EP0273441B1 - Verfahren zur Beseitigung von Abraum - Google Patents

Verfahren zur Beseitigung von Abraum Download PDF

Info

Publication number
EP0273441B1
EP0273441B1 EP87119301A EP87119301A EP0273441B1 EP 0273441 B1 EP0273441 B1 EP 0273441B1 EP 87119301 A EP87119301 A EP 87119301A EP 87119301 A EP87119301 A EP 87119301A EP 0273441 B1 EP0273441 B1 EP 0273441B1
Authority
EP
European Patent Office
Prior art keywords
spoils
tunnel
process according
pressure
earth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP87119301A
Other languages
English (en)
French (fr)
Other versions
EP0273441A3 (en
EP0273441A2 (de
Inventor
Karl Dipl.-Ing. Schlecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Publication of EP0273441A2 publication Critical patent/EP0273441A2/de
Publication of EP0273441A3 publication Critical patent/EP0273441A3/de
Application granted granted Critical
Publication of EP0273441B1 publication Critical patent/EP0273441B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21DSHAFTS; TUNNELS; GALLERIES; LARGE UNDERGROUND CHAMBERS
    • E21D9/00Tunnels or galleries, with or without linings; Methods or apparatus for making thereof; Layout of tunnels or galleries
    • E21D9/12Devices for removing or hauling away excavated material or spoil; Working or loading platforms
    • E21D9/13Devices for removing or hauling away excavated material or spoil; Working or loading platforms using hydraulic or pneumatic conveying means
    • EFIXED CONSTRUCTIONS
    • E02HYDRAULIC ENGINEERING; FOUNDATIONS; SOIL SHIFTING
    • E02DFOUNDATIONS; EXCAVATIONS; EMBANKMENTS; UNDERGROUND OR UNDERWATER STRUCTURES
    • E02D29/00Independent underground or underwater structures; Retaining walls
    • E02D29/045Underground structures, e.g. tunnels or galleries, built in the open air or by methods involving disturbance of the ground surface all along the location line; Methods of making them

Definitions

  • the invention relates to a method for removing spoil during the construction of tunnels, in which the spoil produced is pumped out of the tunnel.
  • the invention is therefore based on the object of developing a method with which the overburden can be removed directly in an economical manner and without changing the tunnel-like landscape even in the construction of very long tunnels, in particular in the tunneling of watercourses, inlets and the like.
  • the invention is based on the idea that when the overburden is conveyed through a bore which penetrates the tunnel wall or tunnel shell essentially radially and, if appropriate, at least one channel drilled into the earth surrounding the tunnel, only relatively short transport routes have to be overcome for the removal of the overburden .
  • thick matter pumps are advantageously used, which convey the overburden mixed with a liquid, such as water, to a pasty, pumpable paste from the point of origin under pressure to the disposal site. If the pump pressure line ends below the surface of the earth, an expanding lenticular area filled with overburden forms with increasing production.
  • the overburden must be conveyed into the ground using a pressure that corresponds at least to the earth pressure at the exit point of the channel or the pump pressure line while performing a deformation and / or displacement work.
  • the overburden channels are advantageously led horizontally out of the tunnel.
  • the spoil is conveyed into zones from which no pressure is exerted on the tunnel wall and from which the spoil cannot flow back or can easily be prevented from flowing back.
  • the canal opens into a dry rock area, because this makes it easier to drill the hole and prevents water from entering from the water above.
  • At least the first part of the channel bore adjoining the tunnel tube is lined with steel tubes. This also ensures that the hole cannot collapse when the drill inserting the channel is withdrawn. In principle, it is even possible to pump the overburden through the radial bore into the immediate vicinity of the tunnel if it is ensured that the tunnel wall is temporarily or permanently reinforced or stiffened in such a way that the overburden pressure can be absorbed.
  • the production channel can also be driven up to the bottom of the water in order to be able to promote the overburden on the bottom of the water, for example the seabed.
  • the tunnel structure 1 shown in FIGS. 1 and 2 is driven about 50 to 100 m below the bottom 2 of a body of water 3, for example under the sea floor. Tunneling is carried out with the aid of a closed tunneling machine 10, in the interior 12 of which the overburden milled by the excavation tool 14 from the face 16 of the tunnel 1 is collected and fed via a screw conveyor 20 to a mixing container 22 for intensive mixing with water.
  • the resulting granular-pasty debris reaches a high-pressure thick matter pump 24, with which it is conveyed under pressure into a pipeline 26, 28, 30.
  • the pipeline connected to the thick matter pump 24 via a scissor tube 32 is laid in a first section 26 a distance along the already completed tunnel 1.
  • this pipe section 26 which can be up to approximately 2000 m long, the pipeline is led through a bore 42 running perpendicularly through the tunnel wall 40 over a short elbow section 28, in the area of which there are two gate valves 36, 38. This is followed by a further pipe section 30 which extends through a drilling channel 46 introduced into the soil 44 near the tunnel.
  • the drilling channel 46 ends with the pipe section 30 within the soil 44, while in the case of FIG. 2 it extends to the water bottom 2.
  • the drilling channels 46 need not necessarily be perpendicular to the surface of the earth, as is shown in FIGS. 1 and 2 for the sake of clarity. Inclined or horizontal drilling channels through the soil 44 are also possible. Such a drilling direction is preferably selected in which dry rock layers can be found in the area as close as possible to the tunnel, which are suitable for absorbing the debris mass without the risk of water ingress.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Paleontology (AREA)
  • Civil Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Structural Engineering (AREA)
  • Excavating Of Shafts Or Tunnels (AREA)
  • Lining And Supports For Tunnels (AREA)

Description

  • Die Erfindung betrifft ein Verfahren zum Beseitigen von Abraum beim Bau von Tunneln, bei welchem der anfallende Abraum aus dem Tunnel heraus abgepumpt wird.
  • Die Beseitigung des Abraums mittels Fahrzeugen hat sich wegen des zeitraubenden Beladens von Fördergeräten und der damit verbundenen Gefahr der Staubentwicklung in vielen Fällen als nachteilig erwiesen. Besondere Schwierigkeiten bereitet die Schotterung, wenn der Abraum nicht auf einer im wesentlichen waagerechten Sohle weggefahren werden kann.
  • Es ist daher bereits vorgeschlagen worden, den beim Tunnelbau anfallenden Abraum mit Hilfe einer Pumpe aus dem Tunnel herauszufördern (DE-A- 31 25 644). Der Abtransport des Abraums im Pumpverfahren kann andererseits aus wirtschaftlichen Gründen nicht über beliebig lange Strecken erfolgen. Abgesehen davon muß auch dort der außerhalb des Tunnels zunächst auf Halden geschüttete Abraum auf Kraftfahrzeuge verladen und abtransportiert werden.
  • Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren zu entwickeln, mit welchem auch beim Bau sehr langer Tunnel, insbesondere bei der Untertunnelung von Wasserläufen, Meeresarmen und dergleichen, der Abraum auf wirtschaftliche Weise und ohne Veränderung der tunnelnahen Landschaft unmittelbar beseitigt werden kann.
  • Zur Lösung dieser Aufgabe werden die im Patentanspruch 1 angegebenen Merkmale vorgeschlagen. Weitere vorteilhafte Ausgestaltungen und Weiterbildungen des Erfindungsgedankens ergeben sich aus den abhängigen Ansprüchen.
  • Die Erfindung geht von dem Gedanken aus, daß bei einer Förderung des Abraums durch eine die Tunnelwand bzw. Tunnelschale im wesentlichen radial durchdringende Bohrung und gegebenenfalls mindestens einen in das den Tunnel umgebende Erdreich gebohrten Kanal nur relativ kurze Transportstrecken für die Beseitigung des Abraums überwunden werden müssen. Hierfür werden vorteilhafterweise Dickstoffpumpen eingesetzt, die den mit einer Flüssigkeit, wie Wasser, zu einem pastösen, pumpfähigen Brei vermischten Abraum vom Entstehungsort aus unter Druck zur Beseitigungsstelle fördern. Endet die Pumpdruckleitung unter der Erdoberfläche, so bildet sich bei zunehmender Förderung ein sich erweiternder, mit Abraum gefüllter linsenförmiger Bereich. Der Abraum muß hierbei unter Aufwendung eines mindestens dem Erddruck an der Austrittsstelle des Kanals bzw. der Pumpdruckleitung entsprechenden Druck unter Ausübung einer Verformungs- und/oder Verdrängungsarbeit in das Erdreich gefördert werden.
  • Erfahrungsgemäß genügt es, bei unter der Erdoberfläche ausmündenden Abraumkanälen zunächst einen im wesentlichen dem Erddruck entsprechenden Flüssigkeitsdruck auszuüben, um Spalte und Hohlräume zu schaffen, in die anschließend der Abraum unter weiterer Verformung und Anhebung des Erdreichs unter Druck nachgefördert werden kann.
  • Bei Tunneln, deren Decke nur wenig unterhalb eines Gewässers verläuft, werden die Abraumkanäle vorteilhafterweise horizontal aus dem Tunnel herausgeführt. Auf diese Weise wird der Abraum in Zonen gefördert, von denen kein Druck auf die Tunnelwandung ausgeübt wird und aus denen der Abraum auch nicht zurückfließen kann bzw. ein Zurückfließen leicht verhindert werden kann. Zweckmäßig mündet der Kanal in einen trockenen Gesteinsbereich, weil dadurch das Einbringen der Bohrung erleichtert und ein Wassereinbruch vom darüberliegenden Gewässer vermieden wird.
  • Um zu vermeiden, daß der Abraumdruck auf die neu gebaute Tunnelröhre einwirkt und diese evtl. zerdrückt, wird gemäß der Erfindung vorgeschlagen, daß wenigstens der erste, an die Tunnelröhre anschließende Teil der Kanalbohrung mit Stahlrohren ausgekleidet wird. Außerdem wird hierdurch erreicht, daß die Bohrung beim Zurückziehen des den Kanal einbringenden Bohrers nicht zusammenstürzen kann. Grundsätzlich ist es sogar möglich, den Abraum durch die radiale Bohrung hindurch in die unmittelbare Umgebung des Tunnels zu pumpen, wenn dafür gesorgt wird, daß die Tunnelwand zeitweilig oder dauerhaft so verstärkt oder versteift wird, daß der Abraumdruck aufgenommen werden kann.
  • Bei Unterwassertunneln kann der Förderkanal auch bis zum Gewässergrund hochgetrieben werden, um den Abraum auf den Gewässergrund, beispielsweise den Meeresgrund, fördern zu können. Grundsätzlich ist es möglich, den Abraum auch durch ein bis an die Oberfläche eines oberhalb des Tunnels befindlichen Gewässers erstreckendes Rohr zu fördern, über das der Abraum in Wasserfahrzeuge verladen und mit diesen abtransportiert werden kann.
  • Im folgenden wird das erfindungsgemäße Verfahren anhand der in der Zeichnung dargestellten Ausfuhrungsbeispiele näher erläutert. Es zeigen
    • Fig. 1 einen Schnitt durch ein Unterwasser-Tunnelbauwerk mit Abraumbeseitigung ins Erdreich;
    • Fig. 2 einen Schnitt durch ein Unterwasser-Tunnelbauwerk mit Abraumbeseitigung auf den Gewässergrund.
  • Das in den Figuren 1 und 2 dargestellte Tunnelbauwerk 1 wird etwa 50 bis 100 m unter dem Grund 2 eines Gewässers 3, beispielsweise unter dem Meeresboden, vorgetrieben. Der Tunnelvortrieb erfolgt mit Hilfe einer geschlossenen Tunnelvortriebsmaschine 10, in deren Innenraum 12 der durch das Abbauwerkzeug 14 von der Ortsbrust 16 des Tunnels 1 abgefräste Abraum aufgefangen und über eine Förderschnecke 20 einem Mischbehälter 22 zur intensiven Durchmischung mit Wasser zugeleitet wird. Die dabei entstehende körnig-pastöse Abraummasse gelangt zu einer Hochdruck-Dickstoffpumpe 24, mit der sie unter Druck in eine Rohrleitung 26, 28, 30 gefördert wird. Die über ein Scherenrohr 32 an die Dickstoffpumpe 24 angeschlossene Rohrleitung ist in einem ersten Abschnitt 26 ein Stück weit längs des bereits fertiggestellten Tunnels 1 verlegt. Am Ende dieses Rohrabschnitts 26, der bis zu etwa 2000 m lang sein kann, ist die Rohrleitung über eine kurze Krümmerstrecke 28, in deren Bereich sich zwei Absperrschieber 36, 38 befinden, durch eine senkrecht durch die Tunnelwand 40 verlaufende Bohrung 42 hindurchgeführt. Dort schließt sich ein weiterer Rohrleitungsabschnitt 30 an, der durch einen in das tunnelnahe Erdreich 44 eingebrachten Bohrkanal 46 hindurchgreift.
  • Im Falle des in Fig. 1 gezeigten Ausführungsbeispiels endet der Bohrkanal 46 mit dem Rohrleitungsabschnitt 30 innerhalb des Erdreichs 44, während er im Falle der Fig. 2 bis zum Gewässergrund 2 reicht.
  • Wird nun die pastöse Abraummasse unter einem Druck von etwa 50 bis 80 bar durch die Rohrleitung 26,28,30 gepumpt, so bildet sich bei der in Fig. 1 gezeigten Methode ein allmählich größer werdender, mit Abraummasse gefüllter linsenförmiger Raum 48 im Erdreich 44, während die darüber befindlichen Erdmassen 50 entsprechend angehoben werden. Im Falle der Methode nach Fig. 2 breitet sich die Abraummasse unter Bildung eines kraterförmigen Abraumhügels 52 auf dem Gewässergrund 2 rund um die Austrittsstelle 54 des Rohrleitungsabschnitts 30 aus. Bei einem längeren Tunnel 1 werden im Zuge des Tunnelvortriebs je nach den Bedingungen im umgebenden Erdreich 44 in Abständen von etwa 500 bis 2000 m weitere Bohrkanäle 46 für die Abraumbeseitigung senkrecht durch die Tunnelwand 40 ins Erdreich 44 eingebracht. Nach Beendigung der Abraumbeseitigung werden die Bohrkanäle 46 und die darin befindlichen Rohrleitungsabschnitte 30 sowie die Bohrungen 42 in der Tunnelwand 40 dauerhaft mit Zement oder Beton verschlossen.
  • Die Bohrkanäle 46 müssen nicht unbedingt senkrecht zur Erdoberfläche weisen, wie dies in den Figuren 1 und 2 der Übersichtlichkeit halber dargestellt ist. Auch schräge oder horizontale Bohrkanäle durch das Erdreich 44 sind möglich. Bevorzugt wird eine solche Bohrrichtung ausgewählt, in der in möglichst tunnelnahem Bereich trockene Gesteinsschichten zu finden sind, die sich zur Aufnahme der Abraummasse ohne die Gefahr eines Wassereinbruchs eignen.

Claims (12)

1. Verfahren zum Beseitigen von Abraum beim Bau von Tunneln, bei welchem der anfallende Abraum abgepumpt wird, dadurch gekennzeichnet, daß durch ein zuvor fertiggestelltes Stück der Tunnelwand oder der Tunnelschale eine druckdichte Bohrung hindurchgeführt wird und daß durch diese Bohrung der Abraum unter Druck aus dem Tunnel hinausgefördert wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß der Abraum im Ansaugbereich einer Pumpe durch Zugabe von Flüssigkeit, insbesondere Wasser, in einen pastösen Zustand gebracht wird.
3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Abraum durch mindestens einen von der Tunnelbohrung aus in das benachbarte Erdreich gebohrten Kanal weggefördert wird.
4. Verfahren nach Anspruch 3, dadurch gekennzeichnet, daß der Abraum durch mindestens ein in dem Kanal verlegtes, vorzugsweise aus Stahl bestehendes Rohr gepumpt wird.
5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Abraum über einen im wesentlichen senkrechten Kanal in ein oberhalb des Tunnels befindliches Gewässer, z.B. auf den Meeresgrund, gefördert wird.
6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, daß der Abraum durch ein bis an die Oberfläche eines oberhalb des Tunnels befindlichen Gewässers erstreckendes Rohr gefördert wird.
7 Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß der Abraum in einen unter der Erdoberfläche befindlichen, vorzugsweise trockenen Gesteinsbereich gefördert wird.
8. Verfahren nach Anspruch 7, dadurch gekennzeichnet, daß der für die Abraumförderung bestimmte Kanal vom Tunnel aus im wesentlichen horizontal in den Gesteinsbereich hineingebohrt wird.
9. Verfahren nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß der Abraum unter Aufwendung eines mindestens dem Erddruck an der Austrittsstelle des Kanals entsprechenden Druck unter Ausübung einer Verformungs- und/oder Verdrängungsarbeit in den Gesteinsbereich gefördert wird.
10. Verfahren nach einem der Ansprüche 7 bis 9, dadurch gekennzeichnet, daß eine Flüssigkeit, vorzugsweise Wasser, mit einem den Erddruck übersteigende Druck unter Ausübung einer Verformungs- und/oder Verdrängungsarbeit in den Gesteinsbereich gepumpt wird, und daß der Abraum anschließend dorthin nachgefördert wird.
11. Verfahren nach einem der Ansprüche 7 bis 10, dadurch gekennzeichnet, daß unter der Einwirkung des Abraumdrucks eine sich mit dem Abraum füllende Tasche im Erdreich gebildet wird.
12. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß der Abraum durch die radiale Bohrung in der Tunnelwand in die unmittelbare Umgebung des Tunnels gepumpt wird und daß die Tunnelwand im betreffenden Bereich zur Aufnahme des Abraumdruckes zeitweilig oder dauerhaft verstärkt oder auf der Innenseite versteift wird.
EP87119301A 1986-12-31 1987-12-29 Verfahren zur Beseitigung von Abraum Expired - Lifetime EP0273441B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE3644818 1986-12-31
DE19863644818 DE3644818A1 (de) 1986-12-31 1986-12-31 Verfahren zur beseitigung von abraum

Publications (3)

Publication Number Publication Date
EP0273441A2 EP0273441A2 (de) 1988-07-06
EP0273441A3 EP0273441A3 (en) 1989-03-15
EP0273441B1 true EP0273441B1 (de) 1991-06-05

Family

ID=6317439

Family Applications (1)

Application Number Title Priority Date Filing Date
EP87119301A Expired - Lifetime EP0273441B1 (de) 1986-12-31 1987-12-29 Verfahren zur Beseitigung von Abraum

Country Status (4)

Country Link
US (1) US4900191A (de)
EP (1) EP0273441B1 (de)
JP (1) JPS63176595A (de)
DE (2) DE3644818A1 (de)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB0130668D0 (en) * 2001-12-21 2002-02-06 Mmd Design & Consult Apparatus and process for mining of minerals
US7013937B2 (en) * 2002-12-20 2006-03-21 Mmd Design And Consultancy Apparatus and process for mining of minerals
CN1307348C (zh) * 2004-03-15 2007-03-28 中国第二十冶金建设公司 地下结构半逆作法反向连接施工方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2233872A (en) * 1936-07-27 1941-03-04 California Talc Company Means and method for solidifying underground structures
GB1083322A (en) * 1964-03-21 1967-09-13 Mott Hay & Anderson Improvements in or relating to tunnelling apparatus and methods of tunnelling
US3386251A (en) * 1966-05-23 1968-06-04 Griffin Wellpoint Corp Method of strengthening and stabilizing compressible soils
US3616855A (en) * 1970-07-23 1971-11-02 New Mexico Tech Res Found Method of bulking or caving a volume of subsurface material
US4072018A (en) * 1975-04-30 1978-02-07 Alvarez Calderon Alberto Tunnel support structure and method
US4101333A (en) * 1976-08-19 1978-07-18 Joy Manufacturing Company Method of mine backfilling and material therefor
DE2644319A1 (de) * 1976-10-01 1978-04-06 Gewerk Eisenhuette Westfalia Hydraulische foerdereinrichtung fuer den abraumtransport beim auffahren unterirdischer hohlraeume, wie tunnel, stollen u.dgl.
US4370077A (en) * 1980-08-04 1983-01-25 Colgate Stirling A Method of pressurizing and stabilizing rock by periodic and repeated injections of a settable fluid of finite gel strength
DE3125644A1 (de) * 1981-06-30 1983-01-13 Wayss & Freytag Ag, 6000 Frankfurt Verfahren zum vortreiben eines tunnels unter verwendung eines schildes mit fluessigkeitsgefuellter arbeitskammer
GB2117817B (en) * 1982-03-23 1985-11-13 Frank P Davidson Improved tunnelling method
US4666346A (en) * 1986-03-24 1987-05-19 Hanna-Beric Systems, Inc. Rotatable fill pipe with collapsible backfill elbow and method of employing same to blind-fill underground voids

Also Published As

Publication number Publication date
DE3644818A1 (de) 1988-07-14
DE3770602D1 (de) 1991-07-11
JPS63176595A (ja) 1988-07-20
US4900191A (en) 1990-02-13
EP0273441A3 (en) 1989-03-15
EP0273441A2 (de) 1988-07-06

Similar Documents

Publication Publication Date Title
DE69635549T2 (de) Verfahren und vorrichtung zur errichtung von endlosen unterirdischen mauern
DE2011823A1 (de) Verfahren zur Erzeugung wasserdichter Barrieren
EP0461472A2 (de) Baukomplex für die Sicherung einer Deponie und Verfahren zur Herstellung des Baukomplexes
DE3110198A1 (de) "bohrloch fuer den abbau- bzw. bergbau"
DE10393535T5 (de) Bergbausystem
EP0471158A2 (de) Anlage zur Sicherung einer Deponie gegen vagabundierendes Austreten von Sickerwasser und verfahrensmässige Massnahmen
DE3409591A1 (de) Verfahren und vorrichtung zur herstellung einer unterirdischen dichtungssohle
DE102007002399A1 (de) Verfahren und Vorrichtung zur Herstellung einer verrohrten Strangbohrung
EP2650446B1 (de) Verfahren zur Herstellung einer Gründung für eine Offshore-Anlage
DE2108591B2 (de) Einrichtung und verfahren zur durchfuehrung der schildbauweise fuer die errichtung von tunnels und stollen
EP0273441B1 (de) Verfahren zur Beseitigung von Abraum
DE102006000920B4 (de) Verfahren zur umweltschonenden Herstellung unterirdischer Bahnhöfe von S-Bahnen und dgl.
DE3607499C2 (de)
EP0250606B1 (de) Verfahren und Vorrichtung zum nachträglichen Einbau von Bauelementen auf einer ausgedehnten Sohle im Erdboden im Untertagebau
DE2544834B2 (de) Verfahren zum abteufen von schaechten in nicht standfestem gebirge und schildvortriebsvorrichtung zur durchfuehrung des verfahrens
DE3424981A1 (de) Verfahren zur sohlabdichtung von ausgedehnten deponien gegenueber grundwasser
DE3703534C2 (de)
DE3605062A1 (de) Abdichtung von deponien
DE2250635A1 (de) Verfahren zum bau eines tunnels
DE3543098C2 (de)
EP0482405B1 (de) Verfahren zum nachträglichen Herstellen einer unterirdischen Dichtungssohle unter einer bestehenden Mülldeponie
DE2320366A1 (de) Verfahren zur sicherung des ausbruchs und begrenzung von gebirgsdeformationen bei der bergmaennischen herstellung von roehrenfoermigen hohlraeumen
EP1342852B1 (de) Verfahren zum Abstützen und Abdichten von Erdreich
DE4126408C2 (de) Verfahren und Vorrichtung zum Herstellen einer Dichtwand und hierfür geeignete Dichtwand
DE4116096C2 (de) Sicherungsverfahren für Altlasten in Form einer schräggestellten, umlaufenden, muldenförmigen Dichtschüssel, die als Abdichtung nachträglich darunter hergestellt wird

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19890727

17Q First examination report despatched

Effective date: 19900913

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 3770602

Country of ref document: DE

Date of ref document: 19910711

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 19951110

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 19951121

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 19951223

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Effective date: 19961229

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 19961229

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Effective date: 19970829

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Effective date: 19970902

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST