EP1537329B1 - Dispositif pour enflammer un melange air-carburant dans un moteur a combustion interne au moyen d'une source d'energie electrique haute frequence - Google Patents

Dispositif pour enflammer un melange air-carburant dans un moteur a combustion interne au moyen d'une source d'energie electrique haute frequence Download PDF

Info

Publication number
EP1537329B1
EP1537329B1 EP03790742A EP03790742A EP1537329B1 EP 1537329 B1 EP1537329 B1 EP 1537329B1 EP 03790742 A EP03790742 A EP 03790742A EP 03790742 A EP03790742 A EP 03790742A EP 1537329 B1 EP1537329 B1 EP 1537329B1
Authority
EP
European Patent Office
Prior art keywords
waveguide structure
internal combustion
air
coaxial waveguide
combustion engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP03790742A
Other languages
German (de)
English (en)
Other versions
EP1537329A1 (fr
Inventor
Ewald Schmidt
Michael Thiel
Juergen Hasch
Hans-Oliver Ruoss
Klaus Linkenheil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP1537329A1 publication Critical patent/EP1537329A1/fr
Application granted granted Critical
Publication of EP1537329B1 publication Critical patent/EP1537329B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P23/00Other ignition
    • F02P23/04Other physical ignition means, e.g. using laser rays
    • F02P23/045Other physical ignition means, e.g. using laser rays using electromagnetic microwaves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02PIGNITION, OTHER THAN COMPRESSION IGNITION, FOR INTERNAL-COMBUSTION ENGINES; TESTING OF IGNITION TIMING IN COMPRESSION-IGNITION ENGINES
    • F02P9/00Electric spark ignition control, not otherwise provided for
    • F02P9/002Control of spark intensity, intensifying, lengthening, suppression
    • F02P9/007Control of spark intensity, intensifying, lengthening, suppression by supplementary electrical discharge in the pre-ionised electrode interspace of the sparking plug, e.g. plasma jet ignition

Definitions

  • the invention relates to a device for igniting an air-fuel mixture in an internal combustion engine by means of a high-frequency power source according to the preamble of the main claim.
  • spark plug is a common part of internal combustion engines for motor vehicles.
  • the spark plug is inductively supplied by means of an ignition coil with a sufficiently high electrical voltage, so that a spark on End of the spark plug in the combustion chamber of the internal combustion engine forms to initiate the combustion of the air-fuel mixture.
  • a plasma at the end of an RF resonator is known as a spark plug for igniting an air-fuel mixture in an internal combustion engine. It is further apparent from this that the end of a coaxial waveguide structure of the RF resonator is designed as a firing pin and the freestanding plasma in the air-fuel mixture is produced therefrom by a field structure projecting into the combustion chamber of the internal combustion engine.
  • an ignition device in which the ignition of such an air-fuel mixture is made in an internal combustion engine of a motor vehicle using a coaxial line resonator.
  • the ignition coil is replaced by a sufficiently strong microwave source, for example a combination of a high-frequency generator and an amplifier.
  • a geometrically optimized coaxial line resonator sets the required field for the ignition field strength at the open end of the candle-like line resonator and between the electrodes of the candle forms an ignitable plasma path with the flashover.
  • Such high-frequency ignition is also described in the article "SAE-Paper 970071, Investigating a Radio Frequency Plasma Ignitor for Possible Internal Combustion Engine Use". Even with this high-frequency or microwave ignition, a high voltage is generated by means of a low-impedance feed at the so-called hot end of a ⁇ / 4 line of an RF line resonator without a conventional ignition coil.
  • the invention relates to a device for igniting an air-fuel mixture in an internal combustion engine by means of a high-frequency electrical energy source, with a coaxial waveguide structure, in which the high-frequency electrical energy can be coupled and with one end into the respective combustion chamber of a cylinder of the internal combustion engine protrudes, wherein at this end by a high voltage potential, a microwave plasma can be generated.
  • the one end of the coaxial waveguide structure is designed so that at a pending voltage potential through a protruding into the combustion chamber field structure a free-standing plasma in the air-fuel mixture between the protruding from the waveguide structure a predetermined amount inner conductor and the outer conductor of the waveguide structure can be generated. In this plasma cloud standing free around the end of the projecting inner conductor, no flashover occurs between the electrodes, so that no ion current flows.
  • the inventive design of the end of the coaxial waveguide structure is advantageously carried out according to the features of the characterizing part of claim 1, wherein the one end of the coaxial waveguide structure in the combustion chamber contains a seal of dielectric material between the outer conductor and the coaxial inner conductor, which is at least is provided in the axial direction of a sudden and / or sliding cross-sectional change, which results in an optimal field structure for generating a free-standing plasma.
  • the coaxial waveguide structure is designed such that for a given effective wavelength ⁇ eff of the coupled high-frequency oscillation, a line resonator approximately according to the relationship (2n + 1) * ⁇ eff / 4 with n ⁇ O results and the high-frequency oscillation, for example by a capacitive, inductive, mixed or an aperture coupling is coupled.
  • the effective wavelength ⁇ eff is determined essentially by the shape of the end of the protruding innline, by the sealing of the dielectric or by the shape of the entire line resonator.
  • the field strength required for the ignition in the combustion chamber thus sets at the open end of the largely spark plug-like resonator in its shape.
  • the main advantages of such a high-frequency spark plug over the conventional use of a spark plug are mainly a cost and weight savings by the possibility of miniaturization.
  • the achieved in the proposed device extensive heat value freedom also allows a reduction in the variety of types and thus also a cost savings.
  • the decoupled electrical signal is further processed in an evaluation circuit, with the e.g. a diagnosis of the arrangement, a regulation of the high-frequency energy source and / or a control of predetermined operating functions can be effected.
  • This controllability due to the possibility of combustion diagnostics and thus the optimization of the engine control results in less wear of the structures acting as ignition electrodes and, moreover, also a controlled burning off of impurities, e.g. of soot, possible.
  • the coaxial resonator is realized as a cylinder with a constant, circular cross-section over the length, the result is a conventional sealing of the open end of the resonator or the separation of the volume of the resonator from the combustion chamber, depending on the material and the geometric configuration, in particular Thickness of the seal, a significant field distortion or field attenuation at one end at the top of the inner conductor and an increase in the power requirement to achieve the required ignition field strength.
  • the power requirement is significantly reduced as compared with a resonator having a constant circular cross-section over the length, i. possibly even below the level of a resonator without sealing.
  • the Appendence of the free-standing plasma according to the main claim allows.
  • the plasma is in this case only at one electrode, i. formed at the end of the protruding inner conductor, as a freestanding cloud and it forms, as mentioned above, no adverse spark gap between two electrodes out.
  • the seal can advantageously be mounted in a recess of the outer conductor, which has an abrupt increase in cross-sectional enlargement.
  • the inner contour of the outer conductor and the outer contour of the inner conductor can advantageously be correspondingly changed in their cross section in predetermined regions.
  • the main advantages of this arrangement according to the invention are an optimal separation of the volume of the resonator to the combustion chamber, possibly with simultaneous sealing effect, and a reduction of the RF power necessary for ignition.
  • the inventive concept is advantageously suitable for subsequent integration in existing combustion engines.
  • a compact ignition unit it is possible for a compact ignition unit to be formed by arranging a free-running oscillator circuit and the coaxial waveguide in a common housing, wherein an oscillating circuit can also be connected downstream of the free-running oscillator circuit.
  • the free-running oscillator circuit and / or the downstream amplifier circuit are preferably constructed as a semiconductor integrated circuit with SiC or GaN devices.
  • the main advantages of such a compact design of a high-frequency ignition unit are in particular the possibility of reducing the size, e.g. from a thread size M14 to M10 and the resulting cost and weight savings, since the actual candle and the ignition coil is saved.
  • conventional spark plugs can not be reduced to the extent that new small-sized ignition and valve systems can be realized on an internal combustion engine, in particular a high-compression internal combustion engine.
  • a better EMC behavior in the integration of these components in the coaxial geometry of the device can be achieved.
  • the ignition timing and the ignition duration can be set in a simple manner variable.
  • the freestanding plasma can be positively influenced, in particular by influencing the flame size, as mentioned above, whereby an increase in ignition safety in lean mixtures and in a direct gasoline injection (BDE) is achieved.
  • oscillator circuit for the applications described, it should be noted that these are not only to be interpreted as a single operating state, but at least two basic operating states, namely the unlit and the ignited state, can occur. Furthermore, the transition region between these states and additional influencing parameters such as temperature, soot occupancy and other operating parameters can have a lasting effect on the resonance and impedance behavior of the RF resonator. With conventional structures, this often results in only a fraction of the available power being coupled into the resonator. The remaining portion is reflected and may load or destroy the used power semiconductor device in the oscillator circuit; if necessary, an ignition can be completely prevented.
  • the invention can be ensured by a suitable, compact design freely oscillating oscillator circuit in each operating state in a simple manner that a sufficient proportion of available RF power is coupled into the resonator.
  • the use of new high-temperature semiconductor technologies, such as SiC or GaN particularly advantageous because they are characterized by a good frequency response f T even at high temperatures, eg> 200 ° C, by a high power density and a high integration density.
  • FIG. 1 is a schematic view of an apparatus for high-frequency ignition of an air-fuel mixture shown in an internal combustion engine having components of a so-called high-frequency spark plug 1.
  • RF generator 2 and possibly also dispensable amplifier 3 available, which generate the high-frequency oscillations as a microwave source.
  • Schematically here is an inductive coupling 4 of the high-frequency oscillations in a constructed as ⁇ eff / 4 resonator 5 coaxial waveguide structure as an integral part of the high-frequency spark plug 1 shown.
  • the coaxial resonator 5 consists of an outer conductor 6 and an inner conductor 7, wherein the one so-called open or hot end 8 of the resonator 5 with the inner conductor 7, here as compared to the outer conductor 6 insulated firing pin 7a, causes the ignition.
  • the other so-called cold combustion chamber distal end 9 of the resonator 5 is a short circuit.
  • the dielectric 10 between the outer conductor 6 and an inner conductor 7 consists essentially of air or of a suitable non-conductive material. Only for sealing the open end 8 of the resonator 5 to the combustion chamber, a seal 11 is present.
  • the seal 11 is also made of a non-conductive material which withstands the temperatures in the combustion chamber, e.g. Ceramics. In this case, the dielectric properties of the filling material 10 or of the seal 11 with the dimensions of the resonator 5 determine.
  • FIG. 2 refers to.
  • the effect of a field distortion or field weakening at the tip of the inner conductor 7 or firing pin 7a caused by the open end 8 becomes the cross section of a seal 20 after FIG. 2 varies in the region of the open end 8 of the resonator 5.
  • the inner contour of the outer conductor 6 and the outer contour of the inner conductor 7, 7a may be changed correspondingly in predetermined areas in their cross section.
  • FIG. 3 are principal components of a high-frequency ignition unit 30 can be seen as a block diagram. This contains in detail an RF ignition unit 31, as they are based on the Figures 1 and 2 has been described. Furthermore, a frequency-determining, free-running oscillator 32 using power transistors based on high-temperature suitable semiconductor RF technologies, such as high temperature suitable SiC or GaN devices, and a coupling 33 for the RF oscillations of the oscillator 32 in the igniter 31 is present. Operating fluctuations in the frequency can be taken into account by a suitable, known per se structure of the oscillator 32.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Ignition Installations For Internal Combustion Engines (AREA)
  • Spark Plugs (AREA)

Abstract

La présente invention concerne un dispositif pour enflammer un mélange air-carburant dans un moteur à combustion interne au moyen d'une source d'énergie électrique haute fréquence. Ce dispositif comprend une structure de guide d'ondes coaxiale (5) dans laquelle la source d'énergie électrique peut être insérée et qui fait saillie avec une extrémité dans chaque chambre de combustion d'un cylindre du moteur à combustion interne. Cette extrémité de la structure de guide d'ondes coaxiale (5) est conçue sous forme de tige d'allumeur (7a) de façon que, en cas de potentiel de tension en attente dû à une modification de section brutale et/ou variable (21) du conducteur interne (7) et/ou externe (6), une structure de champ (22) faisant saillie dans la chambre de combustion et un plasma isolé dans le mélange air-carburant puissent être produits sur le conducteur interne (7, 7a) faisant saillie dans la structure de guide d'ondes.

Claims (9)

  1. Dispositif pour enflammer un mélange air-carburant dans un moteur à combustion interne au moyen d'une source d'énergie électrique à haute fréquence, avec :
    - une structure de guidage d'onde (5) coaxiale dans laquelle l'énergie électrique à haute fréquence peut être couplée et ressortant avec une extrémité dans la chambre de combustion respective d'un cylindre du moteur à combustion interne ;
    - un plasma microondes pouvant être réalisé au niveau de cette extrémité par le biais d'un potentiel de tension élevé ; et
    - la première extrémité de la structure de guidage d'onde (5) coaxiale prenant la forme d'un pointeau d'allumage (7a) de telle sorte qu'en présence d'un potentiel de tension apparu du fait d'une structure de champ (22) pénétrant dans la chambre de combustion, un plasma autonome peut être produit dans le mélange air-carburant au niveau du guide intérieur (7, 7a) de la structure de guidage d'onde (5) ressortant de la structure de guidage d'onde d'une quantité prédéfinie, caractérisé en ce que :
    - la première extrémité de la structure de guidage d'onde (5) coaxiale prévue dans la chambre de combustion contient un joint (20) en matière diélectrique entre le guide extérieur (6) et le guide intérieur (7) coaxial, qui est pourvu d'au moins une variation de section transversale (21) de façon saccadée et/ou de façon glissante dans la direction axiale de telle sorte que ladite extrémité donne une structure de champ (22) optimale pour produire un plasma autonome.
  2. Dispositif selon la revendication 1, caractérisé en ce que la structure de guidage d'onde (5) coaxiale est réalisée de telle sorte que pour une longueur d'onde (λeff) efficace prédéfinie de l'oscillation à haute fréquence couplée, on obtient un résonateur de guide selon la relation (2n+1)*λeff/4 avec n ≥ O et que l'oscillation à haute fréquence peut être couplée par un couplage capacitif, inductif, mixte ou d'ouverture.
  3. Dispositif selon la revendication 1 ou 2, caractérisé en ce que le joint (20) est placé dans un creux du guide extérieur (6) comportant un agrandissement en section transversale (21) réalisant un saut en direction d'une extrémité.
  4. Dispositif selon la revendication 2 ou 3, caractérisé en ce que dans la zone de la première extrémité de la structure de guidage d'onde (5), le contour intérieur du guide extérieur (6) et le contour extérieur du guide intérieur (7) sont altérés de façon correspondante dans des zones prédéfinies de leur section transversale, de façon glissante et/ou de façon saccadée.
  5. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'un signal électrique peut être découplé au niveau de l'oscillateur (2 ; 32) ou au niveau du guide d'onde (5) coaxial, ledit signal dépendant des grandeurs physiques du plasma autonome contenu dans le mélange air-carburant.
  6. Dispositif selon la revendication 5, caractérisé en ce que le signal électrique découplé peut être retraité dans un circuit d'analyse permettant de réaliser un diagnostic du dispositif, un réglage de la source d'énergie à haute fréquence et/ou une commande de fonctions prédéfinies.
  7. Dispositif selon l'une quelconque des revendications précédentes, caractérisé en ce qu'une unité d'allumage (30) compacte est formée qui comporte, dans un carter commun, un circuit d'oscillateur en oscillation libre (32), d'autres composants (31, 33) et le guide d'onde (5) coaxial.
  8. Dispositif selon la revendication 7, caractérisé en ce qu'un circuit d'amplificateur (3) est connecté en aval du circuit d'oscillateur en oscillation libre (2 ; 32).
  9. Dispositif selon la revendication 6 ou 7, caractérisé en ce que le circuit d'oscillateur en oscillation libre (2 ; 32) et/ou le circuit d'amplificateur (3) connecté en aval prend la forme d'un circuit à semi-conducteur intégré avec des composants SiC ou GaN.
EP03790742A 2002-08-28 2003-08-25 Dispositif pour enflammer un melange air-carburant dans un moteur a combustion interne au moyen d'une source d'energie electrique haute frequence Expired - Lifetime EP1537329B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE10239410A DE10239410B4 (de) 2002-08-28 2002-08-28 Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE10239410 2002-08-28
PCT/DE2003/002828 WO2004020820A1 (fr) 2002-08-28 2003-08-25 Dispositif pour enflammer un melange air-carburant dans un moteur a combustion interne au moyen d'une source d'energie electrique haute frequence

Publications (2)

Publication Number Publication Date
EP1537329A1 EP1537329A1 (fr) 2005-06-08
EP1537329B1 true EP1537329B1 (fr) 2012-03-21

Family

ID=31724123

Family Applications (1)

Application Number Title Priority Date Filing Date
EP03790742A Expired - Lifetime EP1537329B1 (fr) 2002-08-28 2003-08-25 Dispositif pour enflammer un melange air-carburant dans un moteur a combustion interne au moyen d'une source d'energie electrique haute frequence

Country Status (5)

Country Link
US (1) US7204220B2 (fr)
EP (1) EP1537329B1 (fr)
JP (1) JP4404770B2 (fr)
DE (1) DE10239410B4 (fr)
WO (1) WO2004020820A1 (fr)

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10239409B4 (de) * 2002-08-28 2004-09-09 Robert Bosch Gmbh Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE102004002137A1 (de) * 2004-01-15 2005-08-04 Robert Bosch Gmbh Vorrichtung und Verfahren zum Zünden eines Luft-Kraftstoff-Gemischs mittels eines Hochfrequenz-Resonators
US20060174850A1 (en) * 2005-02-07 2006-08-10 Routery Edward E Pressure augmentation "(molecular stimulation system)"
FR2890247B1 (fr) * 2005-08-25 2007-09-28 Renault Sas Bougie d'allumage plasma pour un moteur a combustion interne
FR2907269B1 (fr) * 2006-10-17 2009-01-30 Renault Sas Dispositif de generation de plasma radiofrequence.
US7533643B2 (en) * 2006-12-07 2009-05-19 Contour Hardening, Inc. Induction driven ignition system
US7647907B2 (en) * 2006-12-07 2010-01-19 Contour Hardening, Inc. Induction driven ignition system
US8424501B2 (en) * 2006-12-07 2013-04-23 Contour Hardening, Inc. Induction driven ignition system
PL2058909T3 (pl) * 2007-11-08 2012-09-28 Delphi Tech Inc Układ rezonatora
US8887683B2 (en) * 2008-01-31 2014-11-18 Plasma Igniter LLC Compact electromagnetic plasma ignition device
US8783220B2 (en) * 2008-01-31 2014-07-22 West Virginia University Quarter wave coaxial cavity igniter for combustion engines
JP5295093B2 (ja) * 2009-12-25 2013-09-18 三菱電機株式会社 点火装置
EP2592911B1 (fr) * 2010-07-07 2017-05-10 Imagineering, Inc. Appareil de génération de plasma
WO2013089732A2 (fr) 2010-12-15 2013-06-20 Federal-Mogul Ignition Company Allumeur à effet corona comprenant une bobine d'allumage à isolation améliorée
EP2724430B2 (fr) 2011-06-27 2019-03-20 Federal-Mogul Ignition Company Ensemble allumeur par effet corona incluant une géométrie d'isolant améliorant l'effet corona
US9341157B2 (en) * 2012-12-17 2016-05-17 Jake Petrosian Catalytic fuel igniter
CN105027237B (zh) 2013-02-18 2018-07-31 林陆妹 具有端子连接插件的点火线圈组件装配
WO2015157294A1 (fr) 2014-04-08 2015-10-15 Plasma Igniter, Inc. Génération de plasma par résonateur à cavité à double signal
JP6677877B2 (ja) * 2014-05-29 2020-04-08 イマジニアリング株式会社 点火装置内蔵インジェクタ
EP3181891A4 (fr) * 2014-08-12 2017-11-08 Imagineering, Inc. Dispositif d'allumage
WO2016027845A1 (fr) * 2014-08-20 2016-02-25 イマジニアリング株式会社 Moteur à combustion interne du type à allumage par compression
JP6739348B2 (ja) * 2014-11-24 2020-08-12 イマジニアリング株式会社 点火ユニット、点火システム、及び内燃機関
JP6715600B2 (ja) 2015-02-09 2020-07-01 株式会社デンソー 内燃機関用の点火プラグ
JP6868421B2 (ja) 2017-03-08 2021-05-12 株式会社Soken 点火装置
US20190186369A1 (en) 2017-12-20 2019-06-20 Plasma Igniter, LLC Jet Engine with Plasma-assisted Combustion
DE102020100872B4 (de) * 2020-01-15 2021-08-05 Ferdinand-Braun-Institut gGmbH, Leibniz- Institut für Höchstfrequenztechnik Resonator und Leistungsoszillator zum Aufbau einer integrierten Plasmaquelle sowie deren Verwendung

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57186067A (en) * 1981-05-11 1982-11-16 Hitachi Ltd Ignition device of engine
US4766855A (en) * 1983-07-20 1988-08-30 Cummins Engine Co., Inc. Plasma jet ignition apparatus
US4677960A (en) * 1984-12-31 1987-07-07 Combustion Electromagnetics, Inc. High efficiency voltage doubling ignition coil for CD system producing pulsed plasma type ignition
DE3527041A1 (de) * 1985-07-27 1987-02-05 Bernd Holz Verfahren zur einbringung thermischer energie in einen mit einem medium gefuellten raum und einrichtung hierzu
US5211142A (en) * 1990-03-30 1993-05-18 Board Of Regents, The University Of Texas System Miniature railgun engine ignitor
US5076223A (en) * 1990-03-30 1991-12-31 Board Of Regents, The University Of Texas System Miniature railgun engine ignitor
US5361737A (en) * 1992-09-30 1994-11-08 West Virginia University Radio frequency coaxial cavity resonator as an ignition source and associated method
US5549795A (en) * 1994-08-25 1996-08-27 Hughes Aircraft Company Corona source for producing corona discharge and fluid waste treatment with corona discharge
JPH08195295A (ja) * 1995-01-19 1996-07-30 Fuji Electric Co Ltd 誘導結合型プラズマトーチ
DE19747701C2 (de) * 1997-10-29 1999-12-23 Volkswagen Ag Plasmastrahl-Zündung für Verbrennungskraftmaschinen
US5983871A (en) * 1997-11-10 1999-11-16 Gordon; Eugene Ignition system for an internal combustion engine
DE19852652A1 (de) * 1998-11-16 2000-05-18 Bosch Gmbh Robert Zündvorrichtung für Hochfrequenz-Zündung
DE10037536C2 (de) * 2000-08-01 2002-11-21 Daimler Chrysler Ag Verfahren und Vorrichtung einer Plasmazündung in Verbrennungsmotoren
DE10239409B4 (de) * 2002-08-28 2004-09-09 Robert Bosch Gmbh Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
US6883507B2 (en) * 2003-01-06 2005-04-26 Etatech, Inc. System and method for generating and sustaining a corona electric discharge for igniting a combustible gaseous mixture
DE10360192A1 (de) * 2003-12-20 2005-07-14 Robert Bosch Gmbh Vorrrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE10360193B4 (de) * 2003-12-20 2016-04-28 Robert Bosch Gmbh Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE102004018201A1 (de) * 2004-04-15 2005-11-10 Robert Bosch Gmbh Vorrichtung zum Zünden eines Luft-Kraftstoffgemischs in einem Verbrennungsmotor

Also Published As

Publication number Publication date
WO2004020820A1 (fr) 2004-03-11
US20060048732A1 (en) 2006-03-09
DE10239410A1 (de) 2004-03-18
JP4404770B2 (ja) 2010-01-27
JP2005536684A (ja) 2005-12-02
US7204220B2 (en) 2007-04-17
EP1537329A1 (fr) 2005-06-08
DE10239410B4 (de) 2004-12-09

Similar Documents

Publication Publication Date Title
EP1537329B1 (fr) Dispositif pour enflammer un melange air-carburant dans un moteur a combustion interne au moyen d'une source d'energie electrique haute frequence
EP1053399B1 (fr) Dispositif d'allumage pour allumage haute frequence
DE102006037040B4 (de) Brennstoffeinspritzventil mit Zündung
EP3465849B1 (fr) Bougie d'allumage pour système d'allumage à haute fréquence
DE19747700C2 (de) Zündeinrichtung mit einer Zündelektrode
DE10239411B4 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE10239409B4 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE10239414B4 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
EP1448890B1 (fr) Allumage haute frequence concu pour un moteur a combustion interne
DE10243271A1 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE102006037246A1 (de) Verfahren zum Betreiben einer Zündkerze eines Zündsystems sowie Zündsystem und geeignete Zündkerze
DE102005037256A1 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemisches
DE10360193B4 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE102005037420A1 (de) Verfahren zum Betrieb eines Zündsystems zur Selbstreinigung von Zündkerzen
DE102006037039B4 (de) Hochfrequenz-Zündvorrichtung
DE10360192A1 (de) Vorrrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE10239412B4 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE4028869A1 (de) Plasmastrahl-zuendsystem
DE10360191A1 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE10207446B4 (de) Verfahren zur Zündung eines Luft-Kraftstoff-Gemischs, Zündungssteuerungsvorrichtung und Zündvorrichtung
DE10143194B4 (de) Hochfrequenzzündung für Verbrennungskraftmaschinen
DE10243272B4 (de) Vorrichtung zum Zünden eines Luft-Kraftstoff-Gemischs in einem Verbrennungsmotor
DE10061672A1 (de) Vorrichtung zur Energieeinkopplung in einen mit einem bestimmten Medium gefüllten Raum
DE102005025518A1 (de) Vorrichtung zum Zünden eines Kraftstoff-Luft-Gemisches

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20050329

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LI LU MC NL PT RO SE SI SK TR

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 20070115

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: DE

Ref legal event code: R096

Ref document number: 50314282

Country of ref document: DE

Effective date: 20120510

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20120321

REG Reference to a national code

Ref country code: DE

Ref legal event code: R097

Ref document number: 50314282

Country of ref document: DE

Effective date: 20130102

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20120825

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120825

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140819

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141024

Year of fee payment: 12

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50314282

Country of ref document: DE

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160429

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160301

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150831