, wenn er tatsächlich zur Verpressung gebraucht wird. Ein Erhärten und Entsorgen von zu viel oder wegen Stillstand nicht benötigtem Mörtel entfällt.
  • Die Erfindung wird nachstehend anhand der Zeichnung näher erläutert. Es zeigt
  • Fig. 1
    einen Längsschnitt durch einen Schildvortrieb im Slurry-Betrieb,
    Fig. 2
    einen Längsschnitt durch einen Schildvortrieb im EPB-Betrieb und
    Fig. 3
    einen Längsschnitt durch einen Schildvortrieb mit offener Ortsbrust.
  • In den Fig. 1 bis 3 ist schematisch dargestellt, wie in einer Gebirgsformation 1 mittels einer Schildmaschine 2 eine Tunnelröhre 3 aufgefahren wird. Die Schildmaschine 2 umfasst in bekannter Weise einen zylindrischen Schildmantel 4. Der Abbau des an der Ortsbrust 5 anstehenden Bodens erfolgt durch einen Bohrkopf 6; die Abbaukammer 7 wird in der Regel durch eine Schottwand 8 abgeschlossen.
  • Im Schutz des Schildschwanzes 9 wird die Tunnelauskleidung, hier bestehend aus Tübbingringen 10 aus Stahlbeton oder Stahl, eingebaut; der beim Vorfahren der Schildmaschine 2 hinter dem Schildschwanz 9 entstehende Ringspalt 11 wird, wie eingangs dargestellt, durch ein geeignetes Verfüllmaterial 12 verpresst.
  • Anhand Fig. 1 kann die Erfindung bei einem Tunnel- oder Stollenvortrieb im Slurry-Modus, d. h. einem Vortrieb mit flüssigkeitsgestützter Ortsbrust, erläutert werden, der vor allem bei bindigen Böden wie z. B. Tonen, angewandt wird. In diesem Fall wird der Ortsbrust über eine Speiseleitung 15 eine Stützflüssigkeit, meist eine Bentonit-Wasser-Suspension, zugeführt. Dort vermischt sich die Stützflüssigkeit mit dem durch den Bohrkopf 6 abgebauten Boden; dieses Bentonit-Boden-Wasser-Gemisch wird über eine die Schottwand 8 durchsetzende Austrittsöffnung 16 entnommen und über eine Förderleitung 17 durch die Tunnelröhre 3 hindurch zu einer über Tage angeordneten Separieranlage 18 gepumpt. In der Separieranlage 18 wird das Bodenmaterial von der Stützflüssigkeit getrennt, die anschließend wieder zur Ortsbrust 5 zurückgepumpt werden kann.
  • Erfindungsgemäß wird nun von der Förderleitung 17 über ein Abzweigventil 19 ein Teil des von der Ortsbrust abgeförderten Bentonit-Boden-Wasser-Gemischs abgezweigt und gegebenenfalls nach Passieren einer kleinen Separieranlage 20 sowie einer kleinen Aufbereitungsanlage 21 als Verpressmaterial durch eine Dickstoffpumpe 22 in eine Verpressleitung 23 gepresst, aus der es durch am Schildschwanz 9 angeordnete Verpressdüsen 24 in den Ringspalt 11 austritt. In der Separieranlage 20 kann eine Grobseparierung, zum Beispiel Aussieben unerwünschter Kornfraktionen, in der Aufbereitungsanlage 21 eine gezielte Zumischung von weiteren Bestandteilen, zum Beispiel Zement, erfolgen. Sofern erforderlich, kann auch ein Zwischenbehälter zur Volumenpufferung angeordnet werden. Solche Anlagen sind im Nachläuferbereich bekannt.
  • Das in dem Bentonit-Boden-Wasser-Gemisch enthaltene Wasser ist beim Verpressen unschädlich, solange durch die Druckaufbringung bei der Verpressung sichergestellt ist, dass es durch die Porenräume des anstehenden Bodenmaterials hindurchgepresst werden kann, d. h. dass es zu einem Korn-zu-Korn-Kontakt des eingebauten Bodenmaterials und somit einer ausreichenden Verdichtung entsprechend der Dichte des umgebenden Bodens kommt. Dies ist in der Regel bei rolligen oder gemischtkörnigen Böden gegeben. Die Zugabe eines Bindemittels zur Verfestigung ist dann nicht erforderlich. Aus wirtschaftlichen Gründen wird man allerdings bemüht sein, den in dem Bodengemisch enthaltenen Bentonit auf das zur Pumpfähigkeit notwendige Maß zu reduzieren, um den ausseparierten Bentonit erneut der Ortsbruststützung zuleiten zu können. Diese Bentonitseparierung kann in der beschriebenen kleinen Aufbereitungsanlage 20, 21 im Tunnel problemlos erfolgen.
  • Werden bindige Böden im Slurry-Modus aufgefahren, so kann eine unzureichende Separierung dazu führen, dass keine optimale Verdichtung des in den Ringspalt verfüllten Materials erreicht wird, da das Wasser-Bentonit-Gemisch nicht ausreichend schnell aus der Kornstruktur des Bodens verdrängt werden kann. Dem kann durch eine entsprechende Aufbereitung des Bodens oder durch zusätzliche grobkörnige Beimischungen begegnet werden.
  • Wie beim Auffahren bindiger oder bindig-feinsandiger Böden im EPB-Modus ("earthpressure-balance") verfahren werden kann, kann anhand Fig. 2 erläutert werden. Hier dient der an der Ortsbrust 5 abgebaute und mit dem Grundwasser vermischte "Bodenbrei" als Stützmedium für die Ortsbrust; oft werden auch Schäume aus Kunststoffen zur Konditionierung zugegeben. Hier wird der an der Ortsbrust 5 gelöste Boden aus der Abbaukammer 7 heraus mittels einer geeigneten Fördereinrichtung 25, zum Beispiel einer Förderschnecke, in das Tunnelinnere gefördert, um dort einer weiteren Fördereinrichtung 26, zum Beispiel einem Förderband, übergeben zu werden. Bevor das Bodenmaterial am Ende der Fördereinrichtung 26 einem weiteren Förderband 27 zur Förderung aus dem Tunnel heraus übergeben wird, ist eine Abzweigvorrichtung 28, zum Beispiel eine Klappe, angeordnet, um wiederum einen Teil des Bodenmaterials einer kleinen Aufbereitungsanlage 29 zuzuführen. Von dort wird das gegebenenfalls aufbereitete Material mittels einer Dickstoffpumpe 30 in eine Verpressleitung 31 gepresst, aus der es wieder unmittelbar zu den Verpressdüsen 24 am Schildschwanz 9 gelangt und in den Ringspalt 11 austritt.
  • Bindige Böden werden häufig im EPB-Modus aufgefahren, bei dem der abgebaute Boden bereits an der Ortsbrust mit einem Konditionierungsmittel, zum Beispiel einem Schaum, aufbereitet wird und somit über keine zusätzlichen Bentonitanteile verfügt. Auch dieser Boden ist grundsätzlich für eine direkte Wiederverpressung geeignet, sofern er mittels Zugabe von Fließmitteln in einen pump- und verpressfähigen Zustand gebracht wird.
  • Das erfindungsgemäße Verfahren ist grundsätzlich auch für Vortriebe mit offener Ortsbrust geeignet; wie hier vorgegangen werden kann, kann anhand Fig. 3 erläutert werden.
  • Auch hier wird das an der Ortsbrust 5 abgebaute Material aus der Abbaukammer 7 heraus mittels einer Fördereinrichtung 35, zum Beispiel eines Förderbandes, gefördert, wobei im Bereich einer Übergangsstation zu einem weiterführenden Förderband 36 wiederum eine Abzweigeinrichtung 37, zum Beispiel eine Klappe, vorgesehen ist, mittels deren ein Teil des geförderten Bodenmaterials abgezweigt und einer Siebanlage 38, gegebenenfalls auch einer Aufbereitungsanlage 39 zugeführt werden kann. Um das abgebaute Bodenmaterial pumpfähig zu machen, müssen gegebenenfalls zu grobkörnige Fraktionen ausgesiebt und/oder Fließmittel zugegeben werden.
  • Das aufbereitete Material wird wieder über eine Dickstoffpumpe 40 in eine Verpressleitung 41 gepresst, durch die es zu den Verpressdüsen 24 am Ende des Schildschwanzes 9 gelangt. Falls erforderlich, kann über eine Leitung 42 Wasser zugeführt werden.
  • Zusammenfassend kann festgestellt werden, dass das erfindungsgemäße Verfahren für rollige oder gemischtkörnige Böden (Kiese, Sande, gegebenenfalls mit bindigen Beimengungen) vorteilhaft anzuwenden ist. Das abgeförderte Bodengemisch kann in praktisch unveränderter Form zur Verpressung verwendet werden; eine Aufbereitung wird nicht aus technischen, sondern allenfalls aus wirtschaftlichen Gründen sinnvoll sein. Bei bindigen Böden ist dagegen in aller Regel eine den Anforderungen an die Ringspaltverpressung anzupassende Aufbereitung vorzunehmen.
  • Durch gezielte Zumischung von Zement oder anderen Bindemitteln zu dem abgezweigten, soeben abgebauten Bodengemisch kann ein "Bodenbeton" erzeugt werden, dem eine dichtende oder isolierende, je sogar eine statisch-tragende Funktion zugewiesen werden kann. Es ist somit nach der Erfindung möglich, eine Art "Extrudierbeton" als Tunnelsicherung im Tunnel herzustellen. Dabei stellen der anstehende Boden den Zuschlag und das vorhandene Grundwasser das Anmachwasser dar.

Claims (4)

  1. Verfahren zum Verfüllen oder Verpressen des Ringspalts (11) zwischen der Tunnelauskleidung (10) und dem anstehenden Boden (1) eines im Schildvortrieb aufgefahrenen unterirdischen Hohlraums, insbesondere eines Tunnels oder Stollens, wobei zum Verfüllen oder Verpressen des Ringspalts (11) von dem an der Ortsbrust (5) gelösten Bodenmaterial oder dem beim Abbau entstandenen Bodengemisch innerhalb der Tunnelröhre (3) ein Teil abgezweigt und ohne die Tunnelröhre (3) zu verlassen, zum Verfüllen oder Verpressen des Ringspalts (11) verwendet und direkt dem Ringspalt (11) zwischen Tunnelauskleidung (10) und anstehendem Boden (1) aufgegeben wird, dadurch gekennzeichnet, dass vor dem Verfüllen oder Verpressen des Ringspalts (11) unerwünschte Kornfraktionen und/oder Bentonitanteile aus dem abgezweigten Teil des Bodenmaterials oder Bodengemischs innerhalb einer Separieranlage ausgesondert werden.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das an der Ortsbrust (5) gelöste Bodenmaterial bzw. das beim Abbau entstandene Bodengemisch innerhalb der Tunnelröhre (3) für die Zwecke des Verfüllens oder Verpressens aufbereitet wird.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass aus dem an der Ortsbrust (5) gelösten Bodenmaterial bzw. dem beim Abbau entstandenen Bodengemisch das Sicherungselement, vornehmlich der Ausbau der aufgefahrenen Tunnelröhre (3) hergestellt wird.
  4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass das an der Ortsbrust (5) gelöste Bodenmaterial bzw. das beim Abbau entstandene Bodengemisch als Dicht- oder Isolierelement für die lichte Tunnelröhre (3) verwendet wird.
EP04028102A 2003-12-04 2004-11-26 Verfahren zum Verfüllen von Hohlräumen ausserhalb der lichten Tunnelröhre eines maschinell aufgefahrenen Tunnels Not-in-force EP1538302B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE10356584 2003-12-04
DE10356584A DE10356584A1 (de) 2003-12-04 2003-12-04 Verfahren zum Verfüllen von Hohlräumen außerhalb der lichten Tunnelröhre eines maschinell aufgefahrenen Tunnels

Publications (2)

Publication Number Publication Date
EP1538302A1 EP1538302A1 (de) 2005-06-08
EP1538302B1 true EP1538302B1 (de) 2010-04-28

Family

ID=34442433

Family Applications (1)

Application Number Title Priority Date Filing Date
EP04028102A Not-in-force EP1538302B1 (de) 2003-12-04 2004-11-26 Verfahren zum Verfüllen von Hohlräumen ausserhalb der lichten Tunnelröhre eines maschinell aufgefahrenen Tunnels

Country Status (3)

Country Link
EP (1) EP1538302B1 (de)
AT (1) ATE466166T1 (de)
DE (2) DE10356584A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005011266B4 (de) * 2004-12-27 2009-10-01 FITR-Gesellschaft für Innovation im Tief- und Rohrleitungsbau Weimar mbH Baustoffmischung und deren Verwendung
DE102007024057B4 (de) * 2007-05-22 2009-03-12 S & B Industrial Minerals Gmbh Verfahren zur Verfestigung und/oder Abdichtung lockerer geologischer Formationen im Zuge von geotechnischen Baumaßnahmen
DE102016009198A1 (de) * 2016-07-27 2018-02-01 Hydac International Gmbh Schmiersystem
CN110863833B (zh) * 2019-11-22 2020-12-22 中铁隧道局集团有限公司 一种隧道盾构掘进始发端头孤石区盾构机的掘进参数的控制工艺

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187499A (en) * 1981-05-13 1982-11-18 Obayashi Gumi Kk Back-filling injection execution method in earth pressure system shield construction method
EP0348118A2 (de) * 1988-06-22 1989-12-27 Kabushiki Kaisha Iseki Kaihatsu Koki Verfahren und Vorrichtung zum Bohren eines Loches im Boden
US6082930A (en) * 1997-11-27 2000-07-04 Obayashi Corporation Shield driving machine

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3561223A (en) * 1968-07-09 1971-02-09 John R Tabor Tunneling machine with concrete wall forming mechanism
AU1686676A (en) * 1977-03-12 1978-02-23 Pan Canadian Science And Techn Earth tunnelling
DE2932430C2 (de) * 1979-08-10 1985-01-10 Hochtief Ag Vorm. Gebr. Helfmann, 4300 Essen Verfahren zum Einbringen eines Tunnelausbaus aus Beton
JPS60181490A (ja) * 1984-02-24 1985-09-17 日本電信電話株式会社 管埋設装置
DE69718461T2 (de) * 1997-08-14 2003-10-02 I T M Ind Tunnelbouw Methode C Verfahren zum Herstellen eines bekleideten Tunnels
DE19800963A1 (de) * 1998-01-14 1999-07-22 Holzmann Philipp Ag Verfahren zum Verpressen des Ringraums zwischen Tübbingen und Gebirge mit Mörtel

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57187499A (en) * 1981-05-13 1982-11-18 Obayashi Gumi Kk Back-filling injection execution method in earth pressure system shield construction method
EP0348118A2 (de) * 1988-06-22 1989-12-27 Kabushiki Kaisha Iseki Kaihatsu Koki Verfahren und Vorrichtung zum Bohren eines Loches im Boden
US6082930A (en) * 1997-11-27 2000-07-04 Obayashi Corporation Shield driving machine

Also Published As

Publication number Publication date
DE10356584A1 (de) 2005-06-30
DE502004011093D1 (de) 2010-06-10
EP1538302A1 (de) 2005-06-08
ATE466166T1 (de) 2010-05-15

Similar Documents

Publication Publication Date Title
Jancsecz et al. Advantages of soil conditioning in shield tunnelling: experiences of LRTS Izmir
US6322293B1 (en) Method for filling voids with aggregate material
Herrenknecht et al. The development of earth pressure shields: from the beginning to the present/Entwicklung der Erddruckschilde: Von den Anfängen bis zur Gegenwart
DE2939051C2 (de) Verfahren zum Versetzen von Abbauhohlräumen
EP1538302B1 (de) Verfahren zum Verfüllen von Hohlräumen ausserhalb der lichten Tunnelröhre eines maschinell aufgefahrenen Tunnels
KR100902364B1 (ko) 쉴드 터널링 장치 및 그 공법
DE3418180C2 (de) Vortriebsschild
DE3413602A1 (de) Verfahren zum nachversetzen der hohlraeume des bruchhaufwerks
JP5155680B2 (ja) 裏込め注入方法、並びに、トンネル構築システム及びトンネル構築方法
DE3932046C2 (de)
DE3529682C2 (de)
DE2655542A1 (de) Verfahren und einrichtung zum hydraulischen einbringen von versatz
WO2021105276A2 (de) Verfahren und vorrichtung zur lagenweisen verfüllung und verdichtung von bindigen baustoffen in bohrlöchern
JP2000282791A (ja) トンネル工法
EP0273441B1 (de) Verfahren zur Beseitigung von Abraum
EP0931909A1 (de) Verfahren zum Verpressen des Ringraums zwischen Tübbingen und Gebirge mit Mörtel
JP5670683B2 (ja) 裏込め注入システム及び方法
DE3826772A1 (de) Vortriebseinrichtung fuer den schildvortrieb oder fuer rohrvorpressbetriebe mit hydraulischer foerdereinrichtung
DE3827441A1 (de) Verfahren zum schildvortrieb eines tunnels
JP2001090480A (ja) 裏込め注入工法
DE4331641C1 (de) Verfahren zum Einbringen von Blasversatz unter Zumischung von feinkörnigen Füllstoffen und Vorrichtung zur Durchführung des Verfahrens
DE202020002792U1 (de) Stopfförderer für die triaxiale Förderung und zum verdichteten Einbau bindiger Erdbaustoffe in Bohrungen und zur Herstellung elastoplastischer Bohrlochverfüllungen im Spezialtiefbau, speziell in der Kampfmittelsondierung
DE4202060A1 (de) Verfahren und einrichtung zum abdichten der abbaukammer einer schildvortriebseinrichtung an der dem haufwerksabzug dienenden foerdervorrichtung
DE2650045A1 (de) Verfahren zum ausfuellen bergbaulicher hohlraeume
DE3925639A1 (de) Verfahren zum einbringen von vollversatz beim untertaegigen abbau von kohle

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

AX Request for extension of the european patent

Extension state: AL HR LT LV MK YU

17P Request for examination filed

Effective date: 20051201

AKX Designation fees paid

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

19U Interruption of proceedings before grant

Effective date: 20050401

19W Proceedings resumed before grant after interruption of proceedings

Effective date: 20070702

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DYWIDAG BAU GMBH

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LU MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502004011093

Country of ref document: DE

Date of ref document: 20100610

Kind code of ref document: P

REG Reference to a national code

Ref country code: NL

Ref legal event code: VDEP

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100808

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100828

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100830

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

26N No opposition filed

Effective date: 20110131

BERE Be: lapsed

Owner name: DYWIDAG BAU G.M.B.H.

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20101126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20110801

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004011093

Country of ref document: DE

Effective date: 20110601

Ref country code: DE

Ref legal event code: R119

Ref document number: 502004011093

Country of ref document: DE

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101126

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 466166

Country of ref document: AT

Kind code of ref document: T

Effective date: 20101126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101126

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20101029

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101126

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100428

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20100728